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1 Euclidean n-Space

Definition 1.1 If n is a positive integer, then an
ordered n-tuple is a sequence of n real numbers
(ay,a2,...,a,). The set of all ordered n-tuples is
called n-space and is denoted by R".

Definition 1.2 Two vectors u = (ug,us, ..., uy,)
and v = (v1,v2,...,v,) in R"™ are called equal if
Up = Vo, U2 = V2, ..., Uy = Up.
The sum u + v is defined by
u~+v=(u +v1,us+v2,..., U, + Up)

and if k is any scalar, the scalar multiple ku is
defined by

ku = (kuy, kusg, ..., kuy).

Le¢ 0 = (0,0,....,00 € R", —-u =
(_ula_u2,-..7—un) and v—u = v+ (—u) or,
in terms of components,

v—u= (V] — U, V2 — U, ...,V — Up).

Theorem 1.1 (4.1.1) Let uw = (u,us,...,uUy),
v = (v1,v2,...,0,) and w = (w1, wa,...,w,) be
vectors in R" and k and m scalars. Then:

(a) u+v=v+u. (Commutativity)

(b) u+(v+w)=(u+v)+w (Associativity)
) ut+0=0+u=mu

(d) u+ (—u) =0; that is u — u = 0.
(e) k(mu) = (km)u

() k(u+v) = ku + kv.

(&) (k+m)u = ku +mu.

(h) 1u =wu.
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Definition 1.3 Let u = (uj,ua,...,u,) and v =
(v1,v2,...,v,) be vectors in R". Then the FEu-
clidean Inner Product u - v is defined by

UV = UV + UV2 + -+ UpUp,

the Euclidean norm (or Euclidean length) of a vec-
tor w is defined by

||’Ul||:(’u,.1,1,)1/2:\/u%—|—u§_|_..._i_u$17

and the Euclidean distance between u and v is de-
fined by

s (U — vp)2

Theorem 1.2 (4.1.2) Let u, v and w be vectors
in R" and k a scalar. Then:

(a) u-v=v-u.

(b)

(©) (ku)-v=k(u-v).
)

(d) v-v > 0. Further, v-v = 0 if and only if
v=0.

(u+v) w=u-w+v- w.

Cauchy-Schwarz Inequality in R".

Theorem 1.3 (4.1.3) Let v = (ug,ug,...,uy)
and v = (v1,va,...,0,) be vectors in R". Then

|- o] < lufv]

Equality holds if and only if v = ku for some real
k oru=0.

Theorem 1.4 (4.1.4) Let w and v be vectors in
R" and k a scalar. Then:

(a
(b
(c
(d

) llull = 0.

) |lul| =0 if and only if u=0
) Ikl = (k]|

)

lu+ | < Ju||+ ||v||. (Triangle inequality)



Theorem 1.5 (4.1.4) Let w and v be vectors in
R" and k a scalar. Then:

(u, w) + d(w,v).
(Triangle inequality)

2 Linear Transformations
from R" to R™

Definition 2.1 Let X and Y be sets. A function
(or mapping) f is a rule that associates with each
element a € X one and only element b € Y.

e f: X =Y (a—b= f(a)).

e b is the image of a under f, or f(a) is the value
of f at a.

e X is the domain of f and Y is the codomain
of f.

e Imf={f(a) | a € X} is called the range of f.

Two functions (mappings) f1 : X; — Y7 and
fo: Xo — Y5 are equal if X7 = Xo, Y7 = Y,
and f1(a) = fa(a) for all @ € X1 = Xs.

Definition 2.2 If the domain of a function T is
R" and the codomain R™ then T is called a trans-
formation from R"™ to R™.

A mapping T : R" — R™ is called a linear trans-
formation if

T
T:R"— R™ (| . — T
Tn Tn

01,11 + a12T2 + -+ Q1 0Ty
2,1T1 + G22%2 + -+ + A2 nTp

Am, 121 + A, 222 + -+ Gm,nTn

Let
x
1 a1 ai2 o Gl
x
. 2 A— | G21 a2 o dG2n
T = . , A=
Tp am,1 am2 *** (mmn

Then the linear transformation can be written as

T:R"— R™ (z— Ax).

