Review for Final Exam 2018/9

I. True or False.

1. The following is valid for all statements p, q, r.

$$
\neg(p \wedge q) \vee r \equiv((\neg p) \vee r) \wedge((\neg q) \vee r) .
$$

2. Let A be an $n \times n$ matrix. If a matrix equation $A \boldsymbol{x}=\mathbf{0}$ has infinitely many solutions, so is $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ for every $n \times 1$ matrix (column vector) \boldsymbol{b}.
3. Let A be an $m \times n$ matrix with $m<n$. Then a matrix equation $A \boldsymbol{x}=\mathbf{0}$ has infinitely many solutions.
4. Let $f(x)$ be a function such that $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)=0$. Then $f(x)$ is either increasing, decreasing or a constant at $x=c$, and $f(c)$ cannot be a local extremum.
5. If $F(x)$ is an antiderivative of $f(x)$, then $F\left(e^{x}\right)$ is an antiderivative of $f\left(e^{x}\right) e^{x}$.

II. Answer each of the following

1. Write a truth table of $(p \Rightarrow q) \vee((\neg r) \wedge q) .{ }^{2}$
2. Find a 3×3 matrix satisfying the following.

$$
T \cdot\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a \\
-3 a+b \\
a+c
\end{array}\right]
$$

3. Find $B A$ and $A B .^{3}$

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & -1 \\
-2 & 2 & 0
\end{array}\right], B=\left[\begin{array}{ccc}
0 & 1 & 1 \\
2 & 1 & 1 \\
-2 & 1 & 2
\end{array}\right]
$$

4. Determine whether or not the matrix A in the previous problem is invertible. ${ }^{4}$
5. Find the reduced row echelon form of the matrix below and find the solutions $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$.

$$
\left[\begin{array}{ccccccc}
1 & 2 & 1 & 0 & -3 & 0 & -2 \\
0 & 0 & 2 & 0 & 4 & -2 & 0 \\
0 & 0 & 0 & 1 & 2 & -1 & -5 \\
0 & 0 & -3 & 0 & -6 & 3 & 0
\end{array}\right]
$$

6. Find a polynomial $f(x)$ of degree three satisfying $f(1)=1, f(2)=-2, f(3)=4, f(4)=12$. 6

[^0]7. Show that there are infinitely many polynomials $g(x)$ of degree four satisfying $g(1)=1, g(2)=-2$, $g(3)=4, g(4)=12$.
8. Find the limit $\lim _{n \rightarrow \infty} \frac{3 n^{3}-4 n+4}{n^{3}-8}$.
9. Find the limit $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+4}{x^{3}-8}$. ${ }^{7}$
10. Find the limit $\lim _{x \rightarrow 0} \frac{(x+1) e^{x}-1}{x}$.
(Hint: Consider the definition of $f^{\prime}(0)$ when $f(x)=(x+1) e^{x}$. There is a straight way. You can apply l'Hôpital's rule as well.)
11. Find the derivative of $\left(3 x^{2}-2\right)^{10}$.
12. Find the derivative of $\left(x^{3}-2 x+1\right) e^{-3 x^{2}}$.
13. Find $\int\left(x^{2}-\frac{2}{x}+\frac{1}{x^{2}}\right) d x$.
14. Find $\int_{1}^{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$.
15. Find $\int x\left(3 x^{2}-2\right)^{9} d x$.
16. Find the derivative of $F(x)=\int_{0}^{x} t\left(3 t^{2}-2\right)^{9} d t$.
17. Let $y=f(x)=c e^{a x}+d e^{b x}$, where a, b, c, d are constants with $a<b$. Suppose $y^{\prime \prime}-2 y^{\prime}-3 y=0$ for all c, d, and $f(0)=2, f^{\prime}(0)=2$. Find a function $y=f(x)$ with these properties by determining constants a, b, c, d. ${ }^{8}$

III. Answer each of the following

1. Find the inverse of the matrix C below, and solve the system of linear equation. ${ }^{9}$

$$
C=\left[\begin{array}{cccc}
1 & 0 & -1 & -3 \\
1 & 0 & -1 & -2 \\
0 & 1 & 0 & 1 \\
0 & -2 & 1 & -4
\end{array}\right], \quad\left\{\begin{array}{cccccc}
x_{1} & & -x_{3} & -3 x_{4} & = & 1 \\
x_{1} & & -x_{3} & -2 x_{4} & = & 2 \\
& x_{2} & & +x_{4} & = & -3 \\
& -2 x_{2} & +x_{3} & -4 x_{4} & = & -1
\end{array}\right.
$$

