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1 Euclidean n-Space

Definition 1.1 If n is a positive integer, then an
ordered n-tuple is a sequence of n real numbers
(a1, a2, . . . , an). The set of all ordered n-tuples is
called n-space and is denoted by Rn.

Definition 1.2 Two vectors u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) in Rn are called equal if

u1 = v2, u2 = v2, . . . , un = vn.

The sum u + v is defined by

u + v = (u1 + v1, u2 + v2, . . . , un + vn)

and if k is any scalar, the scalar multiple ku is
defined by

ku = (ku1, ku2, . . . , kun).

Let 0 = (0, 0, . . . , 0) ∈ Rn, −u =
(−u1,−u2, . . . ,−un) and v − u = v + (−u) or,
in terms of components,

v − u = (v1 − u1, v2 − u2, . . . , vn − un).

Theorem 1.1 (4.1.1) Let u = (u1, u2, . . . , un),
v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be
vectors in Rn and k and m scalars. Then:

(a) u + v = v + u. (Commutativity)

(b) u + (v + w) = (u + v) + w (Associativity)

(c) u + 0 = 0 + u = u

(d) u + (−u) = 0; that is u − u = 0.

(e) k(mu) = (km)u.

(f) k(u + v) = ku + kv.

(g) (k + m)u = ku + mu.

(h) 1u = u.

∗E-mail:hsuzuki@icu.ac.jp

Definition 1.3 Let u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) be vectors in Rn. Then the Eu-
clidean Inner Product u · v is defined by

u · v = u1v1 + u2v2 + · · · + unvn,

the Euclidean norm (or Euclidean length) of a vec-
tor u is defined by

‖u‖ = (u · u)1/2 =
√

u2
1 + u2

2 + · · · + u2
n,

and the Euclidean distance between u and v is de-
fined by

d(u,v) = ‖u − v‖
=

√
(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2.

Theorem 1.2 (4.1.2) Let u, v and w be vectors
in Rn and k a scalar. Then:

(a) u · v = v · u.

(b) (u + v) · w = u · w + v · w.

(c) (ku) · v = k(u · v).

(d) v · v ≥ 0. Further, v · v = 0 if and only if
v = 0.

Cauchy-Schwarz Inequality in Rn.

Theorem 1.3 (4.1.3) Let u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) be vectors in Rn. Then

|u · v| ≤ ‖u‖‖v‖

Equality holds if and only if v = ku for some real
k or u = 0.

Theorem 1.4 (4.1.4) Let u and v be vectors in
Rn and k a scalar. Then:

(a) ‖u‖ ≥ 0.

(b) ‖u‖ = 0 if and only if u = 0.

(c) ‖ku‖ = |k|‖u‖.

(d) ‖u + v‖ ≤ ‖u‖ + ‖v‖. (Triangle inequality)
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Theorem 1.5 (4.1.4) Let u and v be vectors in
Rn and k a scalar. Then:

(a) d(u,v) ≥ 0.

(b) d(u,v) = 0 if and only if u = v.

(c) d(u,v) = d(v,u).

(d) d(u,v) ≤ d(u,w) + d(w,v).
(Triangle inequality)

2 Linear Transformations
from Rn to Rm

Definition 2.1 Let X and Y be sets. A function
(or mapping) f is a rule that associates with each
element a ∈ X one and only element b ∈ Y .

• f : X → Y (a '→ b = f(a)).

• b is the image of a under f , or f(a) is the value
of f at a.

• X is the domain of f and Y is the codomain
of f .

• Imf = {f(a) | a ∈ X} is called the range of f .

Two functions (mappings) f1 : X1 → Y1 and
f2 : X2 → Y2 are equal if X1 = X2, Y1 = Y2

and f1(a) = f2(a) for all a ∈ X1 = X2.

Definition 2.2 If the domain of a function T is
Rn and the codomain Rm then T is called a trans-
formation from Rn to Rm.

