LINEAR ALGEBRA II

Hiroshi SUZUKI*
Division of Natural Sciences
International Christian University

February 20, 2007

1 Euclidean n-Space

Definition 1.1 If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. The set of all ordered n-tuples is called n-space and is denoted by \boldsymbol{R}^{n}.

Definition 1.2 Two vectors $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ in \boldsymbol{R}^{n} are called equal if

$$
u_{1}=v_{2}, u_{2}=v_{2}, \ldots, u_{n}=v_{n}
$$

The sum $\boldsymbol{u}+\boldsymbol{v}$ is defined by

$$
\boldsymbol{u}+\boldsymbol{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right)
$$

and if k is any scalar, the scalar multiple $k \boldsymbol{u}$ is defined by

$$
k \boldsymbol{u}=\left(k u_{1}, k u_{2}, \ldots, k u_{n}\right) .
$$

Let $\mathbf{0}=(0,0, \ldots, 0) \in \boldsymbol{R}^{n}, \quad-\boldsymbol{u}=$ $\left(-u_{1},-u_{2}, \ldots,-u_{n}\right)$ and $\boldsymbol{v}-\boldsymbol{u}=\boldsymbol{v}+(-\boldsymbol{u})$ or, in terms of components,

$$
\boldsymbol{v}-\boldsymbol{u}=\left(v_{1}-u_{1}, v_{2}-u_{2}, \ldots, v_{n}-u_{n}\right)
$$

Theorem 1.1 (4.1.1) Let $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be vectors in \boldsymbol{R}^{n} and k and m scalars. Then:
(a) $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$.
(Commutativity)
(b) $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w} \quad$ (Associativity)
(c) $\boldsymbol{u}+\mathbf{0}=\mathbf{0}+\boldsymbol{u}=\boldsymbol{u}$
(d) $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$; that is $\boldsymbol{u}-\boldsymbol{u}=\mathbf{0}$.
(e) $k(m \boldsymbol{u})=(k m) \boldsymbol{u}$.
(f) $k(\boldsymbol{u}+\boldsymbol{v})=k \boldsymbol{u}+k \boldsymbol{v}$.
(g) $(k+m) \boldsymbol{u}=k \boldsymbol{u}+m \boldsymbol{u}$.
(h) $1 \boldsymbol{u}=\boldsymbol{u}$.

[^0]Definition 1.3 Let $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=$ $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be vectors in \boldsymbol{R}^{n}. Then the Euclidean Inner Product $\boldsymbol{u} \cdot \boldsymbol{v}$ is defined by

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

the Euclidean norm (or Euclidean length) of a vector \boldsymbol{u} is defined by

$$
\|\boldsymbol{u}\|=(\boldsymbol{u} \cdot \boldsymbol{u})^{1 / 2}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

and the Euclidean distance between \boldsymbol{u} and \boldsymbol{v} is defined by

$$
\begin{aligned}
& d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\| \\
& \quad=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}} .
\end{aligned}
$$

Theorem 1.2 (4.1.2) Let $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} be vectors in \boldsymbol{R}^{n} and k a scalar. Then:
(a) $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}$.
(b) $(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{w}=\boldsymbol{u} \cdot \boldsymbol{w}+\boldsymbol{v} \cdot \boldsymbol{w}$.
(c) $(k \boldsymbol{u}) \cdot \boldsymbol{v}=k(\boldsymbol{u} \cdot \boldsymbol{v})$.
(d) $\boldsymbol{v} \cdot \boldsymbol{v} \geq 0$. Further, $\boldsymbol{v} \cdot \boldsymbol{v}=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.

Cauchy-Schwarz Inequality in R^{n}.

Theorem 1.3 (4.1.3) Let $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be vectors in \boldsymbol{R}^{n}. Then

$$
|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|
$$

Equality holds if and only if $\boldsymbol{v}=k \boldsymbol{u}$ for some real k or $\boldsymbol{u}=\mathbf{0}$.

Theorem $1.4(4.1 .4)$ Let \boldsymbol{u} and \boldsymbol{v} be vectors in \boldsymbol{R}^{n} and k a scalar. Then:
(a) $\|u\| \geq 0$.
(b) $\|\boldsymbol{u}\|=0$ if and only if $\boldsymbol{u}=\mathbf{0}$.
(c) $\|k \boldsymbol{u}\|=|k|\|\boldsymbol{u}\|$.
(d) $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\| . \quad$ (Triangle inequality)

Theorem 1.5 (4.1.4) Let \boldsymbol{u} and \boldsymbol{v} be vectors in \boldsymbol{R}^{n} and k a scalar. Then:
(a) $d(\boldsymbol{u}, \boldsymbol{v}) \geq 0$.
(b) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$.
(c) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$.
(d) $d(\boldsymbol{u}, \boldsymbol{v}) \leq d(\boldsymbol{u}, \boldsymbol{w})+d(\boldsymbol{w}, \boldsymbol{v})$.
(Triangle inequality)

2 Linear Transformations from \boldsymbol{R}^{n} to \boldsymbol{R}^{m}

Definition 2.1 Let X and Y be sets. A function (or mapping) f is a rule that associates with each element $a \in X$ one and only element $b \in Y$.