2. Find a function $f(x)$ satisfying $f^{\prime}(x)=x^{2}(x-1)(x-5)=x^{4}-6 x^{3}+5 x^{2}$ and $f(0)=1$. Determine whether $f(x)$ has a local maximum, a local minimum, increasing or decreasing at $x=0,1,5$. ${ }^{10}$
3. Solve the following differential equations. ${ }^{11}$
(a) $\frac{d y}{d x}=3 y, y(0)=3$.
(b) $\frac{d y}{d x}=\frac{1}{3 \sqrt{x y}}, y(1)=1$, where $x, y>0$.
[^1]
[^0]: ${ }^{1}$ I. FFTFT
 ${ }^{2}$ II-1: same as $p \Rightarrow q$, i.e., TTFFTTTT from top in standard order
 ${ }^{3} \mathrm{II}-2: \quad T=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], \quad \mathrm{II}-3: \quad A B=\left[\begin{array}{ccc}4 & -1 & -3 \\ 4 & 2 & 1 \\ 4 & 0 & 0\end{array}\right], B A=\left[\begin{array}{ccc}0 & 3 & -1 \\ 2 & 3 & -5 \\ -4 & 5 & 3\end{array}\right]$
 ${ }^{4} \mathrm{II}-4: A \rightarrow\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 2 & -4\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & -10\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Thus invertible.
 ${ }^{5}$ II-5: $\left[\begin{array}{ccccccc}1 & 2 & 0 & 0 & -5 & 1 & -2 \\ 0 & 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 & 2 & -1 & -5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right], \quad x_{1}=-2 s+5 t-u-2, x_{2}=s, x_{3}=-2 t+u, x_{4}=-2 t+u-5, x_{5}=t, x_{6}=u$.
 ${ }^{6}$ II-6: $f(x)=\frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)}-2 \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)}+4 \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)}+12 \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}$. II-7. Using $f(x)$ in the previous problem, $f(x)+a(x-1)(x-2)(x-3)(x-4), a \neq 0$ satisfies the condition for any a. Hence there are infinitely many polynomials with the property. II-8. 3 .

[^1]: ${ }^{7}$ II-9:0, \quad II-10:2, \quad II-11: $60 x\left(3 x^{2}-2\right)^{9}, \quad$ II-12: $\left(3 x^{2}-2\right) e^{-3 x^{2}}+\left(x^{3}-2 x+1\right) e^{-3 x^{2}}(-6 x)=\left(-6 x^{4}+15 x^{2}-6 x-2\right) e^{-3 x^{2}}$ II13: $\frac{1}{3} x^{3}-2 \log _{e}|x|-\frac{1}{x}+C, \quad$ II-14: $\left[\frac{2}{3} x^{3 / 2}+2 x^{1 / 2}\right]_{1}^{4}=\frac{20}{3}$.
 ${ }^{8}$ II-15:use II-11 to find $\frac{1}{60}\left(3 x^{2}-2\right)^{10}+C, \quad$ II-16: $x\left(3 x^{2}-2\right)^{9}, \quad$ II-17: $y=e^{-x}+e^{3 x}$.
 ${ }^{9}$ III-1: $\quad C^{-1}=\left[\begin{array}{cccc}-4 & 5 & 2 & 1 \\ 1 & -1 & 1 & 0 \\ -2 & 2 & 2 & 1 \\ -1 & 1 & 0 & 0\end{array}\right], \quad x_{1}=-1, x_{2}=-4, x_{3}=-5, x_{4}=1$.
 ${ }^{10}$ III-2: $f(x)=\frac{1}{5} x^{5}-\frac{3}{2} x^{4}+\frac{5}{3} x^{3}+1$, increasing at 0 , local maximum at 1 and local minimum at 5 .
 ${ }^{11}$ III-3: (a) $y=3 e^{3 x}$. (b) $y=\sqrt[3]{x}$ or $y^{3}=x$.