A mapping T : Rn → Rm is called a linear trans-
formation if

T : Rn → Rm (





x1

x2
...

xn




'→ T









x1

x2
...

xn









=





a1,1x1 + a1,2x2 + · · · + a1,nxn

a2,1x1 + a2,2x2 + · · · + a2,nxn
...

am,1x1 + am,2x2 + · · · + am,nxn




)

Let

x =





x1

x2
...

xn




, A =





a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

· · ·
am,1 am,2 · · · am,n





Then the linear transformation can be written as

T : Rn → Rm (x '→ Ax).

The matrix A = [ai,j ] is called the standard matrix
of T and write A = [T ].

Conversely if A is an m×n matrix and the map-
ping from Rn to Rm is defined by x '→ Ax, then
the linear transformation is denoted by TA. In par-
ticular [TA] = A.

Theorem 2.1 Let T1 : Rn → Rm and T2 : Rm →
R! be linear transformations. Then the composi-
tion of T2 with T1 defined by

T2 ◦ T1 : Rn → R! (x '→ T2(T1(x))).

is a linear transformation and [T2 ◦ T1] = [T2][T1].

Theorem 2.2 (4.3.2) A transformation T :
Rn → Rm is linear if and only if the following
hold for all u,v ∈ Rn and for every scalar c.

(a) T (u + v) = T (u) + T (v) (b) T (cu) =
cT (u).

Corollary 2.3 (4.3.3) If T is a linear transfor-
mation from Rn to Rm and e1,e2, . . . , en, then

[T ] = [Te1, Te2, . . . , Ten].

Definition 2.3 Let f : X → Y be a function (or
mapping).

(a) If Im(f) = f(X) = Y , then f is said to be
surjective or onto.

(b) If f(a) *= f(a′) whenever a *= a′, f is said
to be injective or one-to-one. f is injective iff
f(a) = f(a′) implies a = a′ for all a, a′ ∈ X.

(c) If f is one-to-one and onto, f is said to be
bijective.

Theorem 2.4 (2.3.6) If A is an n × n matrix,
then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced echelon form of A is In.

(d) A can be expressed as a product of elementary
matrices.

(e) Ax = b is consistent for every n× 1 matrix b.

(f) Ax = b has exactly one solution for every n×1
matrix b.

(g) det(A) *= 0.

Theorem 2.5 (4.3.1) If A is an n×n matrix and
TA : Rn → Rn is multiplication by A, then the
following statements are equivalent.

(a) A is invertible.

(b) TA is surjective.

(c) TA is injective.

(d) TA is bijective.
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3 Vector Spaces and Sub-
spaces

3.1 Definition of Vector Spaces

In the following K denotes either the real number
field R, the set of real numbers with two binary
operations, i.e., addition and multiplication, or the
complex number field C. K can be replaced by
any algebraic structure called a field but assume
K = R unless otherwise stated. Elements of K are
called scalars.

K = {0, 1} with addition and multiplication de-
fined by 0+0 = 0, 0+1 = 1+0 = 1, 1+1 = 0, and
0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1 is another example
of a field.

Definition 3.1 [Vector Space Axioms] Let (K
be a field and let) V be a set on which two opera-
tions are defined: additions and multiplication by
scalars (numbers). (By addition we mean a rule for
associating with each pair of elements u,v ∈ V an
element u + v ∈ V , called the sum of u and v, by
scalar multiplication we mean a rule for associating
with each scalar k and each element u ∈ V an ele-
ment ku ∈ V , called the scalar multiple of u by k.)
If the following axioms are satisfied, then we call V
a vector space (over K) and we call the elements in
V vectors.

1. If u and v are elements in V , then u + v is in
V .

2. u + v = v + u for all u,v ∈ V .

3. u+(v +w) = (u+v)+w for all u,v,w ∈ V .

