GEN024 Final Exam 2015/6

Write your name and student ID number, and all your answers in the places provided on the separate answer sheets. $(5pts \times 20)$

Part I.

- 1. Complete the truth tables of $p \Rightarrow (\neg q \Rightarrow r)$ and $(p \Rightarrow q) \lor r$, and determine whether they are logically equivalent.
- 2. Write T for true and F for false in the answer sheets.

$$\begin{cases} x + 2y + 3z &= 2 \\ x + 4y + 9z &= 2 \\ x + 8y + 27z &= 9 \end{cases}, A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}.$$

- (a) The matrix A is the coefficient matrix of the system of linear equations above.
- (b) The matrix B is in reduced row echelon form.
- (c) The rank of A is 3.
- (d) The rank of B is 3.
- (e) There are infinitely many solutions to the system of linear equations above.

Part II. Write the answers of the following in the places provided in answer sheets. Show work! If you apply a proposition, state the number or the statement clearly.

- 3. Let p(x) be a polynomial satisfying p(-4) = 2, p(-2) = 0, p(0) = 1, p(2) = 6 and p(4) = -2. Write two such polynomials p(x), one with degree at most 4 and the other with degree exactly 5.
- 4. Let $f(x) = 2x^4 12x^3 + 16x^2 + 12x 2 = q(x)(x-2) + r = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$. Find a polynomial q(x), constants r and c_4, c_3, c_2, c_1, c_0 .
- 5. Let f(x) be a polynomial in the previous problem. (a) Show that there is a zero between 0 and 2, i.e., there is c with 0 < c < 2 such that f(c) = 0. (b) Determine whether $c \ge 1$ or c < 1.
- 6. Let $g(x) = x^4 5x^3 + 8x^2 4x + 2$. Determine whether g(x) is increasing, decreasing at x = 2 or g(2) is a local maximum or a local minimum. Why?

1

- 7. Find the limit. $\lim_{x\to 2} \frac{2x^3 5x^2 4x + 12}{x^3 5x^2 + 8x 4}$.
- 8. Find the limit. $\lim_{x\to 0} \frac{e^x 1 x}{x^2}$. Note that $e^0 = 1$.
- 9. Find the derivative of $\frac{1}{(2x+5)^5}$.

- 10. Find the derivative of $x^2e^{-x^2}$.
- 11. Find the indefinite integral. $\int \left(\frac{1}{2x} 2 + \frac{2}{\sqrt{x}}\right) dx$.
- 12. Find the indefinite integral. $\int \frac{1}{(2x+5)^6} dx$.
- 13. Find the definite integral. $\int_{-5}^{5} (x-5)^5 dx$.
- 14. Find the derivative of F(x), where $F(x) = \int_{-5}^{x} t(t-1)(t+1)e^{-t^2}dt$.

Part III. Write your answers on the answer sheets.

$$B = \begin{bmatrix} 2 & 6 & 1 & 0 & 7 & -11 \\ 0 & 0 & -3 & -6 & -33 & -3 \\ -2 & -6 & 0 & 3 & 8 & 17 \\ 1 & 3 & 0 & -1 & -2 & -6 \end{bmatrix} \rightarrow \rightarrow C = \begin{bmatrix} 1 & 3 & 0 & -1 & -2 & -6 \\ 0 & 0 & 1 & 2 & 11 & 1 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 2 & 6 & 1 & 0 & 7 & -11 \end{bmatrix}, A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

- 15. The matrix C is obtained from the matrix B by performing elementary row operations three times. Write them in order using notation [i, j; c] (add c times row j to row i), [i, j] (interchange row i and row j), [i; c] (multiply every entry in row i by c).
- 16. Find a 4×4 matrix T obtained by three row operations above satisfying TB = C.
- 17. Suppose the matrix B above is an augmented matrix of a system of linear equations with unknowns x_1, x_2, x_3, x_4, x_5 . Find the reduced row echelon form of B and the solutions of the system.
- 18. Find the inverse of the matrix A above.
- 19. The amount of two radio active substances at time t can be expressed as $g(t) = ce^{at}$ and $h(t) = de^{bt}$ with a > b and $c \neq 0 \neq d$. It is also known that both y = g(t), y = h(t) and hence the total amount y = f(t) = g(t) + h(t) satisfy y'' 5y' + 6y = 0. (a) Determine a and b in g(t) and h(t), and (b) c, d when f(0) = 3 and f'(0) = -7.
- 20. The decay of a radio active substance satisfies the following differential equation. To apply Proposition 7.4, (a) identify h(x), g(x), and (b) find G(y), H(x) and write the equation G(y) = H(x) + C. Finally (c) solve it with an initial condition below for y = f(x).

