Practice Exam 2006/7

In the following you may quote the following theorems, but when you use Theorem 1 clarify which item (a) - (d) is applied.

Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V.
(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S spans V.
(b) If S spans V but not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
(c) If S is linearly independent that is not already a basis for V, then S can be enlarged to a basis of V by inserting appropriate vectors into S.
(d) If W is a subspace of V, then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.

Theorem 2 If \boldsymbol{u} and \boldsymbol{v} are vectors in a real inner product space, then

$$
|\langle\boldsymbol{u}, \boldsymbol{v}\rangle| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\| .
$$

Equality holds if and only if \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

1. Prove the following proposition.

Proposition. Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a nonempty set of vectors.
Then the following are equivalent.
(a) S is a linearly independent set.
(b) For each vector $\boldsymbol{v}, k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\boldsymbol{v}$ has at most one solution, i.e., if

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=k_{1}^{\prime} \boldsymbol{v}_{1}+k_{2}^{\prime} \boldsymbol{v}_{2}+\cdots+k_{r}^{\prime} \boldsymbol{v}_{r}
$$

then $k_{1}=k_{1}^{\prime}, k_{2}=k_{2}^{\prime}, \ldots, k_{r}=k_{r}^{\prime}$.
2. Let $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ be a linear transformation and $A=[T]$ the standard matrix of T given below. Let $N=\operatorname{Ker}(T), C=\operatorname{Im}(T)$, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ be as follows.

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
10 & 0 & 5 \\
0 & 8 & 4
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
4
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
1 \\
10 \\
16
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] .
$$

(Note that $C=R(T)$ in the textbook.)
(a) Find a basis of N.
(b) Find a basis of C consisting of column vectors of A.
(c) Find an orthogonal basis of C with respect to the usual Euclidean inner product.
(d) Show that $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.
(e) Determine whether or not \boldsymbol{v}_{3} is in C.
(f) Let $B=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ be the standard basis of \boldsymbol{R}^{3}. Find $[I]_{S, B}$, where $I: \boldsymbol{R}^{3} \rightarrow$ $\boldsymbol{R}^{3}(\boldsymbol{x} \mapsto \boldsymbol{x})$ (the identity operator).
(g) Find $[T]_{S}$, the matrix for T with respect to the basis S.
3. Recall the definition of an inner product:

An inner product on a real vector space V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$ (Symmetry axiom)
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$ (Additive axiom)
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Homogeneity axiom)
(d)
(a) The condition (d) is missing in the definition of an inner product above. State it.
(b) Give an example of an inner product on a real vector space, which is different from the usual Euclidean Inner Product, and show that it satisfies the conditions above.
(c) In an inner product space V, show

$$
d(\boldsymbol{u}, \boldsymbol{v}) \leq d(\boldsymbol{u}, \boldsymbol{w})+d(\boldsymbol{w}, \boldsymbol{v}) \text { for all } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V
$$

4. Let V be an n-dimensional vector space, W_{1} and W_{2} subspaces of V. Set $U=$ $\left\{\boldsymbol{w}_{1}+\boldsymbol{w}_{2} \mid \boldsymbol{w}_{1} \in W_{1}\right.$ and $\left.\boldsymbol{w}_{2} \in W_{2}\right\}$. (U is often denoted by $W_{1}+W_{2}$.)
(a) Show that $W=W_{1} \cap W_{2}=\left\{\boldsymbol{w} \mid \boldsymbol{w} \in W_{1}\right.$ and $\left.\boldsymbol{w} \in W_{2}\right\}$ is a subspace of V.
(b) Show that U is a subspace of V.
(c) Show that there is a set of vectors

$$
S=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}, \boldsymbol{w}_{s+t+1}, \boldsymbol{w}_{s+t+2}, \ldots, \boldsymbol{w}_{s+t+r}\right\}
$$

of V satisfying the following conditions.
i. $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ is a basis of $W=W_{1} \cap W_{2}$,
ii. $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}\right\}$ is a basis of W_{1}; and
iii. $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+t+1}, \boldsymbol{w}_{s+t+2}, \ldots, \boldsymbol{w}_{s+t+r}\right\}$ is a basis of W_{2}.
(d) Show that $U=\operatorname{Span}(S)$.
(e) Show that S is a basis of U.

Problem 4 proves that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

Linear Algebra II

Solutions to Practice Exam 2006/7

In the following you may quote the following theorems, but when you use Theorem 1 clarify which item (a) - (d) is applied.
Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V.
(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S spans V.
(b) If S spans V but not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
(c) If S is linearly independent that is not already a basis for V, then S can be enlarged to a basis of V by inserting appropriate vectors into S.
(d) If W is a subspace of V, then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.