4. There is an element 0 ∈ V , called a zero vector
for V , such that u + 0 = u for all u ∈ V .

5. For each u ∈ V , there is an element −u ∈ V ,
called a negative of u, such that u+(−u) = 0.

6. If k is a scalar and u is an element in V , then
ku is in V .

7. k(u + v) = ku + kv for all u,v ∈ V and any
scalar k.

8. (k + m)u = ku + mu for any vector u ∈ V
and all scalars k and m.

9. k(mu) = (km)u for any vector u ∈ V and all
scalars k and m.

10. 1u = u for any vector u ∈ V .

Vector spaces over R are called real vector spaces
and vector spaces over C complex vector spaces.

Proposition 3.1 (5.1.1) Let V be a vector space,
u a vector in V , and k a scalar; then:

(a) 0u = 0.

(b) k0 = 0.

(c) (−1)u = −u.

(d) If ku = 0, then k = 0 or u = 0.

3.2 Subspaces

Definition 3.2 A subset W of a vector space V
is called a subspace of V if W is itself a vector
space under the addition and scalar multiplication
defined on V .

Theorem 3.2 (5.2.1) If W is a nonempty subset
of a vector space V , then W is a subspace of V if
and only if the following conditions hold.

(a) u + v ∈ W for all u,v ∈ W .

(b) ku ∈ W for all u ∈ W and all scalars k.

Proposition 3.3 (5.2.2) Let A be an m × n ma-
trix, and T = TA a linear transformation defined
by

T : Rn → Rm (x '→ Ax).

Then W = {v ∈ Rn | T (v) = 0} is a subspace of a
vector space V = Rn. W is called the kernel of the
linear transformation T and is denoted by Ker(T ).

Definition 3.3 [Linear Combination] A vector
w is called a linear combination of the vectors
v1,v2, . . . , vr if it can be expressed in the form

w = k1v1 + k2v2 + · · · + krvr

where k1, k2, . . . , kr are scalars.

Theorem 3.4 (5.2.3) If v1,v2, . . . , vr are vec-
tors in a vector space V , then

(a) The set W of all linear combinations of
v1,v2, . . . , vr is a subspace of V .

(b) W is the smallest subspace of V that contains
v1,v2, . . . , vr in the sense that every other
subspace of V that contains v1,v2, . . . , vr must
contain W .

Definition 3.4 If S = {v1,v2, . . . , vr} is a set
of vectors in a vector space V , then the sub-
space W of V consisting of all linear combinations
of the vectors in S is called the space spanned
by v1,v2, . . . ,vr, and we say that the vectors
v1,v2, . . . , vr span W . To indicate that W is
the space spanned by the vectors in the set S =
{v1,v2, . . . ,vr}, we write

W = Span(S) or W = Span{v1,v2, . . . , vr}.
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4 Linear Independence and
Basis

4.1 Linear Independence

Definition 4.1 Let S = {v1,v2, . . . , vr} be a
nonempty set of vectors. If the equation

k1v1 + k2v2 + · · · + krvr = 0

has only one solution, namely, k1 = k2 = · · · =
kr = 0, then S is called a linearly independent set.
If there are other solutions, then S is called a lin-
early dependent set.

Proposition 4.1 (5.3.1, 5.4.1) Let S =
{v1,v2, . . . , vr} be a nonempty set of vectors.
Then the following are equivalent.

(a) S is a linearly independent set.

(b) No vector in S is expressible as a linear com-
bination of the other vectors in S.

(c) For each vector v, k1v1+k2v2+· · ·+krvr = v
has at most one solution, i.e., if

k1v1+k2v2+· · ·+krvr = k′
1v1+k′

2v2+· · ·+k′
rvr

then k1 = k′
1, k2 = k′

2, . . . , kr = k′
r.

Theorem 4.2 (1.2.1) A homogeneous system of
linear equations with more unknowns than equa-
tions has infinitely many solutions.