$$y' = \frac{dy}{dx} = -0.05y, \quad y(0) = f(0) = 3.$$

2

GEN024 FINAL 2015/6 Answer Sheets

ID#: Name:

Part I-1.

p	q	r	p	\Rightarrow	$(\neg q$	\Rightarrow	r)	(<i>p</i>	\Rightarrow	q)	V	r
T	T	T										
T	T	F										
T	F	T										
T	F	F										
F	T	T										
F	T	F										
F	F	T										
F	F	F										

Are these logically equivalent?

2.

(a)	(b)	(c)	(d)	(e)

Message: Did you enjoy mathematics, or did you suffer a lot? I appreciate your feedbacks on the following. 数学少しは楽しめましたか。苦しんだ人もいるかな。以下のことについて書いて下さい。(If you don't want your message to be posted, write "Do Not Post." 「HP 掲載不可」は明記の事。)

- (A) About this class, especially on improvements. この授業について。改善点など何でもどうぞ。
- (B) About the education at ICU, especially on improvements. Any comments concerning ICU are welcome. ICU の教育一般について。改善点など、ICU に関すること何でもどうぞ。

No.	PTS.
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	
20.	
Total	

Part II.

3. degree at most 4:

degree 5:

4. Let $f(x) = 2x^4 - 12x^3 + 16x^2 + 12x - 2 = q(x)(x-2) + r = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$. Find a polynomial q(x), constants r and c_4, c_3, c_2, c_1, c_0 .

- 5. Let f(x) be a polynomial in the previous problem.
 - (a) Show that there is a zero between 0 and 2, i.e., there is c with 0 < c < 2 such that f(c) = 0.
 - (b) Determine whether $c \ge 1$ or c < 1.
- 6. Let $g(x) = x^4 5x^3 + 8x^2 4x + 2$. Determine whether g(x) is increasing, decreasing at x = 2 or g(2) is a local maximum or a local minimum. Why?

7. Find the limit. $\lim_{x\to 2} \frac{2x^3 - 5x^2 - 4x + 12}{x^3 - 5x^2 + 8x - 4}$.

8. Find the limit. $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$. Note that $e^0 = 1$.

9. Find the derivative of $\frac{1}{(2x+5)^5}$.

10. Find the derivative of $x^2e^{-x^2}$.

11. Find the indefinite integral. $\int \left(\frac{1}{2x} - 2 + \frac{2}{\sqrt{x}}\right) dx$.

- 12. Find the indefinite integral. $\int \frac{1}{(2x+5)^6} dx$.
- 13. Find the definite integral. $\int_{-5}^{5} (x-5)^5 dx$.
- 14. Find the derivative of $F(x) = \int_{-5}^{x} t(t-1)(t+1)e^{-t^2}dt$.

Part III.

- 15. The matrix C is obtained from the matrix B by performing elementary row operations three times. Write them in order using notation [i, j; c] (add c times row j to row i), [i, j] (interchange row i and row j), [i; c] (multiply every entry in row i by c).
- 16. Find a 4×4 matrix T obtained by three row operations above satisfying TB = C.
- 17. Suppose the matrix B above is an augmented matrix of a system of linear equations with unknowns x_1, x_2, x_3, x_4, x_5 . Find the reduced row echelon form of B and the solutions of the system.

18. Find the inverse of the matrix A above.

19. The amount of two radio active substances at time t can be expressed as $g(t) = ce^{at}$ and $h(t) = de^{bt}$ with a > b and $c \neq 0 \neq d$. It is also known that both y = g(t), y = h(t) and hence the total amount y = f(t) = g(t) + h(t) satisfy y'' + 5y' + 6y = 0. (a) Determine a and b in g(t) and h(t), and (b) c, d when f(0) = 3 and f'(0) = -7.