- $f: X \rightarrow Y(a \mapsto b=f(a))$.
- b is the image of a under f, or $f(a)$ is the value of f at a.
- X is the domain of f and Y is the codomain of f.
- $\operatorname{Im} f=\{f(a) \mid a \in X\}$ is called the range of f.

Two functions (mappings) $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ are equal if $X_{1}=X_{2}, Y_{1}=Y_{2}$ and $f_{1}(a)=f_{2}(a)$ for all $a \in X_{1}=X_{2}$.

Definition 2.2 If the domain of a function T is \boldsymbol{R}^{n} and the codomain R^{m} then T is called a transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{m}.

A mapping $T: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ is called a linear transformation if

$$
\begin{gathered}
T: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \mapsto T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)\right. \\
\left.=\left[\begin{array}{c}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \\
\vdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}
\end{array}\right]\right)
\end{gathered}
$$

Let

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], A=\left[\right]
$$

Then the linear transformation can be written as

$$
T: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}(\boldsymbol{x} \mapsto A \boldsymbol{x})
$$

The matrix $A=\left[a_{i, j}\right]$ is called the standard matrix of T and write $A=[T]$.

Conversely if A is an $m \times n$ matrix and the mapping from R^{n} to R^{m} is defined by $\boldsymbol{x} \mapsto A \boldsymbol{x}$, then the linear transformation is denoted by T_{A}. In particular $\left[T_{A}\right]=A$.

Theorem 2.1 Let $T_{1}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ and $T_{2}: \boldsymbol{R}^{m} \rightarrow$ \boldsymbol{R}^{ℓ} be linear transformations. Then the composition of T_{2} with T_{1} defined by

$$
T_{2} \circ T_{1}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{\ell}\left(\boldsymbol{x} \mapsto T_{2}\left(T_{1}(\boldsymbol{x})\right)\right)
$$

is a linear transformation and $\left[T_{2} \circ T_{1}\right]=\left[T_{2}\right]\left[T_{1}\right]$.
Theorem 2.2 (4.3.2) A transformation T : $\boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ is linear if and only if the following hold for all $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{n}$ and for every scalar c.
(a) $T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v})$
(b) $T(c \boldsymbol{u})=$ $c T(\boldsymbol{u})$.
Corollary 2.3 (4.3.3) If T is a linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{m} and $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}$, then

$$
[T]=\left[T e_{1}, T \boldsymbol{e}_{2}, \ldots, T \boldsymbol{e}_{n}\right]
$$

Definition 2.3 Let $f: X \rightarrow Y$ be a function (or mapping).
(a) If $\operatorname{Im}(f)=f(X)=Y$, then f is said to be surjective or onto.
(b) If $f(a) \neq f\left(a^{\prime}\right)$ whenever $a \neq a^{\prime}, f$ is said to be injective or one-to-one. f is injective iff $f(a)=f\left(a^{\prime}\right)$ implies $a=a^{\prime}$ for all $a, a^{\prime} \in X$.
(c) If f is one-to-one and onto, f is said to be bijective.

Theorem 2.4 (2.3.6) If A is an $n \times n$ matrix, then the following statements are equivalent.
(a) A is invertible.
(b) $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution.
(c) The reduced echelon form of A is I_{n}.
(d) A can be expressed as a product of elementary matrices.
(e) $A \boldsymbol{x}=\boldsymbol{b}$ is consistent for every $n \times 1$ matrix \boldsymbol{b}.
(f) $A \boldsymbol{x}=\boldsymbol{b}$ has exactly one solution for every $n \times 1$ matrix \boldsymbol{b}.
(g) $\operatorname{det}(A) \neq 0$.

Theorem 2.5 (4.3.1) If A is an $n \times n$ matrix and $T_{A}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ is multiplication by A, then the following statements are equivalent.
(a) A is invertible.
(b) T_{A} is surjective.
(c) T_{A} is injective.
(d) T_{A} is bijective.

3 Vector Spaces and Subspaces

3.1 Definition of Vector Spaces

In the following K denotes either the real number field \boldsymbol{R}, the set of real numbers with two binary operations, i.e., addition and multiplication, or the complex number field $\boldsymbol{C} . \quad K$ can be replaced by any algebraic structure called a field but assume $K=\boldsymbol{R}$ unless otherwise stated. Elements of K are called scalars.
$K=\{0,1\}$ with addition and multiplication defined by $0+0=0,0+1=1+0=1,1+1=0$, and $0 \cdot 0=0 \cdot 1=1 \cdot 0=0,1 \cdot 1=1$ is another example of a field.