Theorem 4.3 (5.3.3) Let S = {v1,v2, . . . ,vr}
be a set of vectors in Rn. If r > n, then
S is linearly dependent. In particular, if A =
[v1,v2, . . . , vr], then a system of linear equation
Ax = 0 has a nonzero solution.

Proposition 4.4 (5.3.4) If the functions
f1,f2, . . . , fn have n − 1 continuous deriva-
tives on the interval (a, b), and if the Wronskian
of these functions is not identically zero on (a, b),
then these functions form a linearly independent
vectors in C(n−1)(a, b).

4.2 Basis and Dimension

Definition 4.2 If V is a vector space and S =
{v1,v2, . . . , vn} is a set of vectors fo V , then S is
called a basis for V if the following two conditions
hold:

(a) S is linearly independent.

(b) S spans V , i.e., every vector in V can be writ-
ten as a linear combination of vectors in S.

V is called finite-dimensional if it contains a finite
set of vectors {v1,v2, . . . ,vr} that forms a basis. If
no such set exists, V is called infinite-dimensional.

Theorem 4.5 (5.4.2) Let V be a finite-
dimensional vector space, and let {v1,v2, . . . , vn}
be a basis.

(a) If a set has more than n vectors, then it is
linearly dependent.

(b) If a set has fewer than n vectors, then it does
not span V .

Corollary 4.6 (5.4.3) All bases for a finite-
dimensional vector space have the same number of
vectors.

Definition 4.3 The dimension of a finite-
dimensional vector space V , denoted by dim(V ), is
defined to be the number of vectors in a basis for
V . (In addition, we define the zero vector space to
have dimension zero.)

Proposition 4.7 (5.4.4) Let S be a nonempty set
of vectors in a vector space V .

(a) If S is a linearly independent set, and v *∈
Span(S), then S ∪ {v} is a linearly indepen-
dent set.

(b) If v is a vector in S that is expressible as a
linear combination of other vectors in S, then
Span(S \ {v}) = Span(S).

Theorem 4.8 (5.4.5, 5.4.6, 5.4.7) Let V be an
n-dimensional vector space, and S a set of vectors
in V

(a) Suppose S has exactly n vectors. Then S is
linearly independent if and only if S spans V .

(b) If S spans V but not a basis for V , then S
can be reduced to a basis for V by removing
appropriate vectors from S.

(c) If S is linearly independent that is not already
a basis for V , then S can be enlarged to a basis
of V by inserting appropriate vectors into S.

(d) If W is a subspace of V , then dim(W ) ≤
dim(V ). Moreover if dim(W ) = dim(V ), then
W = V .

5 Dimensions of Subspaces

5.1 Row Space, Column Space and
Nullspace

Definition 5.1 For an m × n matrix

A =





a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

· · ·
am,1 am,2 · · · am,n



 ,
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the vectors

r1 = [a1,1, a1,2, . . . , a1,n]
r2 = [a2,1, a2,2, . . . , a2,n]

...
...

rm = [am,1, am,2, . . . , am,n]

in Rn formed from the rows of A are called the row
vectors of A and the vectors

c1 =





a1,1

a2,1
...

am,1




, c2 =





a1,2

a2,2
...

am,2




, · · · , cn =





a1,n

a2,n
...

am,n





in Rn formed from the columns of A are called the
column vectors of A.

Definition 5.2 Let A be an m × n matrix, then
the subspace of Rn spanned by the row vectors of
A is called the row space of A, and the subspace of
Rm spanned by the column vectors of A is called
the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which
is a subspace of Rn, is called the nullspace of A.

The dimension of the column space of a matrix A
is called the rank of A and is denoted by rank(A).
The dimension of the nullspace of A is called the
nullity of A and is denoted by nullity(A).

Proposition 5.1 (5.5.1) A system of linear
equations Ax = b is consistent if and only if b is
in the column space of A.

