Review for Final Exam 2017/8

I. True or False. ¹

1. The following is valid for all statements p, q, r.

$$\neg (p \land q) \lor r \equiv ((\neg p) \lor r) \land ((\neg q) \lor r).$$

- 2. Let A be an $n \times n$ matrix. If a matrix equation $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions, so is $A\mathbf{x} = \mathbf{b}$ for every $n \times 1$ matrix (column vector) \mathbf{b} .
- 3. Let A be an $m \times n$ matrix with m < n. Then a matrix equation Ax = 0 has infinitely many solutions.
- 4. Let f(x) be a function such that f'(c) = 0 and f''(c) = 0. Then f(x) is either increasing, decreasing or a constant at x = c, and f(c) cannot be a local extremum.
- 5. If F(x) is an antiderivative of f(x), then $F(e^x)$ is an antiderivative of $f(e^x)e^x$.

II. Answer each of the following

- 1. Write a truth table of $(p \Rightarrow q) \lor ((\neg r) \land q)$.²
- 2. Find a 3×3 matrix satisfying the following.

$$T \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a \\ -3a+b \\ a+c \end{bmatrix}$$

3. Find BA and AB.³

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & -1 \\ -2 & 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & 1 & 2 \end{bmatrix}.$$

- 4. Determine whether or not the matrix A in the previous problem is invertible.⁴
- 5. Find the reduced row echelon form of the matrix below and find the solutions $x_1, x_2, x_3, x_4, x_5, x_6$.

$$\begin{bmatrix} 1 & 2 & 1 & 0 & -3 & 0 & -2 \\ 0 & 0 & 2 & 0 & 4 & -2 & 0 \\ 0 & 0 & 0 & 1 & 2 & -1 & -5 \\ 0 & 0 & -3 & 0 & -6 & 3 & 0 \end{bmatrix}$$

6. Find a polynomial f(x) of degree three satisfying f(1) = 1, f(2) = -2, f(3) = 4, f(4) = 12.⁶

¹ I. FFTFT
² II-1: same as $p \Rightarrow q$, i.e., TTFFTTTT from top in standard order
³ II-2: $T = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, II-3: $AB = \begin{bmatrix} 4 & -1 & -3 \\ 4 & 2 & 1 \\ 4 & 0 & 0 \end{bmatrix}$, $BA = \begin{bmatrix} 0 & 3 & -1 \\ 2 & 3 & -5 \\ -4 & 5 & 3 \end{bmatrix}$
${}^{4}\text{II-4:} A \to \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 2 & -4 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & -10 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \text{ Thus invertible.}$
$ {}^{5}\text{II-5:} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
(x-1)(x-2)(x-3)(x-4) $(x-1)(x-3)(x-4)$ $(x-1)(x-2)(x-4)$ $(x-1)(x-2)(x-3)$

⁶II-6: $f(x) = \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} - 2\frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} + 4\frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} + 12\frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)}$. II-7. Using f(x) in the previous problem, f(x) + a(x-1)(x-2)(x-3)(x-4), $a \neq 0$ satisfies the condition for any a. Hence there are infinitely many polynomials with the property. II-8. 3.

- 7. Show that there are infinitely many polynomials g(x) of degree four satisfying g(1) = 1, g(2) = -2, g(3) = 4, g(4) = 12.
- 8. Find the limit $\lim_{n \to \infty} \frac{3n^3 4n + 4}{n^3 8}$.
- 9. Find the limit $\lim_{x \to 2} \frac{x^2 4x + 4}{x^3 8}$.⁷
- 10. Find the limit $\lim_{x\to 0} \frac{(x+1)e^x 1}{x}$.

(Hint: Consider the definition of f'(0) when $f(x) = (x+1)e^x$. There is a straight way. You can apply l'Hôpital's rule as well.)

- 11. Find the derivative of $(3x^2 2)^{10}$.
- 12. Find the derivative of $(x^3 2x + 1)e^{-3x^2}$.
- 13. Find $\int \left(x^2 \frac{2}{x} + \frac{1}{x^2}\right) dx.$
- 14. Find $\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$.
- 15. Find $\int x(3x^2-2)^9 dx$.
- 16. Find the derivative of $F(x) = \int_0^x t(3t^2 2)^9 dt$.
- 17. Let $y = f(x) = ce^{ax} + de^{bx}$, where a, b, c, d are constants. Suppose y'' 2y' 3y = 0 and f(0) = 2, f'(0) = 2. Find a function y = f(x) with these properties by determining constants a, b, c, d.⁸

III. Answer each of the following

1. Find the inverse of the matrix C below, and solve the system of linear equation. ⁹

$$C = \begin{bmatrix} 1 & 0 & -1 & -3\\ 1 & 0 & -1 & -2\\ 0 & 1 & 0 & 1\\ 0 & -2 & 1 & -4 \end{bmatrix}, \quad \begin{cases} x_1 & -x_3 & -3x_4 & = & 1\\ x_1 & -x_3 & -2x_4 & = & 2\\ & x_2 & +x_4 & = & -3\\ & -2x_2 & +x_3 & -4x_4 & = & -1 \end{cases}$$

- 2. Find a function f(x) satisfying $f'(x) = x^2(x-1)(x-5) = x^4 6x^3 + 5x^2$ and f(0) = 1. Determine whether f(x) has a local maximum, a local minimum, increasing or decreasing at x = 0, 1, 5.¹⁰
- 3. Solve the following differential equations.¹¹

(a)
$$\frac{dy}{dx} = 3y, \ y(0) = 3.$$

(b) $\frac{dy}{dx} = \frac{1}{3\sqrt{xy}}, \ y(1) = 1, \text{ where } x, y > 0.$

 $\overline{{}^{7}\text{II-9:0, II-10:2, II-11: } 60x(3x^{2}-2)^{9}, II-12:(3x^{2}-2)e^{-3x^{2}} + (x^{3}-2x+1)e^{-3x^{2}}(-6x)} = (-6x^{4}+15x^{2}-6x-2)e^{-3x^{2}}\text{II-13:} \frac{1}{3}x^{3}-2\log_{e}|x| - \frac{1}{x} + C, II-14: \left[\frac{2}{3}x^{3/2} + 2x^{1/2}\right]_{1}^{4} = \frac{20}{3}.$ ⁸II-15:use II-11 to find $\frac{1}{22}(3x^{2}-2)^{10} + C, II-16: x(3x^{2}-2)^{9}, II-17: y = e^{3x} + e^{-x}.$

⁸II-15:use II-11 to find
$$\frac{1}{60}(3x^2 - 2)^{\overline{10}} + C$$
, II-16: $x(3x^2 - 2)^9$, II-17: $y = e^{3x} + e^{-3x}$
⁹III-1: $C^{-1} = \begin{bmatrix} -4 & 5 & 2 & 1 \\ 1 & -1 & 1 & 0 \\ -2 & 2 & 2 & 1 \\ -1 & 1 & 0 & 0 \end{bmatrix}$, $x_1 = -1, x_2 = -4, x_3 = -5, x_4 = 1.$

¹⁰III-2: $f(x) = \frac{1}{5}x^5 - \frac{3}{2}x^4 + \frac{5}{3}x^3 + \frac{5}{1}$, increasing at 0, local maximum at 1 and local minimum at 5. ¹¹III-3: (a) $y = 3e^{3x}$. (b) $y = \sqrt[3]{x}$ or $y^3 = x$.