Definition 3.1 [Vector Space Axioms] Let (K be a field and let) V be a set on which two operations are defined: additions and multiplication by scalars (numbers). (By addition we mean a rule for associating with each pair of elements $\boldsymbol{u}, \boldsymbol{v} \in V$ an element $\boldsymbol{u}+\boldsymbol{v} \in V$, called the sum of \boldsymbol{u} and \boldsymbol{v}, by scalar multiplication we mean a rule for associating with each scalar k and each element $\boldsymbol{u} \in V$ an element $k \boldsymbol{u} \in V$, called the scalar multiple of \boldsymbol{u} by k.) If the following axioms are satisfied, then we call V a vector space (over K) and we call the elements in V vectors.

1. If \boldsymbol{u} and \boldsymbol{v} are elements in V, then $\boldsymbol{u}+\boldsymbol{v}$ is in V.
2. $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$.
3. $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}$ for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$.
4. There is an element $\mathbf{0} \in V$, called a zero vector for V, such that $\boldsymbol{u}+\mathbf{0}=\boldsymbol{u}$ for all $\boldsymbol{u} \in V$.
5. For each $\boldsymbol{u} \in V$, there is an element $-\boldsymbol{u} \in V$, called a negative of \boldsymbol{u}, such that $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$.
6. If k is a scalar and \boldsymbol{u} is an element in V, then $k \boldsymbol{u}$ is in V.
7. $k(\boldsymbol{u}+\boldsymbol{v})=k \boldsymbol{u}+k \boldsymbol{v}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$ and any scalar k.
8. $(k+m) \boldsymbol{u}=k \boldsymbol{u}+m \boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$ and all scalars k and m.
9. $k(m \boldsymbol{u})=(k m) \boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$ and all scalars k and m.
10. $1 \boldsymbol{u}=\boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$.

Vector spaces over \boldsymbol{R} are called real vector spaces and vector spaces over \boldsymbol{C} complex vector spaces.

Proposition 3.1 (5.1.1) Let V be a vector space, $\boldsymbol{u} a$ vector in V, and k a scalar; then:
(a) $0 \boldsymbol{u}=\mathbf{0}$.
(b) $k \mathbf{0}=\mathbf{0}$.
(c) $(-1) \boldsymbol{u}=-\boldsymbol{u}$.
(d) If $k \boldsymbol{u}=\mathbf{0}$, then $k=0$ or $\boldsymbol{u}=\mathbf{0}$.

3.2 Subspaces

Definition 3.2 A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Theorem 3.2 (5.2.1) If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold.
(a) $\boldsymbol{u}+\boldsymbol{v} \in W$ for all $\boldsymbol{u}, \boldsymbol{v} \in W$.
(b) $k \boldsymbol{u} \in W$ for all $\boldsymbol{u} \in W$ and all scalars k.

Proposition 3.3 (5.2.2) Let A be an $m \times n m a-$ trix, and $T=T_{A}$ a linear transformation defined by

$$
T: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}(\boldsymbol{x} \mapsto A \boldsymbol{x})
$$

Then $W=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid T(\boldsymbol{v})=\mathbf{0}\right\}$ is a subspace of a vector space $V=\boldsymbol{R}^{n}$. W is called the kernel of the linear transformation T and is denoted by $\operatorname{Ker}(T)$.

Definition 3.3 [Linear Combination] A vector \boldsymbol{w} is called a linear combination of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ if it can be expressed in the form

$$
\boldsymbol{w}=k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}
$$

where $k_{1}, k_{2}, \ldots, k_{r}$ are scalars.
Theorem $3.4(\mathbf{5 . 2 . 3})$ If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ are vectors in a vector space V, then
(a) The set W of all linear combinations of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ is a subspace of V.
(b) W is the smallest subspace of V that contains $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ in the sense that every other subspace of V that contains $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ must contain W.

Definition 3.4 If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ is a set of vectors in a vector space V, then the subspace W of V consisting of all linear combinations of the vectors in S is called the space spanned by $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$, and we say that the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ span W. To indicate that W is the space spanned by the vectors in the set $S=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$, we write

$$
W=\operatorname{Span}(S) \text { or } W=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\} .
$$

4 Linear Independence and Basis

4.1 Linear Independence

Definition 4.1 Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a nonempty set of vectors. If the equation

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\mathbf{0}
$$

has only one solution, namely, $k_{1}=k_{2}=\cdots=$ $k_{r}=0$, then S is called a linearly independent set. If there are other solutions, then S is called a linearly dependent set.

Proposition 4.1 (5.3.1, 5.4.1) Let $S=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a nonempty set of vectors. Then the following are equivalent.
(a) S is a linearly independent set.
(b) No vector in S is expressible as a linear combination of the other vectors in S.
(c) For each vector $\boldsymbol{v}, k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\boldsymbol{v}$ has at most one solution, i.e., if
$k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=k_{1}^{\prime} \boldsymbol{v}_{1}+k_{2}^{\prime} \boldsymbol{v}_{2}+\cdots+k_{r}^{\prime} \boldsymbol{v}_{r}$ then $k_{1}=k_{1}^{\prime}, k_{2}=k_{2}^{\prime}, \ldots, k_{r}=k_{r}^{\prime}$.

Theorem 4.2 (1.2.1) A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions.

