(d) If W is a subspace of V, then $\dim(W) \leq \dim(V)$. Moreover if $\dim(W) = \dim(V)$, then W = V.

removing appropriate vectors from S.

Theorem 2 If u and v are vectors in a real inner product space, then

to a basis of V by inserting appropriate vectors into S.

$$|\langle \boldsymbol{u}, \boldsymbol{v} \rangle| \leq \|\boldsymbol{u}\| \|\boldsymbol{v}\|.$$

In the following you may quote the following theorems, but when you use Theorem 1

(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S

(b) If S spans V but not a basis for V, then S can be reduced to a basis for V by

(c) If S is linearly independent that is not already a basis for V, then S can be enlarged

Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V.

Equality holds if and only if \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

1. Prove the following proposition.

Proposition. Let $S = \{v_1, v_2, ..., v_r\}$ be a nonempty set of vectors. Then the following are equivalent.

- (a) S is a linearly independent set.
- (b) For each vector \boldsymbol{v} , $k_1\boldsymbol{v}_1 + k_2\boldsymbol{v}_2 + \cdots + k_r\boldsymbol{v}_r = \boldsymbol{v}$ has at most one solution, i.e., if

$$k_1\boldsymbol{v}_1 + k_2\boldsymbol{v}_2 + \dots + k_r\boldsymbol{v}_r = k_1'\boldsymbol{v}_1 + k_2'\boldsymbol{v}_2 + \dots + k_r'\boldsymbol{v}_r$$

then $k_1 = k'_1, k_2 = k'_2, \dots, k_r = k'_r$.

2. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation and A = [T] the standard matrix of T given below. Let N = Ker(T), C = Im(T), and let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be as follows.

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 10 & 0 & 5 \\ 0 & 8 & 4 \end{bmatrix}, \ \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix}, \ \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 10 \\ 16 \end{bmatrix}, \ \boldsymbol{v}_3 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

(Note that C = R(T) in the textbook.)

- (a) Find a basis of N.
- (b) Find a basis of C consisting of column vectors of A.

1

February 20, 2007

(Toal: 140pts)

Linear Algebra II

spans V.

Practice Exam 2006/7

clarify which item (a) - (d) is applied.

- (c) Find an orthogonal basis of C with respect to the usual Euclidean inner product.
- (d) Show that $S = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ is a basis of \boldsymbol{R}^3 .
- (e) Determine whether or not \boldsymbol{v}_3 is in C.
- (f) Let $B = \{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . Find $[I]_{S,B}$, where $I : \mathbb{R}^3 \to \mathbb{R}^3$ $(\mathbf{x} \mapsto \mathbf{x})$ (the identity operator).
- (g) Find $[T]_S$, the matrix for T with respect to the basis S.
- 3. Recall the definition of an inner product:

An *inner product* on a real vector space V is a function that associates a real number $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k.

- (a) $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle$ (Symmetry axiom)
- (b) $\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{z} \rangle = \langle \boldsymbol{u}, \boldsymbol{z} \rangle + \langle \boldsymbol{v}, \boldsymbol{z} \rangle$ (Additive axiom)
- (c) $\langle k\boldsymbol{u}, \boldsymbol{v} \rangle = k \langle \boldsymbol{u}, \boldsymbol{v} \rangle$ (Homogeneity axiom)
- (d)
- (a) The condition (d) is missing in the definition of an inner product above. State it.
- (b) Give an example of an inner product on a real vector space, which is different from the usual Euclidean Inner Product, and show that it satisfies the conditions above.
- (c) In an inner product space V, show

$$d(\boldsymbol{u}, \boldsymbol{v}) \leq d(\boldsymbol{u}, \boldsymbol{w}) + d(\boldsymbol{w}, \boldsymbol{v}) \text{ for all } \boldsymbol{u}, \, \boldsymbol{v}, \, \boldsymbol{w} \in V.$$

