Let $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be non－zero vectors in \boldsymbol{R}^{n} ．
1．Let λ be a real number．Show the following．（Hint：use $\|\boldsymbol{w}\|^{2}=\boldsymbol{w} \cdot \boldsymbol{w}$ ．）

$$
\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2}=\lambda^{2}\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v}) \lambda+\|\boldsymbol{v}\|^{2} .
$$

2．Using the fact that $\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2} \geq 0$ for all real λ and a property of a quadratic function， show the Cauchy－Schwarz Inequality．（Hint：Discriminant（Hanbetsu－shiki））

3．Show the equivalence of the following：

$$
|\boldsymbol{u} \cdot \boldsymbol{v}|=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \Leftrightarrow \text { There exists } \alpha \in \boldsymbol{R} \text { such that } \boldsymbol{u}=\alpha \boldsymbol{v}
$$

Message：（1）この授業を履修した理由（2）この授業に期待すること［HP 掲載不可のとき は明記のこと］

Solutions to Take-Home Quiz 1 (Deeember 13, 2006)

Let $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be non-zero vectors in \boldsymbol{R}^{n}.

1. Let λ be a real number. Show the following. (Hint: use $\|\boldsymbol{w}\|^{2}=\boldsymbol{w} \cdot \boldsymbol{w}$.)

$$
\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2}=\lambda^{2}\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v}) \lambda+\|\boldsymbol{v}\|^{2} .
$$

Sol.

$$
\begin{aligned}
\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2} & =(\lambda \boldsymbol{u}+\boldsymbol{v}) \cdot(\lambda \boldsymbol{u}+\boldsymbol{v}) \\
& =(\boldsymbol{u} \cdot \boldsymbol{u}) \lambda^{2}+(\boldsymbol{u} \cdot \boldsymbol{v}) \lambda+(\boldsymbol{v} \cdot \boldsymbol{u}) \lambda+(\boldsymbol{v} \cdot \boldsymbol{v}) \\
& =\|\boldsymbol{u}\|^{2} \lambda^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v}) \lambda+\|\boldsymbol{v}\|^{2} .
\end{aligned}
$$

2. Using the fact that $\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2} \geq 0$ for all real λ and a property of a quadratic function, show the Cauchy-Schwarz Inequality. (Hint: Discriminant (Hanbetsu-shiki))
Sol. Note that $\|\boldsymbol{u}\| \neq 0$ implies that the right hand side above is a polynomial of degree 2 . Since the right hand side of the equation in 1 is quadratic in λ, it can be considered as a quadratic function which takes only nonnegative values for all real λ. Hence the graph of the function is above the x-axis or possibly the vertex of the parabola touches the x-axis. Hence the equation $\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2}=0$ has either no real solutions or exactly one solution. Therefore the discriminant of it is nonpositive and we have

$$
(\boldsymbol{u} \cdot \boldsymbol{v})^{2}-\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \leq 0
$$

Thus we have $(\boldsymbol{u} \cdot \boldsymbol{v})^{2} \leq\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}$, or

$$
|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\| .
$$

This is the Cauchy-Sshwarz Inequality.
Although we assumed that both \boldsymbol{u} and \boldsymbol{v} are nonzero vectors, the Cauchy-Schwarz Inequality holds even if one of them is a zero vector. So it is easy to check that the equality holds for all cases.
3. Show the equivalence of the following:

$$
|\boldsymbol{u} \cdot \boldsymbol{v}|=\|\boldsymbol{u}\|\|\boldsymbol{v}\| \Leftrightarrow \text { There exists } \alpha \in \boldsymbol{R} \text { such that } \boldsymbol{u}=\alpha \boldsymbol{v} .
$$

Sol. If the equality holds, the discriminant is zero. Hence the vertex of the parabola touches the x-axis. That means there is a value λ such that $\|\lambda \boldsymbol{u}+\boldsymbol{v}\|=0$. Hence $\lambda \boldsymbol{u}+\boldsymbol{v}=\mathbf{0}$. If $\lambda=0$, then $\boldsymbol{v}=\mathbf{0}$, a contradiction. Hence $\lambda \neq 0$. Let $\alpha=-(1 / \lambda)$. Then $\boldsymbol{u}=\alpha \boldsymbol{v}$ as desired.

For $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}$ be a nonzero vector in \boldsymbol{R}^{n} ，Let

$$
\tau_{\boldsymbol{u}}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}\left(\boldsymbol{x} \mapsto \boldsymbol{x}-\frac{2 \boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right) .
$$

1．Show that $\tau \boldsymbol{u}$ is a linear transformation．

2．Let $\boldsymbol{v}=(1,-1,0, \ldots, 0)^{T}$ ．Find the standard matrix $[\tau \boldsymbol{v}]$ ．

3．Suppose T is a linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{n} such that $T(\boldsymbol{u})=-\boldsymbol{u}, T(\boldsymbol{w})=$ \boldsymbol{w} whenever $\boldsymbol{w} \cdot \boldsymbol{u}=0$ ．Show that $T=\tau \boldsymbol{u}$ ．（Hint：If $\alpha=\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}},(\boldsymbol{x}-\alpha \boldsymbol{u}) \cdot \boldsymbol{u}=0$ ．）