The matrix A = [a; ;] is called the standard matriz
of T and write A = [T].

Conversely if A is an m x n matrix and the map-
ping from R"™ to R™ is defined by « +— Ax, then
the linear transformation is denoted by T4. In par-
ticular [T4] = A.

Theorem 2.1 LetT) : R" — R™ and Ty, : R™ —
R’ be linear transformations. Then the composi-
tion of To with T1 defined by

TyoT,: R" — R' (x — Ty(T\(x))).
is a linear transformation and [T o Th] = [T5][T1].

Theorem 2.2 (4.3.2) A transformation T
R" — R™ 1is linear if and only if the following
hold for all u,v € R"™ and for every scalar c.

(a) T(u +v) = T(u) + T(v) (b) T(cu) =
cT'(u).
Corollary 2.3 (4.3.3) If T is a linear transfor-
mation from R" to R™ and e, es,...,e,, then

[T] =[Tei,Tes,...,Te,].
Definition 2.3 Let f : X — Y be a function (or
mapping).

(a) If Im(f) = f(X) =Y, then f is said to be
surjective or onto.

(b) If f(a) # f(a’) whenever a # a/, f is said
to be injective or one-to-one. f is injective iff
f(a) = f(d') implies @ = o’ for all a,a’ € X.

(c) If f is one-to-one and onto, f is said to be
bijective.

Theorem 2.4 (2.3.6) If A is an n X n matriz,
then the following statements are equivalent.

(a) A is invertible.

(b) Az = 0 has only the trivial solution.

(¢) The reduced echelon form of A is I,.
)

(d) A can be expressed as a product of elementary
matrices.

(e) Ax = b is consistent for every n x 1 matriz b.

(f) Ax = b has ezxactly one solution for every nx1
matriz b.

(g) det(A4) # 0.

Theorem 2.5 (4.3.1) If A is an nxn matriz and
T4 : R — R" is multiplication by A, then the
following statements are equivalent.

(a) A is invertible.
(b) T4 is surjective.
(c) T4 is injective.
)

(d) Ta is bijective.



3 Vector and Sub-

spaces

Spaces

3.1 Definition of Vector Spaces

In the following K denotes either the real number
field R, the set of real numbers with two binary
operations, i.e., addition and multiplication, or the
complex number field C. K can be replaced by
any algebraic structure called a field but assume
K = R unless otherwise stated. Elements of K are
called scalars.

K = {0,1} with addition and multiplication de-
fined by 0+0=0,0+1=140=1,14+1=0, and
0-0=0-1=1-0=0,1-1=1 is another example
of a field.

Definition 3.1 [Vector Space Axioms] Let (K
be a field and let) V be a set on which two opera-
tions are defined: additions and multiplication by
scalars (numbers). (By addition we mean a rule for
associating with each pair of elements u,v € V an
element u + v € V, called the sum of w and v, by
scalar multiplication we mean a rule for associating
with each scalar k and each element u € V an ele-
ment ku € V, called the scalar multiple of u by k.)
If the following axioms are satisfied, then we call V'
a vector space (over K) and we call the elements in
V' wvectors.

1. If w and v are elements in V', then u + v is in
V.

2.ut+v=v+uforal uveV.

3. ut+(v+w)=(u+v)+wforall u,v,weV.

4. There is an element 0 € V, called a zero vector
for V, such that w4+ 0 =u for all uw € V.

5. For each u € V, there is an element —u € V,
called a negative of u, such that u+(—u) = 0.

6. If k is a scalar and u is an element in V', then
kuisin V.

7. k(u +v) = ku + kv for all u,v € V and any
scalar k.

8. (k+ m)u = ku + mu for any vector u € V
and all scalars k& and m.

9. k(mu) = (km)u for any vector u € V and all
scalars k and m.

10. 1u = u for any vector u € V.

Vector spaces over R are called real vector spaces
and vector spaces over C' complex vector spaces.

Proposition 3.1 (5.1.1) Let V be a vector space,
u a vector in 'V, and k a scalar; then:

a) Ou =

( 0.
( 0.
(¢) (-Du=—u.

)
b) k0 =
)
(d) If ku =0, then k=0 oru=0.