Theorem 4.3 (5.3.3) Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a set of vectors in \boldsymbol{R}^{n}. If $r>n$, then S is linearly dependent. In particular, if $A=$ $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right]$, then a system of linear equation $A \boldsymbol{x}=\mathbf{0}$ has a nonzero solution.

Proposition 4.4 (5.3.4) If the functions $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{n}$ have $n-1$ continuous derivatives on the interval (a, b), and if the Wronskian of these functions is not identically zero on (a, b), then these functions form a linearly independent vectors in $C^{(n-1)}(a, b)$.

4.2 Basis and Dimension

Definition 4.2 If V is a vector space and $S=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a set of vectors fo V, then S is called a basis for V if the following two conditions hold:
(a) S is linearly independent.
(b) S spans V, i.e., every vector in V can be written as a linear combination of vectors in S.
V is called finite-dimensional if it contains a finite set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ that forms a basis. If no such set exists, V is called infinite-dimensional.

Theorem 4.5 (5.4.2) Let V be $a \quad$ finitedimensional vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis.
(a) If a set has more than n vectors, then it is linearly dependent.
(b) If a set has fewer than n vectors, then it does not span V.

Corollary 4.6 (5.4.3) All bases for a finitedimensional vector space have the same number of vectors.

Definition 4.3 The dimension of a finitedimensional vector space V, denoted by $\operatorname{dim}(V)$, is defined to be the number of vectors in a basis for V. (In addition, we define the zero vector space to have dimension zero.)

Proposition 4.7 (5.4.4) Let S be a nonempty set of vectors in a vector space V.
(a) If S is a linearly independent set, and $\boldsymbol{v} \notin$ $\operatorname{Span}(S)$, then $S \cup\{\boldsymbol{v}\}$ is a linearly independent set.
(b) If \boldsymbol{v} is a vector in S that is expressible as a linear combination of other vectors in S, then $\operatorname{Span}(S \backslash\{\boldsymbol{v}\})=\operatorname{Span}(S)$.

Theorem $4.8(5.4 .5,5.4 .6,5.4 .7)$ Let V be an n-dimensional vector space, and S a set of vectors in V
(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S spans V.
(b) If S spans V but not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
(c) If S is linearly independent that is not already a basis for V, then S can be enlarged to a basis of V by inserting appropriate vectors into S.
(d) If W is a subspace of V, then $\operatorname{dim}(W) \leq$ $\operatorname{dim}(V)$. Moreover if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.

5 Dimensions of Subspaces

5.1 Row Space, Column Space and Nullspace

Definition 5.1 For an $m \times n$ matrix

$$
A=\left[\right]
$$

the vectors

$$
\begin{aligned}
\boldsymbol{r}_{1}= & {\left[a_{1,1}, a_{1,2}, \ldots, a_{1, n}\right] } \\
\boldsymbol{r}_{2}= & {\left[a_{2,1}, a_{2,2}, \ldots, a_{2, n}\right] } \\
\vdots & \vdots \\
\boldsymbol{r}_{m}= & {\left[a_{m, 1}, a_{m, 2}, \ldots, a_{m, n}\right] }
\end{aligned}
$$

in \boldsymbol{R}^{n} formed from the rows of A are called the row vectors of A and the vectors
$\boldsymbol{c}_{1}=\left[\begin{array}{c}a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{m, 1}\end{array}\right], \boldsymbol{c}_{2}=\left[\begin{array}{c}a_{1,2} \\ a_{2,2} \\ \vdots \\ a_{m, 2}\end{array}\right], \cdots, \boldsymbol{c}_{n}=\left[\begin{array}{c}a_{1, n} \\ a_{2, n} \\ \vdots \\ a_{m, n}\end{array}\right]$
in \boldsymbol{R}^{n} formed from the columns of A are called the column vectors of A.

Definition 5.2 Let A be an $m \times n$ matrix, then the subspace of \boldsymbol{R}^{n} spanned by the row vectors of A is called the row space of A, and the subspace of \boldsymbol{R}^{m} spanned by the column vectors of A is called the column space of A. The solution space of the homogeneous system of equations $A \boldsymbol{x}=\mathbf{0}$, which is a subspace of \boldsymbol{R}^{n}, is called the nullspace of A.

The dimension of the column space of a matrix A is called the rank of A and is denoted by $\operatorname{rank}(A)$. The dimension of the nullspace of A is called the nullity of A and is denoted by nullity (A).

Proposition 5.1 (5.5.1) A system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is in the column space of A.

Theorem 5.2 (5.5.2) If \boldsymbol{x}_{0} denotes any single solution of a consistent linear system $A \boldsymbol{x}=\boldsymbol{b}$, and if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ form a basis for the nullspace of A, then every solution of $A \boldsymbol{x}=\boldsymbol{b}$ can be expressed in the form

$$
\boldsymbol{x}=\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}
$$

and, conversely, for all choices of scalars $c_{1}, c_{2}, \cdots, c_{k}$, the vector \boldsymbol{x} in this formula is a solution of $A \boldsymbol{x}=\boldsymbol{b}$.