- 4. Let V be an n-dimensional vector space, W_1 and W_2 subspaces of V. Set $U = \{ \boldsymbol{w}_1 + \boldsymbol{w}_2 \mid \boldsymbol{w}_1 \in W_1 \text{ and } \boldsymbol{w}_2 \in W_2 \}$. (U is often denoted by $W_1 + W_2$.)
 - (a) Show that $W = W_1 \cap W_2 = \{ \boldsymbol{w} \mid \boldsymbol{w} \in W_1 \text{ and } \boldsymbol{w} \in W_2 \}$ is a subspace of V.
 - (b) Show that U is a subspace of V.
 - (c) Show that there is a set of vectors

 $S = \{ w_1, w_2, \dots, w_s, w_{s+1}, w_{s+2}, \dots, w_{s+t}, w_{s+t+1}, w_{s+t+2}, \dots, w_{s+t+r} \}$

of V satisfying the following conditions.

i. $\{w_1, w_2, ..., w_s\}$ is a basis of $W = W_1 \cap W_2$,

- ii. $\{w_1, w_2, ..., w_s, w_{s+1}, w_{s+2}, ..., w_{s+t}\}$ is a basis of W_1 ; and
- iii. $\{w_1, w_2, \dots, w_s, w_{s+t+1}, w_{s+t+2}, \dots, w_{s+t+r}\}$ is a basis of W_2 .
- (d) Show that U = Span(S).
- (e) Show that S is a basis of U.

Problem 4 proves that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

Linear Algebra II

February 20, 2007

Solutions to Practice Exam 2006/7

In the following you may quote the following theorems, but when you use Theorem 1 clarify which item (a) - (d) is applied.

Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V.

- (a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S spans V.
- (b) If S spans V but not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- (c) If S is linearly independent that is not already a basis for V, then S can be enlarged to a basis of V by inserting appropriate vectors into S.
- (d) If W is a subspace of V, then $\dim(W) \leq \dim(V)$. Moreover if $\dim(W) = \dim(V)$, then W = V.

Theorem 2 If u and v are vectors in a real inner product space, then

 $|\langle \boldsymbol{u}, \boldsymbol{v} \rangle| \leq \|\boldsymbol{u}\| \|\boldsymbol{v}\|.$

Equality holds if and only if \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

1. Prove the following proposition.

Proposition. Let $S = \{v_1, v_2, ..., v_r\}$ be a nonempty set of vectors. Then the following are equivalent.

- (a) S is a linearly independent set.
- (b) For each vector \boldsymbol{v} , $k_1\boldsymbol{v}_1 + k_2\boldsymbol{v}_2 + \cdots + k_r\boldsymbol{v}_r = \boldsymbol{v}$ has at most one solution, i.e., if

$$k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_r \boldsymbol{v}_r = k_1' \boldsymbol{v}_1 + k_2' \boldsymbol{v}_2 + \dots + k_r' \boldsymbol{v}_r$$

then $k_1 = k'_1, k_2 = k'_2, \dots, k_r = k'_r$.

Sol. (a) \Rightarrow (b): Suppose

$$k_1\boldsymbol{v}_1 + k_2\boldsymbol{v}_2 + \dots + k_r\boldsymbol{v}_r = k_1'\boldsymbol{v}_1 + k_2'\boldsymbol{v}_2 + \dots + k_r'\boldsymbol{v}_r$$

Then by subtracting the right hand side from the left,

$$(k_1 - k'_1)v_1 + (k_2 - k'_2)v_2 + \dots + (k_r - k'_r)v_r = 0$$

By (a), $k_1 - k'_1 = k_2 - k'_2 = \dots = k_r - k'_r = 0$. Hence $k_1 = k'_1, k_2 = k'_2, \dots, k_r = k'_r$. (b) \Rightarrow (a): Suppose

$$k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_r \boldsymbol{v}_r = \boldsymbol{0}.$$

Then

$$k_1\boldsymbol{v}_1 + k_2\boldsymbol{v}_2 + \dots + k_r\boldsymbol{v}_r = 0\boldsymbol{v}_1 + 0\boldsymbol{v}_2 + \dots + 0\boldsymbol{v}_r$$

as the both hand sides are zero. By (b), $k_1 = k_2 = \cdots = k_r = 0$ and $\{v_1, v_2, \ldots, v_r\}$ is linearly independent.