Theorem 5.2 (5.5.2) If x0 denotes any single
solution of a consistent linear system Ax = b, and
if v1,v2, . . . , vk form a basis for the nullspace of A,
then every solution of Ax = b can be expressed in
the form

x = x0 + c1v1 + c2v2 + · · · + ckvk

and, conversely, for all choices of scalars
c1, c2, · · · , ck, the vector x in this formula is a so-
lution of Ax = b.

Lemma 5.3 Let A be an m × r matrix and B an
r × n matrix. Then

R(AB) ⊂ R(B), C(AB) ⊂ C(A).

Proposition 5.4 (5.5.3, 5.5.4, 5.5.5) Let A be
an m×n matrix and P an invertible matrix of size
m × m,

(a) Elementary row operations do not change the
nullspace of a matrix. Moreover, N (A) =
N (PA).

(b) Elementary row operations do not change the
row space of a matrix. Moreover, R(A) =
R(PA).

(c) {v1,v2, . . . , vr} ⊂ Rn is a linearly indepen-
dent set if and only if
{Pv1, Pv2, . . . , Pvr} ⊂ Rn is a linearly inde-
pendent set.

5.2 Rank and Nullity

Proposition 5.5 (5.5.6) If a matrix R is in row-
echelon form, then the row vectors with the leading
1’s form a basis for the row space of R, and the col-
umn vectors with the leading 1’s of the row vectors
form a basis for the column space of R.

Theorem 5.6 (5.6.1) If A is any matrix, then
the row space and column space of A have the same
dimension. Hence rank(A) = rank(AT ).

Theorem 5.7 (5.6.3) If A is a matrix with n
columns, then

rank(A) + nullity(A) = n.

6 Inner Product Spaces

6.1 Inner Product, Norm and Dis-
tance

Definition 6.1 An inner product on a real vector
space V is a function that associates a real number
〈u,v〉 with each pair of vectors u and v in V in
such a way that the following axioms are satisfied
for all vectors u,v and z in V and all scalars k.

(a) 〈u,v〉 = 〈u,v〉 (Symmetry axiom)

(b) 〈u + v,z〉 = 〈u,z〉 + 〈v,z〉 (Additive axiom)

(c) 〈ku,v〉 = k〈u,v〉 (Homogeneity axiom)

(d) 〈v,v〉 ≥ 0 (Positivity axiom)

and if 〈v,v〉 = 0 if and only if v = 0.

A real vector space with an inner product is called
a real inner product space.

Definition 6.2 An inner product on a complex
vector space V is a function that associates a real
number 〈u,v〉 with each pair of vectors u and v in
V in such a way that the following axioms are sat-
isfied for all vectors u,v and z in V and all scalars
k (k ∈ C).

(a) 〈u,v〉 = 〈u,v〉 (Symmetry axiom)

(b) 〈u + v,z〉 = 〈u,z〉 + 〈v,z〉 (Additive axiom)

(c) 〈ku,v〉 = k〈u,v〉 (Homogeneity axiom)
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(d) 〈v,v〉 ≥ 0 (Positively axiom)

and if 〈v,v〉 = 0 if and only if v = 0.

A real vector space with an inner product is called
a real inner product space.

Definition 6.3 If V is an inner product space,
then the norm (or length) of a vector u ∈ V is
denoted by ‖u‖ and is defined by

‖u‖ = 〈u,u〉1/2.

The distance between two points (vectors) u and v
is denoted by d(u,v) and is defined by

d(u,v) = ‖u − v‖.

6.2 Properties of Inner Product
Space

The following inequality is called the Cauchy-
Schwarz Inequality.

Theorem 6.1 (6.2.1) If u and v are vectors in a
real inner product space, then

|〈u,v〉| ≤ ‖u‖‖v‖.

Equality holds if and only if u and v are linearly
dependent.

Theorem 6.2 (6.2.2) Let u and v be vectors in
an inner product space V , and k a scalar. Then:

(a) ‖u‖ ≥ 0.