Lemma 5.3 Let A be an $m \times r$ matrix and B an $r \times n$ matrix. Then

$$
\mathcal{R}(A B) \subset \mathcal{R}(B), \mathcal{C}(A B) \subset \mathcal{C}(A)
$$

Proposition 5.4 (5.5.3, 5.5.4, 5.5.5) Let A be an $m \times n$ matrix and P an invertible matrix of size $m \times m$,
(a) Elementary row operations do not change the nullspace of a matrix. Moreover, $\mathcal{N}(A)=$ $\mathcal{N}(P A)$.
(b) Elementary row operations do not change the row space of a matrix. Moreover, $\mathcal{R}(A)=$ $\mathcal{R}(P A)$.
(c) $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\} \subset \boldsymbol{R}^{n}$ is a linearly independent set if and only if
$\left\{P \boldsymbol{v}_{1}, P \boldsymbol{v}_{2}, \ldots, P \boldsymbol{v}_{r}\right\} \subset \boldsymbol{R}^{n}$ is a linearly independent set.

5.2 Rank and Nullity

Proposition 5.5 (5.5.6) If a matrix R is in rowechelon form, then the row vectors with the leading 1's form a basis for the row space of R, and the column vectors with the leading 1's of the row vectors form a basis for the column space of R.

Theorem 5.6 (5.6.1) If A is any matrix, then the row space and column space of A have the same dimension. Hence $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Theorem 5.7 (5.6.3) If A is a matrix with n columns, then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

6 Inner Product Spaces

6.1 Inner Product, Norm and Distance

Definition 6.1 An inner product on a real vector space V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Symmetry axiom)
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$ (Additive axiom)
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Homogeneity axiom)
(d) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ (Positivity axiom) and if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.

A real vector space with an inner product is called a real inner product space.

Definition 6.2 An inner product on a complex vector space V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars $k(k \in \boldsymbol{C})$.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\overline{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}$ (Symmetry axiom)
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$ (Additive axiom)
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Homogeneity axiom)
(d) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ (Positively axiom) and if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.

A real vector space with an inner product is called a real inner product space.

Definition 6.3 If V is an inner product space, then the norm (or length) of a vector $\boldsymbol{u} \in V$ is denoted by $\|\boldsymbol{u}\|$ and is defined by

$$
\|\boldsymbol{u}\|=\langle\boldsymbol{u}, \boldsymbol{u}\rangle^{1 / 2}
$$

The distance between two points (vectors) \boldsymbol{u} and \boldsymbol{v} is denoted by $d(\boldsymbol{u}, \boldsymbol{v})$ and is defined by

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\| .
$$

6.2 Properties of Inner Product Space

The following inequality is called the CauchySchwarz Inequality.

Theorem 6.1 (6.2.1) If \boldsymbol{u} and \boldsymbol{v} are vectors in a real inner product space, then

$$
|\langle\boldsymbol{u}, \boldsymbol{v}\rangle| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|
$$

Equality holds if and only if \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

Theorem 6.2 (6.2.2) Let \boldsymbol{u} and \boldsymbol{v} be vectors in an inner product space V, and k a scalar. Then:
(a) $\|\boldsymbol{u}\| \geq 0$.
(b) $\|\boldsymbol{u}\|=0$ if and only if $\boldsymbol{u}=\mathbf{0}$.
(c) $\|k \boldsymbol{u}\|=|k|\|\boldsymbol{u}\|$.
(d) $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\| . \quad$ (Triangle inequality)

Theorem 6.3 (6.2.3) Let \boldsymbol{u} and \boldsymbol{v} be vectors in an inner product space V, and k a scalar. Then:
(a) $d(\boldsymbol{u}, \boldsymbol{v}) \geq 0$.
(b) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$.
(c) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$.
(d) $d(\boldsymbol{u}, \boldsymbol{v}) \quad \leq \quad d(\boldsymbol{u}, \boldsymbol{w})+d(\boldsymbol{w}, \boldsymbol{v})$. (Triangle inequality)

Theorem 6.4 (6.2.4) If \boldsymbol{u} and \boldsymbol{v} are vectors in an inner vector space, then

$$
\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2} \Leftrightarrow\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0
$$

7 Orthogonal Bases

7.1 Gram-Schmidt Proceess

Definition 7.1 A set of vectors in an inner product space is called an orthogonal set if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is called orhonormal.