Solutions to take-Home Quiz 2

For $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)^{T}$ be a nonzero vector in \boldsymbol{R}^{n}, Let

$$
\tau \boldsymbol{u}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}\left(\boldsymbol{x} \mapsto \boldsymbol{x}-\frac{2 \boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)
$$

1. Show that $\tau_{\boldsymbol{u}}$ is a linear transformation. (This linear transformation is called the reflection defined by \boldsymbol{u}.)
Sol. Let $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{R}^{n}$ and k a scalar. Then

$$
\begin{aligned}
\tau \boldsymbol{u}(\boldsymbol{x}+\boldsymbol{y})= & (\boldsymbol{x}+\boldsymbol{y})-\frac{2(\boldsymbol{x}+\boldsymbol{y}) \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}=\left(\boldsymbol{x}-\frac{2 \boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)+\left(\boldsymbol{y}-\frac{2 \boldsymbol{y} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)=\tau \boldsymbol{u}(\boldsymbol{x})+\tau \boldsymbol{u}(\boldsymbol{y}) \\
& \tau_{\boldsymbol{u}}(k \boldsymbol{x})=k \boldsymbol{x}-\frac{2(k \boldsymbol{x}) \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}=k\left(\boldsymbol{x}-\frac{2 \boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)=k \tau \boldsymbol{u}(\boldsymbol{x}) .
\end{aligned}
$$

Hence $\tau \boldsymbol{u}$ is a linear transformation by Theorem 4.3.2 in the textbook.
2. Let $\boldsymbol{v}=(1,-1,0, \ldots, 0)^{T}$. Find the standard matrix $[\tau \boldsymbol{v}]$.

Sol. Let $\boldsymbol{e}_{1}=(1,0, \ldots, 0)^{T}, \boldsymbol{e}_{2}=(0,1,0, \ldots, 0)^{T}, \ldots, \boldsymbol{e}_{n}=(0, \ldots, 0,1)^{T}$ be unit vectors. Since $\|\boldsymbol{v}\|^{2}=2, \tau \boldsymbol{v}\left(\boldsymbol{e}_{1}\right)=(0,1,0, \ldots, 0)^{T}, \tau \boldsymbol{v}\left(\boldsymbol{e}_{2}\right)=(1,0, \ldots, 0)^{T}$, and $\tau \boldsymbol{v}\left(\boldsymbol{e}_{i}\right)=\boldsymbol{e}_{i}$ if $i=3,4, \ldots, n$. We have

$$
[\tau \boldsymbol{v}]=\left[\tau \boldsymbol{v}\left(\boldsymbol{e}_{1}\right), \tau \boldsymbol{v}\left(\boldsymbol{e}_{2}\right), \tau \boldsymbol{v}\left(\boldsymbol{e}_{3}\right), \ldots, \tau \boldsymbol{v}\left(\boldsymbol{e}_{n}\right)\right]=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & & 0 \\
\vdots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right] .
$$

by Theorem 4.3.3.
3. Suppose T is a linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{n} such that $T(\boldsymbol{u})=-\boldsymbol{u}, T(\boldsymbol{w})=$ \boldsymbol{w} whenever $\boldsymbol{w} \cdot \boldsymbol{u}=0$. Show that $T=\tau_{\boldsymbol{u}}$. (Hint: If $\alpha=\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}},(\boldsymbol{x}-\alpha \boldsymbol{u}) \cdot \boldsymbol{u}=0$.)
Sol. Since both T and $\tau \boldsymbol{u}$ are linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{n}. It remains to show that $T(\boldsymbol{x})=\tau \boldsymbol{u}(\boldsymbol{x})$ for all $\boldsymbol{x} \in \boldsymbol{R}^{n}$. Since

$$
\begin{aligned}
& \quad(*) \quad\left(\boldsymbol{x}-\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right) \cdot \boldsymbol{u}=0 \text { and }(* *) \quad \frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \text { is a scalar, } \\
T(\boldsymbol{x})= & T\left(\left(\boldsymbol{x}-\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)+\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right) \\
= & T\left(\boldsymbol{x}-\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)+\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} T(\boldsymbol{u}) \quad \text { (by Theorem 4.3.2 (a) and (b) with (**)) } \\
= & \left(\boldsymbol{x}-\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)-\frac{\boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u} \quad \text { (by the properties of } T \text { and }(*) \text { above) } \\
= & \boldsymbol{x}-\frac{2 \boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u} \\
= & \tau \boldsymbol{u}(\boldsymbol{x}) .
\end{aligned}
$$

Therefore $T=\tau \boldsymbol{u}$ as functions (or mappings).