3.2 Subspaces

Definition 3.2 A subset W of a vector space V/
is called a subspace of V if W is itself a vector
space under the addition and scalar multiplication
defined on V.

Theorem 3.2 (5.2.1) If W is a nonempty subset
of a vector space V, then W is a subspace of V if
and only if the following conditions hold.

(a) u+veW foralu,veW.

(b) ku € W for allu € W and all scalars k.

Proposition 3.3 (5.2.2) Let A be an m X n ma-
trix, and T = T4 a linear transformation defined
by

T:R"— R"™ (x— Ax).
Then W ={v € R" | T(v) = 0} is a subspace of a
vector space V.= R"™. W is called the kernel of the
linear transformation T and is denoted by Ker(T).

Definition 3.3 [Linear Combination] A vector
w is called a linear combination of the vectors
v1,Va,...,, if it can be expressed in the form

w = kv + kovo + - + kv,
where k1, ko, ..., k, are scalars.

Theorem 3.4 (5.2.3) If vy, vo,...,
tors in a vector space V', then

v, are vec-

(a) The set W of all linear combinations of
v1,V2,..., U, is a subspace of V.

(b) W is the smallest subspace of V' that contains

v1,V9,...,0, in the sense that every other
subspace of V' that contains v1,vs, ..., v, must
contain W.

Definition 3.4 If S = {vq,vs,...,v,} is a set
of vectors in a vector space V, then the sub-
space W of V consisting of all linear combinations
of the vectors in S is called the space spanned
by wvi,v2,...,v,, and we say that the vectors
v1,V2,...,0, span W. To indicate that W is
the space spanned by the vectors in the set S =
{v1,va,...,v,}, we write

W = Span(S) or W = Span{wv,vs,...,v,}.



4 Linear Independence and
Basis

4.1 Linear Independence

Definition 4.1 Let S = {vi,vs,...,v,.} be a
nonempty set of vectors. If the equation

kivy + kovs + -+ kv, =0

has only one solution, namely, k1 = ky = -+ =
k. = 0, then S is called a linearly independent set.
If there are other solutions, then S is called a lin-
early dependent set.

Proposition 4.1 (5.3.1, 5.4.1) Let S =
{v1,v2,...,v,} be a nonempty set of wvectors.
Then the following are equivalent.

(a) S is a linearly independent set.

(b) No vector in S is expressible as a linear com-
bination of the other vectors in S.

(¢) For each vector v, kyvi+kova+---+kv,. =v
has at most one solution, i.e., if

kivi+kovot- - +kyv, = kKjvi+kbve+- - +klv,
then k‘l = k‘ll, k‘g = ]{1/2,...,]67. = k‘;

Theorem 4.2 (1.2.1) A homogeneous system of
linear equations with more unknowns than equa-
tions has infinitely many solutions.

Theorem 4.3 (5.3.3) Let S = {v1,vs,...,0,}
be a set of vectors in R". If r > mn, then
S is linearly dependent. In particular, if A =
[v1,v9,...,v.], then a system of linear equation
Ax = 0 has a nonzero solution.

Proposition 4.4 (5.3.4) If the functions
fi: 0. f, have n — 1 continuous deriva-
tives on the interval (a,b), and if the Wronskian
of these functions is not identically zero on (a,b),
then these functions form a linearly independent
vectors in C"1)(a,b).

4.2 Basis and Dimension

Definition 4.2 If V is a vector space and S =
{v1,v2,...,v,} is a set of vectors fo V, then S is
called a basis for V if the following two conditions
hold:

(a) S is linearly independent.

(b) S spans V| i.e., every vector in V' can be writ-
ten as a linear combination of vectors in S.

V is called finite-dimensional if it contains a finite
set of vectors {vy1,va, ..., v, } that forms a basis. If
no such set exists, V' is called infinite-dimensional.

Theorem 4.5 (5.4.2) Let V be a (finite-
dimensional vector space, and let {vq,va,...,v,}
be a basis.

(a) If a set has more than n wvectors, then it is
linearly dependent.

(b) If a set has fewer than n vectors, then it does
not span V.

Corollary 4.6 (5.4.3) All bases for a finite-
dimensional vector space have the same number of
vectors.