(b)

20. The decay of a radio active substance satisfies the following differential equation. To apply Proposition 7.4, (a) identify h(x), g(x), and (b) find G(y), H(x) and write the equation G(y) = H(x) + C. Finally (c) solve it with an initial condition below for y = f(x).

$$y' = \frac{dy}{dx} = -0.05y, \quad y(0) = f(0) = 3.$$

(a)

(b)

(c)

Solutions to GEN024 FINAL 2015/6

Part I.

1.

p	q	r	p	\Rightarrow	$(\neg q$	\Rightarrow	r)	(p	\Rightarrow	q)	V	r
								<u> </u>				
T	T	T	T	T	F	T	T	T	T	T	T	T
T	T	F	T	$oldsymbol{T}$	F	T	F	T	T	T	T	F
T	F	T	T	$oldsymbol{T}$	T	T	T	T	F	F	T	T
T	F	F	T	$oldsymbol{F}$	T	F	F	T	F	F	${m F}$	F
F	T	T	F	$oldsymbol{T}$	F	T	T	F	T	T	T	T
F	T	F	F	T	F	T	F	F	T	T	T	F
F	F	T	F	$oldsymbol{T}$	T	T	T	F	T	F	T	T
F	F	F	F	T	T	F	F	F	T	F	$oldsymbol{T}$	F

Are these logically equivalent?: YES, 論理同値

2.

•	(a)	(b)	(c)	(d)	(e)	_
	$oldsymbol{T}$	$oldsymbol{F}$	$oldsymbol{T}$	$oldsymbol{T}$	$oldsymbol{F}$	

Part II.

3. degree at most 4:

$$p(x) = 2\frac{(x+2)(x-0)(x-2)(x-4)}{(-4+2)(-4-0)(-4-2)(-4-4)} + 0\frac{(x+4)(x-0)(x-2)(x-4)}{(-2+4)(-2-0)(-2-2)(-2-4)} + \frac{(x+4)(x+2)(x-2)(x-4)}{(0+4)(0+2)(0-2)(0-4)} + 6\frac{(x+4)(x+2)(x-0)(x-4)}{(2+4)(2+2)(2-0)(2-4)} - 2\frac{(x+4)(x+2)(x-0)(x-2)}{(4+4)(4+2)(4-0)(4-2)}.$$

degree 5: Let p(x) be the one with degree at most four above. Then the following is a polynomial of degree 5 satisfying the conditions. See Proposition 4.2.

$$p(x) + (x+4)(x+2)x(x-2)(x-4)$$
.

4. Let $f(x) = 2x^4 - 12x^3 + 16x^2 + 12x - 2 = q(x)(x-2) + r = c_4(x-2)^4 + c_3(x-2)^3 + c_2(x-2)^2 + c_1(x-2) + c_0$. Find a polynomial q(x), constants r and c_4 , c_3 , c_2 , c_1 , c_0 . Soln. $f(x) = 2x^4 - 12x^3 + 16x^2 + 12x - 2 = (2x^3 - 8x^2 + 12)(x-2) + 22 = 2(x-2)^4 + 4(x-2)^3 - 8(x-2)^2 - 4(x-2) + 22$. Hence $q(x) = 2x^3 - 8x^2 + 12$, $r = c_0 = 22$, $c_1 = -4$, $c_2 = -8$, $c_3 = 4$, $c_4 = 2$. Use synthetic division.

5. Let f(x) be a polynomial in the previous problem. (a) Show that there is a zero between 0 and 2, i.e., there is c with 0 < c < 2 such that f(c) = 0. (b) Determine whether $c \ge 1$ or c < 1.

Soln. Since f(x) is a polynomial, it is continuous in a closed interval [0,2]. Since f(0) = -2 < 0 and f(2) = 22 > 0, there is $c \in [0,2]$ such that f(c) = 0. Since f(1) = 16 > 0, there is a zero between 0 and 1.