Proposition 7.1 Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right\}$ be an orthogonal set of nonzero vectors in an inner product space.
(a) S is a linearly independent set.
(b) Let $W=\operatorname{Span}(S)$ and $\boldsymbol{w} \in W$, then

$$
\boldsymbol{w}=\frac{\left\langle\boldsymbol{w}, \boldsymbol{v}_{1}\right\rangle}{\left\|\boldsymbol{v}_{1}\right\|^{2}} \boldsymbol{v}_{1}+\frac{\left\langle\boldsymbol{w}, \boldsymbol{v}_{2}\right\rangle}{\left\|\boldsymbol{v}_{2}\right\|^{2}} \boldsymbol{v}_{2}+\cdots+\frac{\left\langle\boldsymbol{w}, \boldsymbol{v}_{m}\right\rangle}{\left\|\boldsymbol{v}_{m}\right\|^{2}} \boldsymbol{v}_{m}
$$

(c) If $\boldsymbol{v} \in V$, then

$$
\left\langle\boldsymbol{v}-\operatorname{proj}_{W}(\boldsymbol{v}), \boldsymbol{w}\right\rangle=0 \text { for all } \boldsymbol{w} \in W
$$

where $\operatorname{proj}_{W}(\boldsymbol{v})$ is defined by the following.

$$
\frac{\left\langle\boldsymbol{v}, \boldsymbol{v}_{1}\right\rangle}{\left\|\boldsymbol{v}_{1}\right\|^{2}} \boldsymbol{v}_{1}+\frac{\left\langle\boldsymbol{v}, \boldsymbol{v}_{2}\right\rangle}{\left\|\boldsymbol{v}_{2}\right\|^{2}} \boldsymbol{v}_{2}+\cdots+\frac{\left\langle\boldsymbol{v}, \boldsymbol{v}_{m}\right\rangle}{\left\|\boldsymbol{v}_{m}\right\|^{2}} \boldsymbol{v}_{m}
$$

Definition 7.2 Let W be a subspace of an inner product space V. A vector \boldsymbol{u} in V is said to be orthogonal to W if it is orthogonal to every vector in W, and the set of all vectors in V that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}. Hence $W^{\perp}=\{\boldsymbol{v} \in V \mid\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0$ for all $\boldsymbol{w} \in W\}$.

Theorem 7.2 ((6.3.6) Gram-Schmidt Process) Every nonzero finite-dimensional inner product space has an orthonormal basis.

Theorem 7.3 (6.2.5, 6.2.6, 6.3.4) If W is a subspace of a finite-dimensional inner product space V, then
(a) W^{\perp} is a subspace of V.
(b) The only vector common to W and W^{\perp} is $\mathbf{0}$.
(c) $\left(W^{\perp}\right)^{\perp}=W$.
(d) $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.
(e) Every vector $\boldsymbol{v} \in V$ is expressed as a sum $\boldsymbol{v}=$ $\boldsymbol{w}+\boldsymbol{u}$ such that $\boldsymbol{w} \in W$ and $\boldsymbol{u} \in W^{\perp}$.

8 General Linear Transformations

8.1 Basic Properties

Definition 8.1 If $T: V \rightarrow W$ is a function from a vector space V into a vector space W, then T is called a linear transformation from V to W if, for all vectors \boldsymbol{u} and \boldsymbol{v} in V and all scalars c,

$$
\text { (a) } T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v}) \quad \text { (b) } T(c \boldsymbol{u})=c T(\boldsymbol{u}) .
$$

In the special case where $V=W$, the linear transformation $T: V \rightarrow V$ is called a linear operator of V.

Example 8.1 A linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{m} is first defined in Definition 2.2 as a function

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{m}\right)
$$

for which the equations relating $y_{1}, y_{2}, \ldots, y_{m}$ with $x_{1}, x_{2}, \ldots, x_{n}$ are linear, and it was expressed by a matrix multiplication:

$$
T(\boldsymbol{x})=A \boldsymbol{x}, \text { where } A=\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), \ldots, T\left(\boldsymbol{e}_{n}\right)\right] .
$$

The matrix A was called the standard matrix and denoted by $A=[T]$ and $T=T_{A}$. Moreover, linear transformations were characterized by the two properties in Definition 8.1. See Theorem 2.2.

Example 8.2 [Examples 11, 12] Let $C^{\infty}(a, b)$ be the set of functions that are differentiable for all degrees of differentiation

1. $D: C^{\infty}(a, b) \rightarrow C^{\infty}(a, b)\left(f(x) \mapsto f^{\prime}(x)\right)$ is a linear operator.
2. $I: C^{\infty}(a, b) \rightarrow C^{\infty}(a, b)\left(f(x) \mapsto \int_{a}^{x} f(t) d t\right)$ is a linear operator.

Lemma 8.1 (8.1.1) If $T: V \rightarrow W$ is a linear transformation, then
(a) $T(\mathbf{0})=\mathbf{0}$.
(b) $T(-\boldsymbol{v})=-T(\boldsymbol{v})$ for all $\boldsymbol{v} \in V$.
(c) $T\left(\sum_{i=1}^{m} k_{i} \boldsymbol{v}_{i}\right)=\sum_{i=1}^{m} k_{i} T\left(\boldsymbol{v}_{i}\right)$
for all $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m} \in V$ and all scalars $k_{1}, k_{2}, \ldots, k_{m}$.

Proposition 8.2 Let T_{1} and T_{2} be linear transformations from V to W, and $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a basis of V^{1}. Then the following are equivalent.
(a) $T_{1}=T_{2}$, i.e., $T_{1}(\boldsymbol{v})=T_{2}(\boldsymbol{v})$ for all $\boldsymbol{v} \in V$.
(b) $T_{1}\left(\boldsymbol{v}_{i}\right)=T_{2}\left(\boldsymbol{v}_{i}\right)$ for all $i=1,2, \ldots, n$.