Definition 4.3 The dimension of a finite-
dimensional vector space V', denoted by dim(V), is
defined to be the number of vectors in a basis for
V. (In addition, we define the zero vector space to
have dimension zero.)

Proposition 4.7 (5.4.4) Let S be a nonempty set
of vectors in a vector space V.

(a) If S is a linearly independent set, and v ¢
Span(S), then S U {v} is a linearly indepen-
dent set.

(b) If v is a vector in S that is expressible as a
linear combination of other vectors in S, then

Span(S \ {v}) = Span(S).

Theorem 4.8 (5.4.5, 5.4.6, 5.4.7) Let V be an
n-dimensional vector space, and S a set of vectors
nV

(a) Suppose S has exactly n vectors. Then S is
linearly independent if and only if S spans V.

(b) If S spans V but not a basis for V, then S
can be reduced to a basis for V by removing
appropriate vectors from S.

(¢) If S is linearly independent that is not already
a basis for V, then S can be enlarged to a basis
of V' by inserting appropriate vectors into S.

(d) If W is a subspace of V, then dim(W) <
dim(V'). Moreover if dim(W) = dim(V), then
W =V.

5 Dimensions of Subspaces

5.1 Row Space, Column Space and
Nullspace

Definition 5.1 For an m X n matrix

a1 Aar2 0 Ain
A= a1 azz2 0 G2n

am,1 aAm2 **° Ommn



the vectors

ry = [a1,1,a172,...,a17n]
Ty = [ag’l, a2, ..., ag’n]
Tm = |Gm1,0m,2s---;0mn]

in R™ formed from the rows of A are called the row
vectors of A and the vectors

ai,1 ai,2 a1n

az 1 az 2 a2 n
C| = . , Co = . ;0 Cnp =

Gm,1 am,2 Qm,n

in R" formed from the columns of A are called the
column vectors of A.

Definition 5.2 Let A be an m X n matrix, then
the subspace of R" spanned by the row vectors of
A is called the row space of A, and the subspace of
R™ spanned by the column vectors of A is called
the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which
is a subspace of R", is called the nullspace of A.

The dimension of the column space of a matrix A
is called the rank of A and is denoted by rank(A).
The dimension of the nullspace of A is called the
nullity of A and is denoted by nullity(A).

Proposition 5.1 (5.5.1) A system of linear
equations Ax = b is consistent if and only if b is
in the column space of A.

Theorem 5.2 (5.5.2) If xy denotes any single
solution of a consistent linear system Ax = b, and
if v1,v9,...,v form a basis for the nullspace of A,
then every solution of Ax = b can be expressed in
the form
T =g+ CLv1 + CoV2 + - - - + CLVE

and, conversely, for all choices of scalars
c1,Co,++, Ck, the vector x in this formula is a so-

lution of Ax = b.

Lemma 5.3 Let A be an m X r matriz and B an
r X n matriz. Then

R(AB) C R(B), C(AB) C C(A).
Proposition 5.4 (5.5.3, 5.5.4, 5.5.5) Let A be

an m X n matriz and P an invertible matriz of size
m X m,

(a) FElementary row operations do not change the
nullspace of a matriz. Moreover, N(A) =

N(PA).

(b) Elementary row operations do not change the
row space of a matriz. Moreover, R(A) =
R(PA).

(¢) {v1,v2,...,v,} C R" is a linearly indepen-
dent set if and only if
{Pv1,Pvy,...,Pv,.} C R" is a linearly inde-
pendent set.

5.2 Rank and Nullity

Proposition 5.5 (5.5.6) If a matriz R is in row-
echelon form, then the row vectors with the leading
1’s form a basis for the row space of R, and the col-
umn vectors with the leading 1’s of the row vectors
form a basis for the column space of R.

Theorem 5.6 (5.6.1) If A is any matriz, then
the row space and column space of A have the same
dimension. Hence rank(A) = rank(AT).

Theorem 5.7 (5.6.3) If A is a matriz with n
columns, then

rank(A4) 4+ nullity(A) =

6 Inner Product Spaces

6.1 Inner Product, Norm and Dis-
tance

Definition 6.1 An inner product on a real vector
space V is a function that associates a real number
(u,v) with each pair of vectors u and v in V in
such a way that the following axioms are satisfied
for all vectors u,v and z in V and all scalars k.