6. Let $g(x) = x^4 - 5x^3 + 8x^2 - 4x + 2$. Determine whether g(x) is increasing, decreasing at x = 2 or g(2) is a local maximum or a local minimum. Why?

Soln. $g'(x) = 4x^3 - 15x^2 + 16x - 4$, g'(2) = 0, $g''(x) = 12x^2 - 30x + 16$ and g''(2) = 4 > 0. Hence by the Second Derivative Test, g(x) is neither increasing nor decreasing and g(2) is a local minimum.

7. Find the limit. $\lim_{x\to 2} \frac{2x^3 - 5x^2 - 4x + 12}{x^3 - 5x^2 + 8x - 4}$.

Soln. Since $2x^3 - 5x^2 - 4x + 12 = (x - 2)^2(2x + 3)$ and $x^3 - 5x^2 + 8x - 4 = (x - 2)^2(x - 1)$ by synthetic division,

$$= \lim_{x \to 2} \frac{(x-2)^2 (2x+3)}{(x-2)^2 (x-1)} = \lim_{x \to 2} \frac{2x+3}{x-1} = 7.$$

8. Find the limit $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$. Note that $e^0 = 1$.

Soln. Use l'Hôpital's rule.

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}.$$

9. Find the derivative of $\frac{1}{(2x+5)^5}$

Soln.

$$\left(\frac{1}{(2x+5)^5}\right)' = ((2x+5)^{-5})' = -5(2x+5)^{-6}(2x+5)' = -10(2x+5)^{-6} = -\frac{10}{(2x+5)^6}$$

10. Find the derivative of $x^2e^{-x^2}$.

Soln. Since $(e^{-x^2})' = e^{-x^2}(-x^2)' = -2xe^{-x^2}$ by the Chain Rule, using the Product Rule we have

$$(x^{2}e^{-x^{2}})' = (x^{2})'e^{-x^{2}} + x^{2}(e^{-x^{2}})' = 2xe^{-x^{2}} - 2x^{3}e^{-x^{2}} = 2x(1-x)(1+x)e^{-x^{2}}.$$

11. Find the indefinite integral $\int \left(\frac{1}{2x} - 2 + \frac{2}{\sqrt{x}}\right) dx$.

Soln. Since $\frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$,

$$\int \left(\frac{1}{2x} - 2 + \frac{2}{\sqrt{x}}\right) dx = \frac{1}{2} \log|x| - 2x + 2 \frac{1}{-\frac{1}{2} + 1} x^{-\frac{1}{2} + 1} + C = \frac{1}{2} \log|x| - 2x + 4\sqrt{x} + C.$$

12.
$$\int \frac{1}{(2x+5)^6} dx = -\frac{1}{10} \int \frac{-10}{(2x+5)^6} dx = -\frac{1}{10} \frac{1}{(2x+5)^5} + C = -\frac{1}{10(2x+5)^5} + C, \text{ by } 9.$$

13. Find the definite integral $\int_{-5}^{5} (x-5)^5 dx$.

Soln.

$$\int_{-5}^{5} (x-5)^5 dx = \left[\frac{1}{6}(x-5)^6\right]_{-5}^{5} = -\frac{1}{6}(-10)^6 = -\frac{10^6}{6}.$$

14. Find the derivative of $F(x) = \int_{-5}^{x} t(t-1)(t+1)e^{-t^2}dt$.

Soln. Since F(x) is an antiderivative of $x(x-1)(x+1)e^{-x^2}$, $F'(x) = x(x-1)(x+1)e^{-x^2}$ by the Fundamental Theorem of Calculus.

Part III.

15. The matrix C is obtained from the matrix B by performing elementary row operations three times. Write these operations in order using notation [i, j; c], [i, j], and [i; c].