2. Let $T : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation and A = [T] the standard matrix of T given below. Let N = Ker(T), C = Im(T), and let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be as follows.

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 10 & 0 & 5 \\ 0 & 8 & 4 \end{bmatrix}, \ \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -5 \\ 4 \end{bmatrix}, \ \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 10 \\ 16 \end{bmatrix}, \ \boldsymbol{v}_3 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

(Note that C = R(T) in the textbook.)

(a) Find a basis of N. Sol. Since

$$\mathbf{0} = T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} -1 & 1 & 0 \\ 10 & 0 & 5 \\ 0 & 8 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix},$$

by solving the equation we get $[x, y, z]^T = t[-1, -1, 2] = tv_3$. Hence $\{v_3\}$ is a basis. (Note that a set of one nonzero vector is always linearly independent. In addition, in this case all solutions above, i.e., the vectors in N can be written as a scalar multiple of v_3 , $\{v_3\}$ is a basis. One can choose any other nonzero scalar multiple of v_3 as a basis vector.)

(b) Find a basis of C consisting of column vectors of A.

Sol. By (a) nullity(T) = 1 and rank(T) = 3 – nullity(T) = 2. And Im(T) = (C)(A). (If $A = [a_1, a_2, a_3]$, then by (a), $-a_1 - a_2 + 3a_3 = 0$ and three column vectors are linearly dependent. So rank(T) \leq 2.) Since $\{a_1, a_2\}$ is clearly linearly independent, it forms a basis of Im(T) = R(T) = C(A).

(c) Find an orthogonal basis of C with respect to the usual Euclidean inner product.

Sol. Since $\{a_1, a_2\}$ is a basis of C, $\{a_1, a_2 - \frac{\langle a_2, a_1 \rangle}{\|a_1\|^2}a_1\}$ is an orthogonal basis, where

$$a_2 - \frac{\langle a_2, a_1 \rangle}{\|a_1\|^2} a_1 = \begin{bmatrix} 1\\0\\8 \end{bmatrix} - \frac{1}{101} \begin{bmatrix} -1\\10\\0 \end{bmatrix} = \begin{bmatrix} 100/101\\10/101\\8 \end{bmatrix}.$$

- (d) Show that $S = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ is a basis of \boldsymbol{R}^3 .
 - **Sol.** Since dim $(\mathbf{R}^3) = 3$, it suffices to show that S is linearly independent. Let $B = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$. If S is linearly dependent, $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{0}$ has a nonzero solution. Hence $B\mathbf{x} = \mathbf{0}$ has a nonzero solution. But det $(B) = 162 \neq 0$. Hence B is invertible. So $\mathbf{x} = \mathbf{0}$ and S is linearly independent. (One can show the same by solving the linear equation.)
- (e) Determine whether or not \boldsymbol{v}_3 is in C.

Sol. This can be shown by showing that the linear equation $xa_1 + ya_2 = v_3$ is inconsistent, i.e., it does not have a solution. But observe that $Av_1 = -6v_2$, $Av_2 = 9v_2$ and $Av_3 = 0$. So $-6v_1$ and $9v_2$, hence v_1, v_2 are in C = Im(T). Since rank(T) = 2, it is impossible for C to contain v_3 , as S is a basis of \mathbb{R}^3 . (f) Let $B = \{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . Find $[I]_{S,B}$, where $I : \mathbb{R}^3 \to \mathbb{R}^3$ ($\mathbf{x} \mapsto \mathbf{x}$) (the identity operator). Sol.

$$[I]_{S,B} = [[e_1]_S, [e_2]_S, [e_3]_S] = B^{-1} = \begin{bmatrix} 2/9 & -1/9 & 1/18\\ 1/27 & 1/27 & 1/27\\ -20/27 & -2/27 & 5/54 \end{bmatrix}$$

Note that to find $[e_1]_S$, we need to express e_1 as a linear combination of S. Hence we need the solution of $B\mathbf{x} = e_1$. So $\mathbf{x} = B^{-1}e_1$, which is the first column of B^{-1} . Similarly $[e_2]_S$ is the second column of B^{-1} and $[e_3]_S$ the third.