(a) (u,v) = (u,v) (Symmetry axiom)

(b) (u+v,2z) = (u,z) + (v, z) (Additive axiom)
(¢) (ku,v) = k{u,v) (Homogeneity axiom)

(d) (v,v) >0 (Positivity axiom)

and if (v,v) =0 if and only if v =0.

A real vector space with an inner product is called
a real inner product space.

Definition 6.2 An inner product on a complex
vector space V is a function that associates a real
number (u,v) with each pair of vectors w and v in
V in such a way that the following axioms are sat-
isfied for all vectors u,v and z in V' and all scalars

k (k).

(a) (u,v) = (u,v) (Symmetry axiom)
(b) (u+v,z) = (u,z)+ (v, z) (Additive axiom)

(¢) (ku,v) = k{u,v) (Homogeneity axiom)



(d) (v,v) >0 (Positively axiom)
and if (v,v) =0 if and only if v = 0.

A real vector space with an inner product is called
a real inner product space.

Definition 6.3 If V is an inner product space,
then the norm (or length) of a vector u € V is
denoted by ||u|| and is defined by

| = (u,u)'/2.

The distance between two points (vectors) u and v
is denoted by d(u,v) and is defined by

d(u,v) = [[u—vl|.

6.2 Properties of Inner Product
Space

The following inequality is called the Cauchy-
Schwarz Inequality.

Theorem 6.1 (6.2.1) If u and v are vectors in a
real inner product space, then

[{w, v)| < [Julf[|v].

Equality holds if and only if w and v are linearly
dependent.

Theorem 6.2 (6.2.2) Let u and v be vectors in
an inner product space V, and k a scalar. Then:

(a) flull = 0.

(b) |lull =0 if and only if u = 0.
(©) NIkl = |k[[|ul].

(@) lu+v|| < |lu||+|v||. (Triangle inequality)

Theorem 6.3 (6.2.3) Let u and v be vectors in
an inner product space V, and k a scalar. Then:

(a) d(u,v) > 0.
(b) d(u,v) =0 if and only if u = v.
(¢) d(u,v) =d(v,u).

(d) d(u,v) <

< d(u, w)
(Triangle inequality)

+  d(w,v).

Theorem 6.4 (6.2.4) If u and v are vectors in
an inner vector space, then

lu+|* = |lull* + [[v]* & (u,v) =0.

7 Orthogonal Bases

7.1 Gram-Schmidt Proceess

Definition 7.1 A set of vectors in an inner prod-
uct space is called an orthogonal set if all pairs of
distinct vectors in the set are orthogonal. An or-
thogonal set in which each vector has norm 1 is
called orhonormal.

Proposition 7.1 Let S = {v1,v2,...,0n} be an
orthogonal set of nonzero vectors in an inner prod-
uct space.

(a) S is a linearly independent set.

(b) Let W = Span(S) and w € W, then

<w>v2>
[[v2?

w,v
w = < ) 12> v+
[[v1]]

(w,vm)
[om||*

v+t

Vi -

(¢) Ifv eV, then
(v — projy (v),w) =0 for allw € W.
where projy, (v) is defined by the following.

(v, V)

<U,171> <U,112> v
[vom]2 ™

V1
o2 [[v2]?

vz+...+

Definition 7.2 Let W be a subspace of an in-
ner product space V. A vector w in V is said
to be orthogonal to W if it is orthogonal to ev-
ery vector in W, and the set of all vectors in V/
that are orthogonal to W is called the orthogonal
complement of W and is denoted by W+. Hence
Wt ={veV|(v,w)=0forall we W}.

Theorem 7.2 ((6.3.6) Gram-Schmidt Process)

Every nonzero finite-dimensional inner product
space has an orthonormal basis.

Theorem 7.3 (6.2.5, 6.2.6, 6.3.4) If W is a
subspace of a finite-dimensional inner product
space V', then

(a) W is a subspace of V.

(b) The only vector common to W and W+ is 0.
() (WH)t=w.