Take－Home Quiz 3
Division：ID\＃：

Division：ID\＃：Name：

1．Let V be a vector space and k a scalar．Show $k \mathbf{0}=\mathbf{0}$ ．In each step of your proof quote the axiom applied．［Hint：Exercise 5．1．29］

2．Let $A, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ be as follows．

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-3 & 7 & -8 \\
-2 & 4 & -6
\end{array}\right], I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right]
$$

（a）Let $B=(A-I)^{2}$ ．Show that $W=\left\{\boldsymbol{v} \in \boldsymbol{R}^{3} \mid B \boldsymbol{v}=10 \boldsymbol{v}\right\}$ is a subspace of $V=\boldsymbol{R}^{3}$ ．
（b）Determine whether or not \boldsymbol{v}_{3} is a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2} ．

Solutions to Take-Home Quiz 3 (January 10, 2007)

1. Let V be a vector space and k a scalar. Show $k \mathbf{0}=\mathbf{0}$. In each step of your proof quote the axiom applied. [Hint: Exercise 5.1.29]
Sol.

$$
\begin{aligned}
k \mathbf{0} & \stackrel{(4)}{=} k \mathbf{0}+\mathbf{0} \stackrel{(5)}{=} k \mathbf{0}+(k \mathbf{0}+(-(k \mathbf{0})) \stackrel{(3)}{=}(k \mathbf{0}+k \mathbf{0})+(-(k \mathbf{0})) \\
& \stackrel{(7)}{=} k(\mathbf{0}+\mathbf{0})+(-(k \mathbf{0})) \stackrel{(4)}{=} k \mathbf{0}+(-(k \mathbf{0})) \stackrel{(5)}{=} \mathbf{0} .
\end{aligned}
$$

Therefore $k \mathbf{0}=\mathbf{0}$
We write $\boldsymbol{u}-\boldsymbol{v}$ for $\boldsymbol{u}+(-\boldsymbol{v})$. Note that since $k \mathbf{0}$ is an element in a vector space V, $-(k \mathbf{0})$ above is an element guaranteed to exist by Axiom 5.
2. Let $A, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ be as follows.

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-3 & 7 & -8 \\
-2 & 4 & -6
\end{array}\right], I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right] .
$$

(a) Let $B=(A-I)^{2}$. Show that $W=\left\{\boldsymbol{v} \in \boldsymbol{R}^{3} \mid B \boldsymbol{v}=10 \boldsymbol{v}\right\}$ is a subspace of $V=\boldsymbol{R}^{3}$.
Sol. Since $W=\left\{\boldsymbol{v} \in \boldsymbol{R}^{3} \mid(B-10 I) \boldsymbol{v}=\mathbf{0}\right\}$, W is the kernel of the linear transformation defined by a 3×3 matrix $B-10 I$. Hence W is a subspace of V by Proposition 3.3 (5.2.2).

Alternatively apply Theorem 3.2 (5.2.1). Since $\mathbf{0}$ safisfies $B \mathbf{0}=\mathbf{0}=100$, $\mathbf{0} \in W$. Hence W is not empty. Let $\boldsymbol{u}, \boldsymbol{v} \in W$, i.e., $B \boldsymbol{u}=10 \boldsymbol{u}$ and $B \boldsymbol{v}=10 \boldsymbol{v}$. Let $\boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}$. Then

$$
B \boldsymbol{w}=B(\boldsymbol{u}+\boldsymbol{v})=B \boldsymbol{u}+B \boldsymbol{v}=10 \boldsymbol{u}+10 \boldsymbol{v}=10(\boldsymbol{u}+\boldsymbol{v})=10 \boldsymbol{w} .
$$

Hence $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{w} \in W$. Similarly if k is a scalar

$$
B(k \boldsymbol{u})=k(B \boldsymbol{u})=k(10 \boldsymbol{u})=10(k \boldsymbol{u}) .
$$

Hence $k \boldsymbol{u} \in W$. Thus W is a subspace of V by Theorem 3.2 (5.2.1) and W itself is a vector space.
(b) Determine whether or not \boldsymbol{v}_{3} is a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.

Sol. Since $\boldsymbol{v}_{3}=5 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ can be written as a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.

Let $\boldsymbol{v}_{3}=x \boldsymbol{v}_{1}+y \boldsymbol{v}_{2}$. Then the augmented (or extended coefficient) matrix of this system of linear equations is A. Hence by applying elementary row operations we have

$$
\left[\begin{array}{ccc}
1 & -2 & 3 \\
-3 & 7 & -8 \\
-2 & 4 & -6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Now we have the linear combination above.

Take－Home Quiz $\boldsymbol{4}$（Due at 7：00 p．m．on Wed．January 17，2007）
 Division：
 ID\＃：

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ and \boldsymbol{e}_{3} be vectors in \boldsymbol{R}^{3} given below．

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right], \boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

1．Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis of $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ ．

2．Show that $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ is a basis of \boldsymbol{R}^{3} ．

3．Show that $\boldsymbol{e}_{1} \notin \operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ ．

4．Show that $\left\{\boldsymbol{e}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis of \boldsymbol{R}^{3} ．

5．Express \boldsymbol{e}_{2} as a linear combination of $\boldsymbol{e}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ ．

Message 欄：あなたにとって，豊かな生活とはどのようなものでしょうか。どのよう なとき幸せだと感じますか。［HP 掲載不可は明記のこと］

Solutions to Take-Home Quiz 4 (January 17, 2007)

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ and \boldsymbol{e}_{3} be vectors in \boldsymbol{R}^{3} given below.