(b) ‖u‖ = 0 if and only if u = 0.

(c) ‖ku‖ = |k|‖u‖.

(d) ‖u + v‖ ≤ ‖u‖ + ‖v‖. (Triangle inequality)

Theorem 6.3 (6.2.3) Let u and v be vectors in
an inner product space V , and k a scalar. Then:

(a) d(u,v) ≥ 0.

(b) d(u,v) = 0 if and only if u = v.

(c) d(u,v) = d(v,u).

(d) d(u,v) ≤ d(u,w) + d(w,v).
(Triangle inequality)

Theorem 6.4 (6.2.4) If u and v are vectors in
an inner vector space, then

‖u + v‖2 = ‖u‖2 + ‖v‖2 ⇔ 〈u,v〉 = 0.

7 Orthogonal Bases

7.1 Gram-Schmidt Proceess

Definition 7.1 A set of vectors in an inner prod-
uct space is called an orthogonal set if all pairs of
distinct vectors in the set are orthogonal. An or-
thogonal set in which each vector has norm 1 is
called orhonormal.

Proposition 7.1 Let S = {v1,v2, . . . , vm} be an
orthogonal set of nonzero vectors in an inner prod-
uct space.

(a) S is a linearly independent set.

(b) Let W = Span(S) and w ∈ W , then

w =
〈w,v1〉
‖v1‖2

v1+
〈w,v2〉
‖v2‖2

v2+· · ·+ 〈w,vm〉
‖vm‖2

vm.

(c) If v ∈ V , then

〈v − projW (v),w〉 = 0 for all w ∈ W.

where projW (v) is defined by the following.

〈v,v1〉
‖v1‖2

v1 +
〈v,v2〉
‖v2‖2

v2 + · · · + 〈v,vm〉
‖vm‖2

vm.

Definition 7.2 Let W be a subspace of an in-
ner product space V . A vector u in V is said
to be orthogonal to W if it is orthogonal to ev-
ery vector in W , and the set of all vectors in V
that are orthogonal to W is called the orthogonal
complement of W and is denoted by W⊥. Hence
W⊥ = {v ∈ V | 〈v,w〉 = 0 for all w ∈ W}.

Theorem 7.2 ((6.3.6) Gram-Schmidt Process)
Every nonzero finite-dimensional inner product
space has an orthonormal basis.

Theorem 7.3 (6.2.5, 6.2.6, 6.3.4) If W is a
subspace of a finite-dimensional inner product
space V , then

(a) W⊥ is a subspace of V .

(b) The only vector common to W and W⊥ is 0.

(c) (W⊥)⊥ = W .

(d) dim V = dim W + dimW⊥.

(e) Every vector v ∈ V is expressed as a sum v =
w + u such that w ∈ W and u ∈ W⊥.
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8 General Linear Transforma-
tions

8.1 Basic Properties

Definition 8.1 If T : V → W is a function from
a vector space V into a vector space W , then T is
called a linear transformation from V to W if , for
all vectors u and v in V and all scalars c,

(a) T (u + v) = T (u) + T (v) (b) T (cu) = cT (u).

In the special case where V = W , the linear trans-
formation T : V → V is called a linear operator of
V .

Example 8.1 A linear transformation from Rn to
Rm is first defined in Definition 2.2 as a function

T (x1, x2, . . . , xn) = (y1, y2, . . . , ym)

for which the equations relating y1, y2, . . . , ym with
x1, x2, . . . , xn are linear, and it was expressed by a
matrix multiplication:

T (x) = Ax, where A = [T (e1), T (e2), . . . , T (en)].

The matrix A was called the standard matrix and
denoted by A = [T ] and T = TA. Moreover, lin-
ear transformations were characterized by the two
properties in Definition 8.1. See Theorem 2.2.