(d) dimV =dim W + dim W+.

(e) Every vector v € V is expressed as a sum v =
w + u such that w € W and u € W+.



8 General Linear Transforma-
tions

8.1 Basic Properties

Definition 8.1 If T : V — W is a function from
a vector space V into a vector space W, then T is
called a linear transformation from V to W if | for
all vectors u and v in V and all scalars ¢,

() T(u+v)=T(u)+T(w) (b)T(cu)=-cT(u).

In the special case where V' = W, the linear trans-
formation T : V' — V is called a linear operator of

V.

Example 8.1 A linear transformation from R" to
R™ is first defined in Definition 2.2 as a function

T($1,$27...,$n) = (y17y2a"'7ym)

for which the equations relating y1,ys, . . . , Yy With
r1,Ts,...,T, are linear, and it was expressed by a
matrix multiplication:

T(x) = Az, where A =[T(e1),T(e2),...,T(en)].

The matrix A was called the standard matrix and
denoted by A = [T] and T = T4. Moreover, lin-
ear transformations were characterized by the two
properties in Definition 8.1. See Theorem 2.2.

Example 8.2 [Examples 11, 12] Let C*°(a,b) be
the set of functions that are differentiable for all
degrees of differentiation

1. D : C*®(a,b) — C*®(a,b) (f(z) — f'(x)) is a

linear operator.

2. I:C*>(a,b) — C*(a,b) = [T f(t)
a linear operator.

Lemma 8.1 (8.1.1) If T : V. — W s a linear
transformation, then

(a) T(0) = 0.
(b) T(—v) =

=1 =1
for all vi,v9,...,
kl;k27"'7km

—T'(v) for allv e V.

vy, € V o and all scalars

Proposition 8.2 Let T1 and T be linear transfor-
mations from V to W, and S = {v1,vs,...,0,} a
basis of V1. Then the following are equivalent.

(a) Ty =Ty, i.e., Ty (v) = Ta(v) forallve V.
(b) Ty (v;) = To(v;) foralli=1,2,...,n

IThe condition V' = Span(S) is enough.

Proposition 8.3 Let V and W be vector spaces,
S = A{vy,v9,...,v,} a basis of V and
w1y, Wa,...,w, € W. Then there ezists a unique
linear transformation T : V. — W such that
T(v;)) =w; foralli=1,2,...,n

Proposition 8.4 (8.1.2) Let Ty : U — V and
Ty : V. — W be linear transformations. Then the
composition of Ty with Ty defined by

T2 OTl U —-W (a: = TQ(Tl(QE)))

s a linear transformation.

8.2 Kernel and Range

Proposition 8.5 (8.2.1) If T : V — W is a lin-
ear transformation, then

(a) {v eV |T(v)=0} is a subspace of V.
(b) {T(v) | v € V} is a subspace of W.

Definition 8.2 If 7: V — W is a linear transfor-
mation, then the set of vectors in V' that T' maps
into 0 is called the kernel of T'; it is denoted by
Ker(T). The set of all vectors in W that are im-
ages under T of at least one vector in V is called
the range of T'; it is denoted by Im(7T"). The dimen-
sion of the range of T is called the rank of T" and is
denoted by rank(7"), the dimension of the kernel is
called the nullity of T' and is denoted by nullity(T").

Ker(T) {v e V| Twv) = 0} C V,
Im(T) = {T(v) | v € V} ¢ W, and nullity(T) =
dim(Ker(T')), rank(T") = dim(Im(7)).

The following is a generalization of Theorem 5.7.
See also Theorem 7.3.

Theorem 8.6 (8.2.3) If T : V — W is a linear
transformation from an n-dimensional vector space
V' to a vector space W, then

rank(7T) + nullity (') = n.

Proposition 8.7 (8.3.1) If T : V — W is a lin-
ear transformation, then the following are equiva-
lent.

(a) T is one-to-one, i.e., injective.
(b) Ker(T) = {0}.
(¢) nullity(T) =0

Proposition 8.8 (8.3.2) If V is a finite-
dimensional vector space, and T : V — V is a
linear operator, then the following are equivalent.