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right], \boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

N.B. A subspace of a vector space is a vector space. A subset $S=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right\}$ of a vector space V is a basis of V, whenever two conditions are satisfied, i.e., '(a) linear independence' and '(b) $V=\operatorname{Span}(S)$ '. Review the definition of a basis.

1. Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis of $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.

Sol. Note that $\boldsymbol{v}_{3}=5 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}$. (See Quiz 3.) Hence

$$
U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}=\left\{a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+a_{3} \boldsymbol{v}_{3} \mid a_{1}, a_{2}, a_{3} \in \boldsymbol{R}\right\}=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\} .
$$

By definition, it suffices to show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a linearly independent set. Suppose

$$
\mathbf{0}=x \boldsymbol{v}_{1}+y \boldsymbol{v}_{2}=x\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right]+y\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right]=\left[\begin{array}{c}
x-2 y \\
-3 x+7 y \\
-2 x+4 y
\end{array}\right] .
$$

Since $x-2 y=0$ and $-3 x+7 y=0$ implies $x=y=0,\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a linearly independent set and it is a basis of U.
2. Show that $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.

Sol. Suppose $\mathbf{0}=x \boldsymbol{e}_{1}+y \boldsymbol{e}_{2}+z \boldsymbol{e}_{3}=(x, y, z)^{T}$. Then $x=y=z=0$. Hence $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ is linearly independent. Moreover $(x, y, z)^{T}=x \boldsymbol{e}_{1}+y \boldsymbol{e}_{2}+z \boldsymbol{e}_{3}$ for all $x, y, z \in \boldsymbol{R}$, and $\boldsymbol{R}^{3}=\operatorname{Span}\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$. Hence $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.
3. Show that $\boldsymbol{e}_{1} \notin \operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$.

Sol. By the computation in 1 , the third entry of $x \boldsymbol{v}_{1}+y \boldsymbol{v}_{2}$ is -2 times the first entry. Hence \boldsymbol{e}_{1} is not in $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$.
4. Show that $\left\{\boldsymbol{e}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis of \boldsymbol{R}^{3}.

Sol. By $3,\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{e}_{1}\right\}$ is a linearly independent set in \boldsymbol{R}^{3}. (See Proposition 4.7 (5.4.4).) Since $\operatorname{dim}\left(\boldsymbol{R}^{3}\right)=3$ by 2. $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{e}_{1}\right\}$ is a basis of \boldsymbol{R}^{3} by Theorem 4.8 (5.4.5).
5. Express \boldsymbol{e}_{2} as a linear combination of $\boldsymbol{e}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}$.

Sol. $\boldsymbol{e}_{2}=0 \boldsymbol{e}_{1}+2 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}=2 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}$.

Take－Home Quiz 5
 Division：
 ID\＃：

（Due at 7：00 p．m．on Wed．January 24，2007）

Let A be the coefficient matrix，and B the augmented matrix of a system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ ，where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]^{T}$ ．Let C be a reduced row－echelon form obtained from B by a series of elementary row operations．

$$
B=[A, \boldsymbol{b}]=\left[\begin{array}{ccccccc}
3 & -3 & 0 & 3 & -6 & -3 & -6 \\
2 & -2 & 1 & 5 & -3 & -1 & 1 \\
-3 & 3 & 0 & -3 & 6 & 1 & -8 \\
-1 & 1 & 2 & 5 & 4 & 0 & -9
\end{array}\right] \rightarrow C=\left[\begin{array}{ccccccc}
1 & -1 & 0 & 1 & -2 & 0 & 5 \\
0 & 0 & 1 & 3 & 1 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

1．Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$ ．

2．Find a basis of the row space of A ．

3．Find a basis of the column space of A ．

4．Find a basis of the nullspace of A ．

5．Find the general solution of the equation $A \boldsymbol{x}=\boldsymbol{b}$ ．

Message 欄：これまでの Linear Algebra II について。改善点について。［HP 揭載不可は明記のこと］

Solutions to Take-Home Quiz 5 (January 24, 2007)

Let A be the coefficient matrix, and B the augmented matrix of a system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]^{T}$. Let C be a reduced row-echelon form obtained from B by a series of elementary row operations.

$$
B=[A, \boldsymbol{b}]=\left[\begin{array}{ccccccc}
3 & -3 & 0 & 3 & -6 & -3 & -6 \\
2 & -2 & 1 & 5 & -3 & -1 & 1 \\
-3 & 3 & 0 & -3 & 6 & 1 & -8 \\
-1 & 1 & 2 & 5 & 4 & 0 & -9
\end{array}\right] \rightarrow C=\left[\begin{array}{ccccccc}
1 & -1 & 0 & 1 & -2 & 0 & 5 \\
0 & 0 & 1 & 3 & 1 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

In the following, let $C=[D, \boldsymbol{e}]$, where $\boldsymbol{e}=[5,-2,7,0]^{T}$. Then there is an invertible matrix P of size 4×4 such that $P B=C$ and $P A=D, P \boldsymbol{b}=\boldsymbol{e}$. For a matrix M, let M_{i} denote column i of M.

1. Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.