Example 8.2 [Examples 11, 12] Let C∞(a, b) be
the set of functions that are differentiable for all
degrees of differentiation

1. D : C∞(a, b) → C∞(a, b) (f(x) '→ f ′(x)) is a
linear operator.

2. I : C∞(a, b) → C∞(a, b) (f(x) '→
∫ x

a f(t)dt) is
a linear operator.

Lemma 8.1 (8.1.1) If T : V → W is a linear
transformation, then

(a) T (0) = 0.

(b) T (−v) = −T (v) for all v ∈ V .

(c) T

( m∑

i=1

kivi

)
=

m∑

i=1

kiT (vi)

for all v1,v2, . . . , vm ∈ V and all scalars
k1, k2, . . . , km.

Proposition 8.2 Let T1 and T2 be linear transfor-
mations from V to W , and S = {v1,v2, . . . , vn} a
basis of V 1. Then the following are equivalent.

(a) T1 = T2, i.e., T1(v) = T2(v) for all v ∈ V .

(b) T1(vi) = T2(vi) for all i = 1, 2, . . . , n.
1The condition V = Span(S) is enough.

Proposition 8.3 Let V and W be vector spaces,
S = {v1,v2, . . . , vn} a basis of V and
w1,w2, . . . ,wn ∈ W . Then there exists a unique
linear transformation T : V → W such that
T (vi) = wi for all i = 1, 2, . . . , n.

Proposition 8.4 (8.1.2) Let T1 : U → V and
T2 : V → W be linear transformations. Then the
composition of T2 with T1 defined by

T2 ◦ T1 : U → W (x '→ T2(T1(x))).

is a linear transformation.

8.2 Kernel and Range

Proposition 8.5 (8.2.1) If T : V → W is a lin-
ear transformation, then

(a) {v ∈ V | T (v) = 0} is a subspace of V .

(b) {T (v) | v ∈ V } is a subspace of W .

Definition 8.2 If T : V → W is a linear transfor-
mation, then the set of vectors in V that T maps
into 0 is called the kernel of T ; it is denoted by
Ker(T ). The set of all vectors in W that are im-
ages under T of at least one vector in V is called
the range of T ; it is denoted by Im(T ). The dimen-
sion of the range of T is called the rank of T and is
denoted by rank(T ), the dimension of the kernel is
called the nullity of T and is denoted by nullity(T ).

Ker(T ) = {v ∈ V | T (v) = 0} ⊂ V ,
Im(T ) = {T (v) | v ∈ V } ⊂ W , and nullity(T ) =
dim(Ker(T )), rank(T ) = dim(Im(T )).

The following is a generalization of Theorem 5.7.
See also Theorem 7.3.

Theorem 8.6 (8.2.3) If T : V → W is a linear
transformation from an n-dimensional vector space
V to a vector space W , then

rank(T ) + nullity(T ) = n.

Proposition 8.7 (8.3.1) If T : V → W is a lin-
ear transformation, then the following are equiva-
lent.

(a) T is one-to-one, i.e., injective.

(b) Ker(T ) = {0}.

(c) nullity(T ) = 0

Proposition 8.8 (8.3.2) If V is a finite-
dimensional vector space, and T : V → V is a
linear operator, then the following are equivalent.

(a) T is one-to-one, i.e., injective.

(b) Ker(T ) = {0}.

(c) nullity(T ) = 0.

(d) The range of T is V , i.e., surjective.

(e) rank(T ) = dim V .
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9 Matrices and Linear Trans-
formations

Definition 9.1 Suppose that V is an n-
dimensional vector space with a basis
B = {v1,v2, . . . , vn} and W is an m-dimensional
vector space with a basis B′ = {w1,w2, . . . , wm}.
For x = x1v1 + x2v2 + · · · + xnvn ∈ V , the vector
[x1, x2, . . . , xn]T ∈ Rn is called the coordinate vec-
tor of x with respect to the basis B and denoted by
[x]B . Similarly for y = y1w1 +y2w2 + · · ·+ymwm,
[y]B′ = [y1, y2, . . . , ym]T ∈ Rm is the coordinate
vector of y with respect to the basis B′.