Soln.

$$B \xrightarrow{[1,4]} \begin{bmatrix} 1 & 3 & 0 & -1 & -2 & -6 \\ 0 & 0 & -3 & -6 & -33 & -3 \\ -2 & -6 & 0 & 3 & 8 & 17 \\ 2 & 6 & 1 & 0 & 7 & -11 \end{bmatrix} \xrightarrow{[2;-\frac{1}{3}]} \begin{bmatrix} 1 & 3 & 0 & -1 & -2 & -6 \\ 0 & 0 & 1 & 2 & 11 & 1 \\ -2 & -6 & 0 & 3 & 8 & 17 \\ 2 & 6 & 1 & 0 & 7 & -11 \end{bmatrix} \xrightarrow{[3,1;2]} C.$$

Hence operations are [1,4], $[2;-\frac{1}{3}]$, [3,1;2] in this order. There are other solutions. For example, [1,4], [3,1;2], $[2;-\frac{1}{3}]$, and [3,4;2], $[2;-\frac{1}{3}]$, [1,4].

16. Find a 4×4 matrix T obtained by three row operations above satisfying TB = C.

Soln. We obtain the matrix T by applying $[1,4], [2;-\frac{1}{3}], [3,1;2]$ to I in this order.

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{[1,4]} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{[2;-\frac{1}{3}]} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{[3,1;2]} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \end{bmatrix} = T.$$

17. Suppose the matrix B above is an augmented matrix of a system of linear equations with unknowns x_1, x_2, x_3, x_4, x_5 . Find the solutions of the system.

Soln. Using $B \to \to \to C$, we start from C.

$$C = \begin{bmatrix} 1 & 3 & 0 & -1 & -2 & -6 \\ 0 & 0 & 1 & 2 & 11 & 1 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 2 & 6 & 1 & 0 & 7 & -11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & -1 & -2 & -6 \\ 0 & 0 & 1 & 2 & 11 & 1 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 2 & 11 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & -1 & -2 & -6 \\ 0 & 0 & 1 & 2 & 11 & 1 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 3 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 2 & 11 & 1 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 & 3 & -9 \\ 0 & 0 & 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{cases} x_1 & = -3s - 2t - 1, \\ x_2 & = s, \text{ free,} \\ x_3 & = -3t - 9, \\ x_4 & = -4t + 5, \\ x_5 & = t, \text{ free.} \end{cases}$$

18. Find the inverse of the matrix A above.

Soln.

$$[A,I] = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}, \ A^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & \frac{1}{3} & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

19. The amount of two radio active substances at time t can be expressed as $g(t) = ce^{at}$ and $h(t) = de^{bt}$ with a > b and $c \neq 0 \neq d$. It is also known that both y = g(t), y = h(t) and hence the total amount y = f(t) = g(t) + h(t) satisfy y'' + 5y' + 6y = 0. (a) Determine a and b in g(t) and h(t), and (b) c, d when f(0) = 3 and f'(0) = -7.

Soln. Since $g'(t) = ace^{at}$ and $g''(t) = a^2ce^{at}$,

$$0 = y'' + 5y' + 6y = a^{2}ce^{at} + 5ace^{at} + 6ce^{at} = (a^{2} + 5a + 6)ce^{at} = (a + 2)(a + 3)ce^{at}.$$

Hence a=-2 or a=-3. Since we have the same equation for b, a=-2, b=-3 as a>b. So $f(x)=ce^{-2x}+de^{-3x}$. Since $f'(x)=-2ce^{-2x}-3de^{-3x}$, we have

$$3 = f(0) = c + d, -7 = f'(0) = -2c - 3d$$
. Hence, $d = 1, c = 2$.

Therefore, $f(x) = 2e^{-2x} + e^{-3x}$.

20. The decay of a radio active substance satisfies the following differential equation. To apply Proposition 7.4, (a) identify h(x), g(x), and (b) find G(y), H(x) and write the equation G(y) = H(x) + C. Finally (c) solve it with an initial condition below for y = f(x).

$$y' = \frac{dy}{dx} = -0.05y$$
, $y(0) = f(0) = 3$.

Soln.

$$\frac{dy}{dx} = y' = -0.05y = \frac{-0.05}{1/y}.$$

So one of the choices is h(x) = -0.05 and g(y) = 1/y. Hence H(x) = -0.05x and $G(y) = \log |y|$.

$$\log|y| = -0.05x + C, \ y = C'e^{-0.05x}, \ 3 = y(0) = C'.$$

Therefore, $y = 3e^{-0.05x}$.