(g) Find $[T]_S$, the matrix for T with respect to the basis S. Sol. As we have seen above, $Av_1 = -6v_2$, $Av_2 = 9v_2$ and $Av_3 = 0$. Hence

$$[T]_{S} = [[T(\boldsymbol{v}_{1})]_{S}, [T(\boldsymbol{v}_{2})]_{S}, [T(\boldsymbol{v}_{3})]_{S}] = [[-6\boldsymbol{v}_{1}]_{S}, [9\boldsymbol{v}_{2}]_{S}, [\mathbf{0}]_{S}] = \begin{bmatrix} -6 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

3. Recall the definition of an inner product:

An *inner product* on a real vector space V is a function that associates a real number $\langle \boldsymbol{u}, \boldsymbol{v} \rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k.

- (a) $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \langle \boldsymbol{v}, \boldsymbol{u} \rangle$ (Symmetry axiom)
- (b) $\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{z} \rangle = \langle \boldsymbol{u}, \boldsymbol{z} \rangle + \langle \boldsymbol{v}, \boldsymbol{z} \rangle$ (Additive axiom)
- (c) $\langle k\boldsymbol{u}, \boldsymbol{v} \rangle = k \langle \boldsymbol{u}, \boldsymbol{v} \rangle$ (Homogeneity axiom)
- (d)
- (a) The condition (d) is missing in the definition of an inner product above. State it.

Sol. $\langle \boldsymbol{v}, \boldsymbol{v} \rangle \geq 0$ and if $\langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0$ if and only if $\boldsymbol{v} = \boldsymbol{0}$.

(b) Give an example of an inner product on a real vector space, which is different from the usual Euclidean Inner Product, and show that it satisfies the conditions above.

Sol. In \mathbf{R}^n , $\langle \mathbf{u}, \mathbf{v} \rangle = 2\mathbf{u}^T \cdot \mathbf{v}$ is a inner product. (a)-(d) are easily checked. \blacksquare (c) In an inner product space V, show

$$d(\boldsymbol{u}, \boldsymbol{v}) \leq d(\boldsymbol{u}, \boldsymbol{w}) + d(\boldsymbol{w}, \boldsymbol{v}) \text{ for all } \boldsymbol{u}, \, \boldsymbol{v}, \, \boldsymbol{w} \in V.$$

Sol. By definition it is equivalent to the following.

$$\|oldsymbol{u}-oldsymbol{v}\|\leq\|oldsymbol{u}-oldsymbol{w}\|+\|oldsymbol{w}-oldsymbol{v}\|$$
 .

Set $\boldsymbol{a} = \boldsymbol{u} - \boldsymbol{w}$ and $\boldsymbol{b} = \boldsymbol{w} - \boldsymbol{v}$. Since $\boldsymbol{a} + \boldsymbol{b} = \boldsymbol{u} - \boldsymbol{v}$, it suffices to show that $\|\boldsymbol{a} + \boldsymbol{b}\| \leq \|\boldsymbol{a}\| + \|\boldsymbol{b}\|$, or $\|\boldsymbol{a} + \boldsymbol{b}\|^2 \leq (\|\boldsymbol{a}\| + \|\boldsymbol{b}\|)^2$. Now

$$(\|\boldsymbol{a}\| + \|\boldsymbol{b}\|)^{2} - \|\boldsymbol{a} + \boldsymbol{b}\|^{2}$$

= $\|\boldsymbol{a}\|^{2} + 2\|\boldsymbol{a}\|\|\boldsymbol{b}\| + \|\boldsymbol{b}\|^{2} - \langle \boldsymbol{a} + \boldsymbol{b}, \boldsymbol{a} + \boldsymbol{b} \rangle$
= $\|\boldsymbol{a}\|^{2} + 2\|\boldsymbol{a}\|\|\boldsymbol{b}\| + \|\boldsymbol{b}\|^{2} - (\|\boldsymbol{a}\|^{2} + 2\langle \boldsymbol{a}, \boldsymbol{b} \rangle + \|\boldsymbol{b}\|^{2})$
= $2(\|\boldsymbol{a}\|\|\boldsymbol{b}\| - \langle \boldsymbol{a}, \boldsymbol{b} \rangle) \ge 0$

by Theorem 2. Hence we have shown the inequality.