Let T be a linear transformation from V to W .
Then the m × n matrix A defined by

A = [[T (v1)]B′ , [T (v2)]B′ , . . . , [T (vm)]B′ ]

is called the matrix for T with respect to the bases
B and B′ and denoted by [T ]B′,B .

When V = W and B = B′, we write [T ]B for
[T ]B,B and [T ]B is called the matrix for T with
respect to the basis B.

Proposition 9.1 Under the notation in Defini-
tion 9.1 the following hold.

(a) [T ]B′,B [x]B = [T (x)]B′ .

(b) [T ]B [x]B = [T (x)]B, with V = W .

Proposition 9.2 (8.4.2) Let T1 : U → V and
T2 : V → W be linear transformations and B, B′

and B′′ basis of U , V , and W respectively. Then

[T2 ◦ T1]B′′,B = [T2]B′′,B′ [T1]B′,B .

Proposition 9.3 (8.4.3) Let T : V → V be a lin-
ear transformation. If B is a basis of V , then the
following are equaivalent:

(a) T is one-to-one.

(b) [T ]B is invertible.

Morover, when these equivalent conditions hold,

[T−1]B = [T ]−1
B .

Theorem 9.4 (8.5.2) Let T : V → V be a lin-
ear operator on a finite-dimensional vector space
V , and let B and B′ be bases for V . Then

[T ]B′ = P−1[T ]BP

where P is the transition matrix from B′ to B.

Definition 9.2 If A and B are square matrices, we
say that B is similar to A if there is an invertible
matrix P such that B = P−1AP .

Example 9.1 Let V = R3. In Quizzes we showed
that V has three bases. B = {e1,e2,e3}, B′ =
{v1,v2,e1}, and B′′ = {u1,u2,u3}, where

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 ,

u1 =





1√
14

−3√
14

−2√
14



 , u2 =





3√
70
5√
70

−6√
70



 , u3 =




2√
5

0
1√
5



 .

The first is the standard basis, and the last is an
orthonormal basis. Let T = projU .

By Quiz 7-5, since T (e1), T (e2), T (e3) are

1
5
[1, 0,−2]T , [0, 1, 0]T ,

1
5
[−2, 0, 4]T ,

[T ]B =




1
5 0 − 2

5
0 1 0
− 2

5 0 4
5



 .

Similarly, [T ]′B and [T ]B′′ are



1 0 7

5
0 1 3

5
0 0 0



 ,




1 0 0
0 1 0
0 0 0



 .

As for [I]B′,B , [I]B′′,B , [I]B′′,B′ , we have as follows:




1 −2 1
−3 7 0
−2 4 0



 ,





1√
14

3√
70

2√
5

−3√
14

5√
70

0
−2√
14

−6√
70

1√
5



 ,





√
14

14
31

√
70

70
−7

√
5

10

0
√

70
5

−3
√

5
10

0 0
√

5
2



 .

Recall the situation in Definition 9.1. Suppose

T (vi) =
m∑

j=1

aj,iwj = a1,iw1+a2,iw2+· · ·+am,iwm.

Then [T (vi)]B′ = [a1,i, a2,i, . . . , am,i]T . Hence the
ij entry of [T ]B,B′ is ai,j .

Definition 9.3 An isomorphism between V and
W is a bijective linear transformation form V to
W . When there is an isomorphism between V and
W , we say V and W are isomorphic.

When V = W , isomorphisms are called automor-
phisms.

Proposition 9.5 Let V and W be finite-
dimensional vector space. Then V and W
are isomorphic, i.e., there is a bijective linear
transformation from V to W if and only if
dimV = dim W . In particular, every real vector
space of dimension n is isomorphic to Rn.
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