(a) T is one-to-one, i.e., injective.
(b) Ker(T) = {0}.
(¢) nullity(T) = 0.
(d)
(e) rank(T) = dim V.

The range of T is V', i.e., surjective.



9 Matrices and Linear Trans-
formations

Definition 9.1 Suppose that V is an n-
dimensional  vector space with a  basis
B = {v1,v3,...,v,} and W is an m-dimensional
vector space with a basis B’ = {w;,wa,...,wy,}.
For © = x1vy + xov2 + - - - + v, € V, the vector
[x1,29,...,7,]T € R" is called the coordinate vec-
tor of ® with respect to the basis B and denoted by
[x]p. Similarly for y = y1wi +yowa + - -+ Ym Wi,
Wl = [y1,y2,.-.,ym|t € R™ is the coordinate
vector of y with respect to the basis B’.

Let T be a linear transformation from V to W.
Then the m x n matrix A defined by

A= [[T(v1)]p [T(w2)lp, -, [T(vm)] ]

is called the matriz for T with respect to the bases
B and B’ and denoted by [T]p 5.

When V = W and B = B’, we write [T]p for
[T]g.p and [T]p is called the matriz for T with
respect to the basis B.

Proposition 9.1 Under the notation in Defini-
tion 9.1 the following hold.

(a) [Tp,Blxlp =[T(x)]p -
(b) [T)slx]s = [T(x)]p, with V =W.

Proposition 9.2 (8.4.2) Let Ty : U — V and
Ty : V. — W be linear transformations and B, B’
and B" basis of U, V', and W respectively. Then

[Ty o Th|pr g = [T2)B». 5/ [T1]B’,B-

Proposition 9.3 (8.4.3) LetT :V — V be a lin-
ear transformation. If B is a basis of V', then the
following are equaivalent:

(a) T is one-to-one.

(b) [T]B is invertible.

Morover, when these equivalent conditions hold,
[T = [T]5"

Theorem 9.4 (8.5.2) Let T : V. — V be a lin-
ear operator on a finite-dimensional vector space
V, and let B and B’ be bases for V. Then

[T]p = P~ T]pP
where P is the transition matriz from B’ to B.
Definition 9.2 If A and B are square matrices, we

say that B is similar to A if there is an invertible
matrix P such that B = P~'AP.

Example 9.1 Let V = R?. In Quizzes we showed
that V' has three bases. B = {ej,es,e3}, B =
{v1,v2,e1}, and B” = {u,us, us}, where

1 -2 3
V1= -3 , V2= 7 , V3= -8 )
-2 4 —6
1 _3 2
ui=| 77 |- ue=| 75 | us= (1)
) 6 1
Vi V70 V5

The first is the standard basis, and the last is an

orthonormal basis. Let T' = proj;.
By Quiz 7-5, since T'(ey1), T'(ez2), T'(es3) are

1 1
g[1,0, -2]7,[0,1,0]%, 3[—2,0,4]T,

1 9 -2

5 5

Ts=| 0 1 0

2 4

-5 0 5

Similarly, [Tz and [T']p~ are

10 % 100
01 2], {010
0 0 O 0 0 0

As for [I}B/Jg, [I]B”,Ba [I}B”,B’a we have as follows:

1 3 2
I -2 1 ViZ Vo 5
=3 7 0|, = um 0|,
-9 4 0 -2 =6 _1
Via V70 V5
V14 31V/70 -—7V5
14 70 10
0 V70 =3V5
5 10
0 0 Y3

2

Recall the situation in Definition 9.1. Suppose

m

T(v;) = Zaj,iwj = a1,,W1+az  Wat: -+ +m, i W
j=1

Then [T'(v;)|p = [a14,024,---,am]T. Hence the

ij entry of [T, g is a; ;.

Definition 9.3 An isomorphism between V and
W is a bijective linear transformation form V to
W. When there is an isomorphism between V' and
W, we say V and W are isomorphic.

When V' = W, isomorphisms are called automor-
phisms.

Proposition 9.5 Let V. and W be finite-
dimensional vector space. Then V and W
are isomorphic, i.e., there is a bijective linear
transformation from V to W if and only if
dimV = dimW. In particular, every real vector
space of dimension n is isomorphic to R".