Sol. Let $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right\}$ be the standard basis of \boldsymbol{R}^{4}. Then $D_{1}=\boldsymbol{e}_{1}, D_{3}=\boldsymbol{e}_{2}$ and $D_{6}=\boldsymbol{e}_{3}$. Hence

$$
\operatorname{rank}(A)=\operatorname{dim}(\mathcal{C}(A))=\operatorname{dim}(\mathcal{C}(P A))=\operatorname{dim}(\mathcal{C}(D))=\operatorname{dim} \operatorname{Span}\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}=3
$$

Since $\mathcal{N}(A)=\mathcal{N}(P A)=\mathcal{N}(D)$, nullity $(A)=\operatorname{nullity}(P A)=\operatorname{nullity}(D)=3$. See Problem 4, or use Theorem 5.6 (5.6.3).
2. Find a basis of the row space of A.

Sol. Since $\mathcal{R}(A)=\mathcal{R}(D)$ by Proposition 5.2 (5.5.4), it suffices to find a basis of the row space of D. Let $S=\{[1,-1,0,1,-2,0],[0,0,1,3,1,0],[0,0,0,0,1]\}$. Then clearly $\operatorname{Span}(S)=\mathcal{R}(D)$, and S is a linearly independent set. Hence S is a basis.
3. Find a basis of the column space of A.

Sol. Since $P A_{1}=D_{1}=\boldsymbol{e}_{1}, P A_{3}=D_{3}=\boldsymbol{e}_{2}$ and $P A_{6}=D_{6}=\boldsymbol{e}_{3}$ form a basis of $\mathcal{C}(D),\left\{A_{1}, A_{3}, A_{6}\right\}$ is a linearly independent set by Proposition 5.3 (5.5.5). Since $\operatorname{rank}(A)=\operatorname{dim}(\mathcal{C}(A))=3,\left\{A_{1}, A_{3}, A_{6}\right\}$ is a basis of the column space of A.
4. Find a basis of the nullspace of A.

Sol. Since $\mathcal{N}(A)=\mathcal{N}(P A)=\mathcal{N}(D)$ and $\{[1,1,0,0,0,0],[-1,0,-3,1,0,0]$, $[2,0,-1,0,1,0]\}$ is a linearly independent set, this is a basis.
5. Find the general solution of the equation $A \boldsymbol{x}=\boldsymbol{b}$.

Sol.

$$
\left[\begin{array}{c}
5 \\
0 \\
-2 \\
0 \\
0 \\
7
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{c}
2 \\
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right] . \quad(s, t, u \text { are parameters. })
$$

Take－Home Quiz 6 （Due at 7：00 p．m．on Wed．January 31，2007）
Division：ID\＃：Name：
Let A be an $m \times n$ matrix．For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{n}$ let

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle=A \boldsymbol{u} \cdot A \boldsymbol{v}=(A \boldsymbol{u})^{T} A \boldsymbol{v}=\boldsymbol{u}^{T} A^{T} A \boldsymbol{v}
$$

1．Show that $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ satisfies the properties（a），（b）and（c）of an inner product in Definition 6.1 （or 1，2， 3 in the definition on page 296 in the textbook）．

2．Show that if $\mathcal{N}(A)=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid A \boldsymbol{v}=\mathbf{0}\right\}=\{\mathbf{0}\}$ ，then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ is an inner product．

3．Show that if $m<n$ ，then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ is not an inner product．

4．Show that $m \geq n$ ，if $A^{T} A$ is invertible．

Message 欄：数学（または他の科目）など何かを学んでいて感激したことについて。［HP掲載不可は明記のこと］

Solutions to Take-Home Quiz 6 (Jamuary 31, 2007)

Let A be an $m \times n$ matrix. For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{n}$ let

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle=A \boldsymbol{u} \cdot A \boldsymbol{v}=(A \boldsymbol{u})^{T} A \boldsymbol{v}=\boldsymbol{u}^{T} A^{T} A \boldsymbol{v} .
$$

1. Show that $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ satisfies the properties (a), (b) and (c) of an inner product in Definition 6.1 (or 1, 2, 3 in the definition on page 296 in the textbook).
Sol. First note that (a), (b), and (c) hold for $\boldsymbol{u} \cdot \boldsymbol{v}$ in \boldsymbol{R}^{m}. Note that if $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{n}$, then $A \boldsymbol{u}, A \boldsymbol{v} \in \boldsymbol{R}^{m}$. See Theorem 1.2 (4.1.2). For if $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{m}\right]^{T}$ and $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{m}\right]^{T}$, (a) $\boldsymbol{x} \cdot \boldsymbol{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{m} y_{m}=\boldsymbol{y} \cdot \boldsymbol{x}$, (b) $(\boldsymbol{x}+\boldsymbol{y}) \cdot \boldsymbol{z}=$ $\boldsymbol{x} \cdot \boldsymbol{z}+\boldsymbol{y} \cdot \boldsymbol{z},(\mathrm{c})(k \boldsymbol{x}) \cdot \boldsymbol{y}=k(\boldsymbol{x} \cdot \boldsymbol{y})$. Moreover $\boldsymbol{x} \cdot \boldsymbol{x} \geq 0$ and $\boldsymbol{x} \cdot \boldsymbol{x}=0$ if and only if $\boldsymbol{x}=\mathbf{0}$.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=(A \boldsymbol{u}) \cdot(A \boldsymbol{v})=(A \boldsymbol{v}) \cdot(A \boldsymbol{u})=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$.
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=(A(\boldsymbol{u}+\boldsymbol{v})) \cdot(A \boldsymbol{z})=(A \boldsymbol{u}) \cdot(A \boldsymbol{z})+(A \boldsymbol{v}) \cdot(A \boldsymbol{z})=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$.
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=(A k \boldsymbol{u}) \cdot(A \boldsymbol{v})=k((A \boldsymbol{u}) \cdot(A \boldsymbol{v}))=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$.
2. Show that if $\mathcal{N}(A)=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid A \boldsymbol{v}=\mathbf{0}\right\}=\{\mathbf{0}\}$, then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ is an inner product.