[^1]Proposition 8.3 Let V and W be vector spaces, $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a basis of V and $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n} \in W$. Then there exists a unique linear transformation $T: V \rightarrow W$ such that $T\left(\boldsymbol{v}_{i}\right)=\boldsymbol{w}_{i}$ for all $i=1,2, \ldots, n$.
Proposition 8.4 (8.1.2) Let $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ be linear transformations. Then the composition of T_{2} with T_{1} defined by

$$
T_{2} \circ T_{1}: U \rightarrow W\left(\boldsymbol{x} \mapsto T_{2}\left(T_{1}(\boldsymbol{x})\right)\right)
$$

is a linear transformation.

8.2 Kernel and Range

Proposition 8.5 (8.2.1) If $T: V \rightarrow W$ is a linear transformation, then
(a) $\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\}$ is a subspace of V.
(b) $\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ is a subspace of W.

Definition 8.2 If $T: V \rightarrow W$ is a linear transformation, then the set of vectors in V that T maps into $\mathbf{0}$ is called the kernel of T; it is denoted by $\operatorname{Ker}(T)$. The set of all vectors in W that are images under T of at least one vector in V is called the range of T; it is denoted by $\operatorname{Im}(T)$. The dimension of the range of T is called the rank of T and is denoted by $\operatorname{rank}(T)$, the dimension of the kernel is called the nullity of T and is denoted by nullity (T).
$\operatorname{Ker}(T)=\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\} \subset V$, $\operatorname{Im}(T)=\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\} \subset W$, and $\operatorname{nullity}(T)=$ $\operatorname{dim}(\operatorname{Ker}(T)), \operatorname{rank}(T)=\operatorname{dim}(\operatorname{Im}(T))$.

The following is a generalization of Theorem 5.7. See also Theorem 7.3.
Theorem 8.6 (8.2.3) If $T: V \rightarrow W$ is a linear transformation from an n-dimensional vector space V to a vector space W, then

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=n
$$

Proposition 8.7 (8.3.1) If $T: V \rightarrow W$ is a linear transformation, then the following are equivalent.
(a) T is one-to-one, i.e., injective.
(b) $\operatorname{Ker}(T)=\{\mathbf{0}\}$.
(c) $\operatorname{nullity}(T)=0$

Proposition 8.8 (8.3.2) If V is a finitedimensional vector space, and $T: V \rightarrow V$ is a linear operator, then the following are equivalent.
(a) T is one-to-one, i.e., injective.
(b) $\operatorname{Ker}(T)=\{\mathbf{0}\}$.
(c) $\operatorname{nullity}(T)=0$.
(d) The range of T is V, i.e., surjective.
(e) $\operatorname{rank}(T)=\operatorname{dim} V$.

9 Matrices and Linear Transformations

Definition 9.1 Suppose that V is an n dimensional vector space with a basis $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ and W is an m-dimensional vector space with a basis $B^{\prime}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$. For $\boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n} \in V$, the vector $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \in \boldsymbol{R}^{n}$ is called the coordinate vector of \boldsymbol{x} with respect to the basis B and denoted by $[\boldsymbol{x}]_{B}$. Similarly for $\boldsymbol{y}=y_{1} \boldsymbol{w}_{1}+y_{2} \boldsymbol{w}_{2}+\cdots+y_{m} \boldsymbol{w}_{m}$, $[\boldsymbol{y}]_{B^{\prime}}=\left[y_{1}, y_{2}, \ldots, y_{m}\right]^{T} \in \boldsymbol{R}^{m}$ is the coordinate vector of \boldsymbol{y} with respect to the basis B^{\prime}.

Let T be a linear transformation from V to W. Then the $m \times n$ matrix A defined by

$$
A=\left[\left[T\left(\boldsymbol{v}_{1}\right)\right]_{B^{\prime}},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{B^{\prime}}, \ldots,\left[T\left(\boldsymbol{v}_{m}\right)\right]_{B^{\prime}}\right]
$$

is called the matrix for T with respect to the bases B and B^{\prime} and denoted by $[T]_{B^{\prime}, B}$.

When $V=W$ and $B=B^{\prime}$, we write $[T]_{B}$ for $[T]_{B, B}$ and $[T]_{B}$ is called the matrix for T with respect to the basis B.

Proposition 9.1 Under the notation in Definition 9.1 the following hold.
(a) $[T]_{B^{\prime}, B}[\boldsymbol{x}]_{B}=[T(\boldsymbol{x})]_{B^{\prime}}$.
(b) $[T]_{B}[\boldsymbol{x}]_{B}=[T(\boldsymbol{x})]_{B}$, with $V=W$.