- 4. Let V be an n-dimensional vector space, W_1 and W_2 subspaces of V. Set $U = \{ \boldsymbol{w}_1 + \boldsymbol{w}_2 \mid \boldsymbol{w}_1 \in W_1 \text{ and } \boldsymbol{w}_2 \in W_2 \}$. (U is often denoted by $W_1 + W_2$.)
 - (a) Show that $W = W_1 \cap W_2 = \{ \boldsymbol{w} \mid \boldsymbol{w} \in W_1 \text{ and } \boldsymbol{w} \in W_2 \}$ is a subspace of V. **Sol.** Let $\boldsymbol{u}, \boldsymbol{u}' \in W_1 \cap W_2$. Then $\boldsymbol{u}, \boldsymbol{u}' \in W_1$ and $\boldsymbol{u}, \boldsymbol{u}' \in W_2$. Since W_1 and W_2 are subspaces, $\boldsymbol{u} + \boldsymbol{u}' \in W_1$, $\boldsymbol{u} + \boldsymbol{u}' \in W_2$. Hence $\boldsymbol{u} + \boldsymbol{u}' \in W_1 \cap W_2$. Similarly $k\boldsymbol{u} \in W$ and $k\boldsymbol{u} \in W_2$ for all scalars k. Hence $k\boldsymbol{u} \in W_1 \cap W_2$. Therefore, $W_1 \cap W_2$ is a subspace. (See Theorem 3.2.)
 - (b) Show that U is a subspace of V.
 - Sol. Let $\boldsymbol{u}, \boldsymbol{u}' \in U$. Then there exist $\boldsymbol{w}_1, \boldsymbol{w}_1' \in W_1$ and $\boldsymbol{w}_2, \boldsymbol{w}_2' \in W_2$ such that $\boldsymbol{u} = \boldsymbol{w}_1 + \boldsymbol{w}_2$ and $\boldsymbol{u}' = \boldsymbol{w}_1' + \boldsymbol{w}_2'$. Since $\boldsymbol{w}_1, \boldsymbol{w}_1' \in W_1$ and $\boldsymbol{w}_2, \boldsymbol{w}_2' \in W_2$ and W_1 and W_2 are subspaces, $\boldsymbol{w}_1 + \boldsymbol{w}_1' \in W_1$, $\boldsymbol{w}_2 + \boldsymbol{w}_2' \in W_2$. Hence $\boldsymbol{u} + \boldsymbol{u}' = (\boldsymbol{w}_1 + \boldsymbol{w}_1') + (\boldsymbol{w}_2 + \boldsymbol{w}_2') \in U$. Similarly $k\boldsymbol{u} = k\boldsymbol{w}_1 + k\boldsymbol{w}_2 \in U$ as $k\boldsymbol{w}_1 \in W_1$ and $k\boldsymbol{w}_2 \in W_2$.
 - (c) Show that there is a set of vectors

$$S = \{w_1, w_2, \dots, w_s, w_{s+1}, w_{s+2}, \dots, w_{s+t}, w_{s+t+1}, w_{s+t+2}, \dots, w_{s+t+r}\}$$

of V satisfying the following conditions.

- i. $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_s\}$ is a basis of $W = W_1 \cap W_2$,
- ii. $\{w_1, w_2, ..., w_s, w_{s+1}, w_{s+2}, ..., w_{s+t}\}$ is a basis of W_1 ; and
- iii. $\{w_1, w_2, \dots, w_s, w_{s+t+1}, w_{s+t+2}, \dots, w_{s+t+r}\}$ is a basis of W_2 .

