Org. I Quiz (assignments)

Solomons Chap. 1

1.5abcd

Review Problem 1.5 Write the contributing resonance structures and resonance hybrid for each of the following:

- (a) $CH_3CH = CH CH = \overset{\scriptscriptstyle \perp}{O}H$
- (b) $CH_2 = CH$
- (c)
- (d) $CH_2 = CH Br$

- **(f)** :CH₂
- (g) $CH_3 S CH_2^+$
- (h) $CH_3 NO_2$

hap1

1.19

Write a condensed structural formula for each compound given here.

(c)

Rewrite each of the following using bond-line formulas: 1.22

- (a) CH₃CH₂CH₂CCH₃
- (b) CH₃CHCH₂CH₂CHCH₂CH₃ CH_3 CH_3
- (c) (CH₃)₃CCH₂CH₂CH₂OH
- (d) CH₃CH₂CHCH₂COH ĊH₃

(e) CH₂=CHCH₂CH=CHCH₃

$$(\mathbf{f}) \begin{tabular}{c} & & & & \\ & & & & \\ HC & & & \\ HC & & & \\ C & & & \\ C & & \\ H_2 \\ \end{tabular}$$

Solomons Chap2

2.25 Classify the following alcohols as primary, secondary, or tertiary:

(b)

2.28 Which compound in each of the following pairs would have the higher boiling point? Explain your answers.

or
$$\sqrt{0}$$

'OH

or

(h) Hexane, CH₃(CH₂)₄CH₃, or nonane, CH₃(CH₂)₇CH₃

or
$$N-CH_3$$

(f)
$$\stackrel{F}{\longrightarrow}$$
 or $\stackrel{F}{\longrightarrow}$

Solomons Chap3

- 3.28 Arrange the following compounds in order of decreasing acidity:
 - (a) $CH_3CH = CH_2$, $CH_3CH_2CH_3$, $CH_3C = CH$
 - (b) CH₃CH₂CH₂OH, CH₃CH₂CO₂H, CH₃CHClCO₂H
 - (c) CH₃CH₂OH, CH₃CH₂OH₂⁺, CH₃OCH₃
 - Arrange the following in order of increasing basicity:
 - (a) CH₃NH₂, CH₃NH₃⁺, CH₃NH⁻
 - (b) CH₃O⁻, CH₃NH⁻, CH₃CH₂⁻
 - (c) $CH_3CH = CH^-, CH_3CH_2CH_2^-, CH_3C = C^-$
- 3.30 Whereas H₃PO₄ is a triprotic acid, H₃PO₃ is a diprotic acid. Draw structures for these two acids that account for this difference in behavior.
- 3.31 Supply the curved arrows necessary for the following reactions:

(a)
$$H \xrightarrow{C} \ddot{\ddot{O}} - H + \vdots \ddot{\ddot{O}} - H \longrightarrow H \xrightarrow{C} \ddot{\ddot{O}} \vdots + H - \ddot{\ddot{O}} :$$

(b)
$$\stackrel{\circ}{\text{H}} \stackrel{\circ}{\text{C}} \stackrel{\circ}{\text{C}} - \text{CH}_3 + \stackrel{\circ}{\text{-}} \stackrel{\circ}{\text{C}} - \text{H} \longrightarrow \text{H} \stackrel{\circ}{\text{-}} \stackrel{\circ}{\text{C}} - \stackrel{\circ}{\text{C}} - \text{H}$$

(d)
$$H - \ddot{O} : + CH_3 - \ddot{I} : \longrightarrow H - \ddot{O} - CH_3 + : \ddot{I} : -$$

(e)
$$H - \ddot{\ddot{O}} : \dot{\ddot{C}} + H - CH_2 - \ddot{\ddot{C}} : \longrightarrow H_2C$$

$$CH_3 + \ddot{\ddot{C}} : \dot{\ddot{C}} + H - \ddot{\ddot{O}} - H$$

Formamide (HCONH₂) has a p K_a of approximately 25. Predict, based on the map of electrostatic potential for formamide shown here, which hydrogen atom(s) have this p K_a value. Support your conclusion with arguments having to do with the electronic structure of formamide.