Proposition 9.2 (8.4.2) Let $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ be linear transformations and B, B^{\prime} and $B^{\prime \prime}$ basis of U, V, and W respectively. Then

$$
\left[T_{2} \circ T_{1}\right]_{B^{\prime \prime}, B}=\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left[T_{1}\right]_{B^{\prime}, B}
$$

Proposition 9.3 (8.4.3) Let $T: V \rightarrow V$ be a linear transformation. If B is a basis of V, then the following are equaivalent:
(a) T is one-to-one.
(b) $[T]_{B}$ is invertible.

Morover, when these equivalent conditions hold,

$$
\left[T^{-1}\right]_{B}=[T]_{B}^{-1}
$$

Theorem 9.4 (8.5.2) Let $T: V \rightarrow V$ be a linear operator on a finite-dimensional vector space V, and let B and B^{\prime} be bases for V. Then

$$
[T]_{B^{\prime}}=P^{-1}[T]_{B} P
$$

where P is the transition matrix from B^{\prime} to B.
Definition 9.2 If A and B are square matrices, we say that B is similar to A if there is an invertible matrix P such that $B=P^{-1} A P$.

Example 9.1 Let $V=\boldsymbol{R}^{3}$. In Quizzes we showed that V has three bases. $B=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}, B^{\prime}=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{e}_{1}\right\}$, and $B^{\prime \prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$, where

$$
\begin{gathered}
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right], \\
\boldsymbol{u}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{14}} \\
\frac{-3}{\sqrt{14}} \\
\frac{-2}{\sqrt{14}}
\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{c}
\frac{3}{\sqrt{70}} \\
\frac{5}{\sqrt{70}} \\
\frac{-6}{\sqrt{70}}
\end{array}\right], \boldsymbol{u}_{3}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
0 \\
\frac{1}{\sqrt{5}}
\end{array}\right] .
\end{gathered}
$$

The first is the standard basis, and the last is an orthonormal basis. Let $T=\operatorname{proj}_{U}$.

By Quiz 7-5, since $T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), T\left(\boldsymbol{e}_{3}\right)$ are

$$
\begin{gathered}
\frac{1}{5}[1,0,-2]^{T},[0,1,0]^{T}, \frac{1}{5}[-2,0,4]^{T} \\
{[T]_{B}=\left[\begin{array}{ccc}
\frac{1}{5} & 0 & -\frac{2}{5} \\
0 & 1 & 0 \\
-\frac{2}{5} & 0 & \frac{4}{5}
\end{array}\right]}
\end{gathered}
$$

Similarly, $[T]_{B}^{\prime}$ and $[T]_{B^{\prime \prime}}$ are

$$
\left[\begin{array}{lll}
1 & 0 & \frac{7}{5} \\
0 & 1 & \frac{3}{5} \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

As for $[I]_{B^{\prime}, B},[I]_{B^{\prime \prime}, B},[I]_{B^{\prime \prime}, B^{\prime}}$, we have as follows:

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
-3 & 7 & 0 \\
-2 & 4 & 0
\end{array}\right],\left[\begin{array}{ccc}
\frac{1}{\sqrt{14}} & \frac{3}{\sqrt{70}} & \frac{2}{\sqrt{5}} \\
\frac{-3}{\sqrt{14}} & \frac{5}{\sqrt{70}} & 0 \\
\frac{-2}{\sqrt{14}} & \frac{-6}{\sqrt{70}} & \frac{1}{\sqrt{5}}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
\frac{\sqrt{14}}{14} & \frac{31 \sqrt{70}}{70} & \frac{-7 \sqrt{5}}{10} \\
0 & \frac{\sqrt{70}}{5} & \frac{-3 \sqrt{5}}{10} \\
0 & 0 & \frac{\sqrt{5}}{2}
\end{array}\right]
$$

Recall the situation in Definition 9.1. Suppose
$T\left(\boldsymbol{v}_{i}\right)=\sum_{j=1}^{m} a_{j, i} \boldsymbol{w}_{j}=a_{1, i} \boldsymbol{w}_{1}+a_{2, i} \boldsymbol{w}_{2}+\cdots+a_{m, i} \boldsymbol{w}_{m}$.
Then $\left[T\left(\boldsymbol{v}_{i}\right)\right]_{B^{\prime}}=\left[a_{1, i}, a_{2, i}, \ldots, a_{m, i}\right]^{T}$. Hence the $i j$ entry of $[T]_{B, B^{\prime}}$ is $a_{i, j}$.

Definition 9.3 An isomorphism between V and W is a bijective linear transformation form V to W. When there is an isomorphism between V and W, we say V and W are isomorphic.

When $V=W$, isomorphisms are called automorphisms.

Proposition 9.5 Let V and W be finitedimensional vector space. Then V and W are isomorphic, i.e., there is a bijective linear transformation from V to W if and only if $\operatorname{dim} V=\operatorname{dim} W$. In particular, every real vector space of dimension n is isomorphic to \boldsymbol{R}^{n}.

[^0]: *E-mail:hsuzuki@icu.ac.jp

[^1]: ${ }^{1}$ The condition $V=\operatorname{Span}(S)$ is enough.