Sol. It suffices to show the condition (d). Clearly, $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=(A \boldsymbol{u}) \cdot(A \boldsymbol{u}) \geq 0$. If $A \boldsymbol{u}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{T}$, then $(A \boldsymbol{u}) \cdot(A \boldsymbol{u})=0$ if and only if $A \boldsymbol{u}=\mathbf{0}$ if and only if $\boldsymbol{u} \in \mathcal{N}(A)$. Hence if the condition above is satisfied, then $\boldsymbol{u}=\mathbf{0}$. Thus $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=(A \boldsymbol{u}) \cdot(A \boldsymbol{u})=0$ implies $\boldsymbol{u}=\mathbf{0}$ and $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ safisfies all conditions of an inner product in Definition 6.1.
3. Show that if $m<n$, then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ is not an inner product.

Sol. If $m<n$, then by Theorem 4.3 (5.3.3), the system of linear equation $A \boldsymbol{x}=\mathbf{0}$ has a nonzero solution \boldsymbol{u}. Then $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=A \boldsymbol{u} \cdot A \boldsymbol{u}=0$ while $\boldsymbol{u} \neq \mathbf{0}$. Thus $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ does not satisfy (d) and it is not an inner product.
4. Show that $m \geq n$, if $A^{T} A$ is invertible.

Sol. Suppose $m<n$. Then there exists a nonzero vector $\boldsymbol{u} \in \boldsymbol{R}^{n}$ such that $A \boldsymbol{u}=\mathbf{0}$ by Theorem 4.3 (5.3.3). Then $A^{T} A \boldsymbol{u}=A^{T} \mathbf{0}=\mathbf{0}$. Since $A^{T} A$ is invertible, $\boldsymbol{u}=\mathbf{0}$, a contradiction. Hence $m \geq n$.
N.B. Two kinds of zero $\mathbf{0}$ and 0 are used above. But actually there are three. Some of $\mathbf{0}$ are $\mathbf{0}_{n} \in \boldsymbol{R}^{n}$ and the others are $\mathbf{0}_{m} \in \boldsymbol{R}^{m}$. Can you identify them?

Take－Home Quiz 7

Division：
ID\＃：
Name：

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ and \boldsymbol{e}_{3} be vectors in \boldsymbol{R}^{3} given below．

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right], \boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{3}$ ，let $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}$ be the inner product and $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ ． You may quote the facts shown in previous quizzes．

1．Compute $\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{1\rangle}\right.}{\left\|\boldsymbol{v}_{1}\right\|^{2}} \boldsymbol{v}_{1}$ ．

2．Find an orthonormal basis of U ．

3．Find an orthonormal basis of \boldsymbol{R}^{3} containing the basis constructed in 2.

4．Find a basis of U^{\perp} ．

5．Express each of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ as a linear combination of the orthonormal basis con－ structed in 3.

Message 欄：ICU をどのようにして知りましたか。選んだ理由。ICU の入試につい て。［HP 掲載不可は明記のこと］

Solutions to take-Home Quiz 7

1. Compute $\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{1\rangle}\right\rangle}{\left\|\boldsymbol{v}_{1}\right\|^{2}} \boldsymbol{v}_{1}$.

Sol. $\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{1}\right\rangle=-2-21-8=-31,\left\|\boldsymbol{v}_{1}\right\|^{2}=\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle=1+9+4=14$. Hence

$$
\boldsymbol{u}_{2}^{\prime}=\boldsymbol{v}_{2}-\frac{\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{1}\right\rangle}{\left\|\boldsymbol{v}_{1}\right\|^{2}} \boldsymbol{v}_{1}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right]-\frac{-31}{14}\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}
3 \\
5 \\
-6
\end{array}\right] .
$$

2. Find an orthonormal basis of U.

Sol. Since $\left\{\boldsymbol{v}_{1}, \boldsymbol{u}_{2}^{\prime}\right\}$ is an orthogonal basis and $\left\|\boldsymbol{v}_{1}\right\|^{2}=14$,

$$
\left\|\boldsymbol{u}_{2}^{\prime}\right\|^{2}=\left\langle\frac{1}{14}\left[\begin{array}{c}
3 \\
5 \\
-6
\end{array}\right], \frac{1}{14}\left[\begin{array}{c}
3 \\
5 \\
-6
\end{array}\right]\right\rangle=\frac{1}{14^{2}}(9+25+36)=\frac{5}{14},
$$