Sol. Since W, W_1, W_2 are all subspaces of V, these spaces are finite dimensional by Theorem 1 (d), and these have bases. First take a basis $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_s\}$ of W. (i). Since $W \subset W_1$, and $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_s\}$ is linearly independent, it can be enlarged to a basis of W_1 by inserting appropriate vectors $\boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}$ into $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_s\}$. We applied Theorem 1 (c). Hence (ii). The condition (iii) is similar by inserting $\boldsymbol{w}_{s+t+1}, \boldsymbol{w}_{s+t+2}, \ldots, \boldsymbol{w}_{s+t+r}$.

(d) Show that U = Span(S).

Sol. Every vector of U is a sum of a vector u_1 in W_1 and a vector u_2 in W_2 . Since $\{w_1, w_2, \ldots, w_s, w_{s+1}, w_{s+2}, \ldots, w_{s+t}\} \subset S$ is a basis of W_1, u_1 is a linear combination of these vectors and hence it is in Span(S). Similarly $u_2 \in \text{Span}(S)$. Since Span(S) is a subspace (Theorem 3.4), $u_1 + u_2 \in \text{Span}(S)$ and $U \subset \text{Span}(S)$. Since $S \subset U$, and U is a subspace, Span $(S) \subset U$. We have U = Span(S).

(e) Show that S is a basis of U.

Sol. It suffices to show that S is linearly independent. Suppose

$$0 = a_1 w_1 + a_2 w_2 + \dots + a_s w_s + a_{s+1} w_{s+1} + a_{s+2} w_{s+2} + \dots + a_{s+t} w_{s+t} + a_{s+t+1} w_{s+t+1} + a_{s+t+2} w_{s+t+2} + \dots + a_{s+t+r} w_{s+t+r}$$

Consider

$$a_1\boldsymbol{w}_1 + a_2\boldsymbol{w}_2 + \dots + a_s\boldsymbol{w}_s + a_{s+1}\boldsymbol{w}_{s+1} + a_{s+2}\boldsymbol{w}_{s+2} + \dots + a_{s+t}\boldsymbol{w}_{s+t}$$

= $-(a_{s+t+1}\boldsymbol{w}_{s+t+1} + a_{s+t+2}\boldsymbol{w}_{s+t+2} + \dots + a_{s+t+r}\boldsymbol{w}_{s+t+r}).$

Since the left hand side is in W_1 and the right hand side is in W_2 , it is in $W = W_1 \cap W_2$. So it can be written as a linear combination of $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_s\}$. Set

$$a_1 \boldsymbol{w}_1 + a_2 \boldsymbol{w}_2 + \dots + a_s \boldsymbol{w}_s + a_{s+1} \boldsymbol{w}_{s+1} + a_{s+2} \boldsymbol{w}_{s+2} + \dots + a_{s+t} \boldsymbol{w}_{s+t}$$

= $-(a_{s+t+1} \boldsymbol{w}_{s+t+1} + a_{s+t+2} \boldsymbol{w}_{s+t+2} + \dots + a_{s+t+r} \boldsymbol{w}_{s+t+r})$
= $c_1 \boldsymbol{w}_1 + c_2 \boldsymbol{w}_2 + \dots + c_s \boldsymbol{w}_s.$

By the uniqueness of expression in W_1 proved in Problem 1, by equating the first line with the third line, we have $a_{s+1} = a_{s+2} = \cdots = a_{s+t} = 0$. Now we have

$$a_1w_1 + a_2w_2 + \dots + a_sw_s + a_{s+1}w_{s+1} + a_{s+2}w_{s+2} + \dots + a_{s+t}w_{s+t} = 0$$

and $a_1 = a_2 = \cdots = a_s = a_{s+1} = a_{s+2} = \cdots = a_{s+t} = 0$ as $\{w_1, w_2, \dots, w_s, w_{s+1}, w_{s+2}, \dots, w_{s+t}\}$ is a basis of W_1 and is linearly independent.

Problem 4 proves that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$