$\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ is an orthonormal basis where

$$
\boldsymbol{u}_{1}=\frac{\boldsymbol{v}_{1}}{\left\|\boldsymbol{v}_{1}\right\|}=\frac{1}{\sqrt{14}}\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \text { and } \boldsymbol{u}_{2}=\frac{\boldsymbol{u}_{2}^{\prime}}{\left\|\boldsymbol{u}_{2}^{\prime}\right\|}=\frac{1}{\sqrt{70}}\left[\begin{array}{c}
3 \\
5 \\
-6
\end{array}\right] .
$$

3. Find an orthonormal basis of \boldsymbol{R}^{3} containing the basis constructed in 2 .

Sol. By Quiz 4-4, we have shown that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{e}_{1}\right\}$ is a basis of \boldsymbol{R}^{3}. Hence we can proceed the Gram-Schmidt process one step further to find an orthonomal basis as follows.

$$
\boldsymbol{u}_{3}^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{14}\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right]-\frac{3}{70}\left[\begin{array}{c}
3 \\
5 \\
-6
\end{array}\right]=\frac{1}{5}\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right], \boldsymbol{u}_{3}=\frac{\boldsymbol{u}_{3}^{\prime}}{\left\|\boldsymbol{u}_{3}^{\prime}\right\|}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

Note that $\operatorname{Span}\left\{\boldsymbol{u}_{3}\right\}=U^{\perp}=\mathcal{N}(A)$. See Quiz 5 .
4. Find a basis of U^{\perp}.

Sol. $\quad \operatorname{dim} U^{\perp}=\operatorname{dim} \boldsymbol{R}^{3}-\operatorname{dim} U=3-2=1$. Since $\boldsymbol{u}_{3} \in U^{\perp}$ as $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}=$ Span $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ (see Quiz 4), $\left\{\boldsymbol{u}_{3}\right\}$ is a basis of U^{\perp}. Since just a basis is required (not an orhonormal basis), $(2,0,1)^{T}$ is also OK.
5. Express each of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ as a linear combination of the orthonormal basis constructed in 3.

Sol. This is straightforward by a formula in Proposition 7.1.
$\boldsymbol{e}_{1}=\frac{1}{\sqrt{14}} \boldsymbol{u}_{1}+\frac{3}{\sqrt{70}} \boldsymbol{u}_{2}+\frac{2}{\sqrt{5}} \boldsymbol{u}_{3}, \boldsymbol{e}_{2}=\frac{-3}{\sqrt{14}} \boldsymbol{u}_{1}+\frac{5}{\sqrt{70}} \boldsymbol{u}_{2}, \boldsymbol{e}_{3}=\frac{-2}{\sqrt{14}} \boldsymbol{u}_{1}-\frac{6}{\sqrt{70}} \boldsymbol{u}_{2}+\frac{1}{\sqrt{5}} \boldsymbol{u}_{3}$.

Take－Home Quiz 8 （Due at 7：00 p．m．on Wed．February 14，2007）
Division：ID\＃：Name：
Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ and \boldsymbol{u} be vectors in \boldsymbol{R}^{3} given below．

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right], \boldsymbol{u}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{3}$ ，let $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}$ be the inner product，$U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ ，and $T=\operatorname{proj}_{U}$ ．You may quote the facts shown in previous quizzes．

1．Show that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{1}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{2}, T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{3}$ and $T(\boldsymbol{u})=\mathbf{0}$ ．

2．Show that T is a linear transformation using the definition of linear transformations．

3．Show that $T \circ T=T$ ．

4．Find $\operatorname{Ker}(T)$ ， $\operatorname{nullity}(T), \operatorname{Im}(T)$ and $\operatorname{rank}(T)$ ．

5．Show that there is no linear transformation $T^{\prime}: U \rightarrow U$ such that $T^{\prime}\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{2}$ ， $T^{\prime}\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{3}$ and $T^{\prime}\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{1}$ ．

Message 欄（何でもどうぞ）：ICU をより魅力的にするにはどうしたらよいでしょう か。また ICU の数学教育について提言があれば。［HP 掲載不可は明記のこと］

Solutions to Take-Home Quiz 8 (February 14, 2007)

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ and \boldsymbol{u} be vectors in \boldsymbol{R}^{3} given below.
$\boldsymbol{v}_{1}=\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}-2 \\ 7 \\ 4\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}3 \\ -8 \\ -6\end{array}\right], \boldsymbol{u}_{1}=\frac{1}{\sqrt{14}}\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right], \boldsymbol{u}_{2}=\frac{1}{\sqrt{70}}\left[\begin{array}{c}3 \\ 5 \\ -6\end{array}\right], \boldsymbol{u}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{3}$, let $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}$ be the inner product, $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$, and $T=\operatorname{proj}_{U}$. You may quote the facts shown in previous quizzes.

Recall that $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ is an orthonormal basis of U, and $\{\boldsymbol{u}\}$ is a basis of U^{\perp}. Hence

$$
\operatorname{proj}_{U}(\boldsymbol{v})=\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle\boldsymbol{v}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2} . \quad \cdots \quad(*)
$$

1. Show that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{1}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{2}, T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{3}$ and $T(\boldsymbol{u})=\mathbf{0}$.

Sol. Using $\left({ }^{*}\right)$, the assertions are easily checked.
Sol. 2. By Proposition $7.1(\mathrm{~b}), \operatorname{proj}_{U}(\boldsymbol{v})=\boldsymbol{v}$ for all $\boldsymbol{v} \in U$. Since $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3} \in U$. $\operatorname{proj}_{U}\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{1}, \operatorname{proj}_{U}\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{2}, \operatorname{proj}_{U}\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{3}$. Since $\boldsymbol{u} \in U^{\perp}, \boldsymbol{u}$ is perpendicular to all basis vectors of U. Hence $\operatorname{proj}_{U}(\boldsymbol{u})=\mathbf{0}$.
2. Show that T is a linear transformation using the definition of linear transformations.

Sol. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \in \boldsymbol{R}^{3}$ and k a scalar. Then

$$
\begin{aligned}
T\left(\boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right) & =\operatorname{proj}_{U}\left(\boldsymbol{w}_{1}+\boldsymbol{w}_{2}\right)=\left\langle\boldsymbol{w}_{1}+\boldsymbol{w}_{2}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle\boldsymbol{w}_{1}+\boldsymbol{w}_{2}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2} \\
& =\left\langle\boldsymbol{w}_{1}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle\boldsymbol{w}_{1}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2}+\left\langle\boldsymbol{w}_{2}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle\boldsymbol{w}_{2}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2} \\
& =\operatorname{proj}_{U}\left(\boldsymbol{w}_{1}\right)+\operatorname{proj}_{U}\left(\boldsymbol{w}_{2}\right)=T\left(\boldsymbol{w}_{1}\right)+T\left(\boldsymbol{w}_{2}\right) . \\
T\left(k \boldsymbol{w}_{1}\right) & =\left\langle k \boldsymbol{w}_{1}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle k \boldsymbol{w}_{1}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2}=k\left\langle\boldsymbol{w}_{1}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+k\left\langle\boldsymbol{w}_{1}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2} \\
& =k \operatorname{proj}_{U}\left(\boldsymbol{w}_{1}\right)=k T\left(\boldsymbol{w}_{1}\right) .
\end{aligned}
$$

Sol. 2. By Theorem 7.3 (e), every vector $\boldsymbol{v} \in \boldsymbol{R}^{3}$ is expressed as a sum $\boldsymbol{v}=$ $\boldsymbol{w}_{1}+\boldsymbol{w}_{2}$ such that $\boldsymbol{w}_{1} \in U$ and $\boldsymbol{w}_{2} \in U^{\perp}$. Clearly $\boldsymbol{w}_{1}=\operatorname{proj}_{U}(\boldsymbol{v})$. Let $\boldsymbol{v}^{\prime}=\boldsymbol{w}_{1}^{\prime}+\boldsymbol{w}_{2}^{\prime}$ such that $\boldsymbol{w}_{1}^{\prime} \in U$ and $\boldsymbol{w}_{2}^{\prime} \in U^{\perp}$. Then $\boldsymbol{w}_{1}+\boldsymbol{w}_{1}^{\prime} \in U$ and $\boldsymbol{w}_{2}+\boldsymbol{w}_{2}^{\prime} \in U^{\perp}$. Hence $\operatorname{proj}_{U}\left(\boldsymbol{v}+\boldsymbol{v}^{\prime}\right)=\boldsymbol{w}_{1}+\boldsymbol{w}_{1}^{\prime}=\operatorname{proj}_{U}(\boldsymbol{v})+\operatorname{proj}_{U}\left(\boldsymbol{v}^{\prime}\right)$. Similarly $_{\operatorname{proj}}^{U}(k \boldsymbol{v})=k \operatorname{proj}_{U}(\boldsymbol{v})$.
3. Show that $T \circ T=T$.

Sol. Let $\boldsymbol{v} \in \boldsymbol{R}^{3}$. Since $T(\boldsymbol{v})=\operatorname{proj}_{U}(\boldsymbol{v}) \in U, T(T(\boldsymbol{v}))=T(\boldsymbol{v})$. Thus $T \circ T=T$.
4. Find $\operatorname{Ker}(T)$, $\operatorname{nullity}(T), \operatorname{Im}(T)$ and $\operatorname{rank}(T)$.

Sol. By definition or the previous problem, $\operatorname{Im}(T)=U$ and $\operatorname{Ker}(T)=U^{\perp}$. Hence $\operatorname{nullity}(T)=1$ and $\operatorname{rank}(T)=2$ as $\operatorname{dim} U^{\perp}=1$ and $\operatorname{dim} U=2$.
5. Show that there is no linear transformation $T^{\prime}: U \rightarrow U$ such that $T^{\prime}\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{2}$, $T^{\prime}\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{3}$ and $T^{\prime}\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{1}$.
Sol. Recall that $\boldsymbol{v}_{3}=5 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}$. Hence

$$
[1,-3,-2]^{T}=\boldsymbol{v}_{1}=T^{\prime}\left(\boldsymbol{v}_{3}\right)=T^{\prime}\left(5 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)=5 \boldsymbol{v}_{2}+\boldsymbol{v}_{3}=[-7,27,14]^{T}
$$

A contradiction. Compare with Proposition 8.3.