Theorem 2 If \boldsymbol{u} and \boldsymbol{v} are vectors in a real inner product space, then

$$
|\langle\boldsymbol{u}, \boldsymbol{v}\rangle| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\| .
$$

Equality holds if and only if \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

1. Prove the following proposition.

Proposition. Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a nonempty set of vectors. Then the following are equivalent.
(a) S is a linearly independent set.
(b) For each vector $\boldsymbol{v}, k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\boldsymbol{v}$ has at most one solution, i.e., if

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=k_{1}^{\prime} \boldsymbol{v}_{1}+k_{2}^{\prime} \boldsymbol{v}_{2}+\cdots+k_{r}^{\prime} \boldsymbol{v}_{r}
$$

then $k_{1}=k_{1}^{\prime}, k_{2}=k_{2}^{\prime}, \ldots, k_{r}=k_{r}^{\prime}$.
Sol. (a) $\Rightarrow(\mathrm{b})$: Suppose

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=k_{1}^{\prime} \boldsymbol{v}_{1}+k_{2}^{\prime} \boldsymbol{v}_{2}+\cdots+k_{r}^{\prime} \boldsymbol{v}_{r}
$$

Then by subtracting the right hand side from the left,

$$
\left(k_{1}-k_{1}^{\prime}\right) \boldsymbol{v}_{1}+\left(k_{2}-k_{2}^{\prime}\right) \boldsymbol{v}_{2}+\cdots+\left(k_{r}-k_{r}^{\prime}\right) \boldsymbol{v}_{r}=\mathbf{0} .
$$

By (a), $k_{1}-k_{1}^{\prime}=k_{2}-k_{2}^{\prime}=\cdots=k_{r}-k_{r}^{\prime}=0$. Hence $k_{1}=k_{1}^{\prime}, k_{2}=k_{2}^{\prime}, \ldots, k_{r}=k_{r}^{\prime}$. (b) \Rightarrow (a): Suppose

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\mathbf{0} .
$$

Then

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=0 \boldsymbol{v}_{1}+0 \boldsymbol{v}_{2}+\cdots+0 \boldsymbol{v}_{r}
$$

as the both hand sides are zero. By (b), $k_{1}=k_{2}=\cdots=k_{r}=0$ and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ is linearly independent.
2. Let $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ be a linear transformation and $A=[T]$ the standard matrix of T given below. Let $N=\operatorname{Ker}(T), C=\operatorname{Im}(T)$, and let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ be as follows.

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
10 & 0 & 5 \\
0 & 8 & 4
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
4
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
1 \\
10 \\
16
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] .
$$

(Note that $C=R(T)$ in the textbook.)
(a) Find a basis of N.

Sol. Since

$$
\mathbf{0}=T(\boldsymbol{x})=A \boldsymbol{x}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
10 & 0 & 5 \\
0 & 8 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

by solving the equation we get $[x, y, z]^{T}=t[-1,-1,2]=t \boldsymbol{v}_{3}$. Hence $\left\{\boldsymbol{v}_{3}\right\}$ is a basis. (Note that a set of one nonzero vector is always linearly independent. In addition, in this case all solutions above, i.e., the vectors in N can be written as a scalar multiple of $\boldsymbol{v}_{3},\left\{\boldsymbol{v}_{3}\right\}$ is a basis. One can choose any other nonzero scalar multiple of \boldsymbol{v}_{3} as a basis vector.)
(b) Find a basis of C consisting of column vectors of A.

Sol. By $(\mathrm{a}) \operatorname{nullity}(T)=1$ and $\operatorname{rank}(T)=3-\operatorname{nullity}(T)=2$. And $\operatorname{Im}(T)=$ $\left.{ }_{(} C\right)(A)$. (If $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]$, then by (a), $-\boldsymbol{a}_{1}-\boldsymbol{a}_{2}+3 \boldsymbol{a}_{3}=\mathbf{0}$ and three column vectors are linearly dependent. So $\operatorname{rank}(T) \leq 2$.) Since $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ is clearly linearly independent, it forms a basis of $\operatorname{Im}(T)=R(T)=\mathcal{C}(A)$.
(c) Find an orthogonal basis of C with respect to the usual Euclidean inner product.
Sol. Since $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ is a basis of $C,\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}-\frac{\left\langle\boldsymbol{a}_{2}, \boldsymbol{a}_{1}\right\rangle}{\left\|\boldsymbol{a}_{1}\right\|^{2}} \boldsymbol{a}_{1}\right\}$ is an orthogonal basis, where

$$
\boldsymbol{a}_{2}-\frac{\left\langle\boldsymbol{a}_{2}, \boldsymbol{a}_{1}\right\rangle}{\left\|\boldsymbol{a}_{1}\right\|^{2}} \boldsymbol{a}_{1}=\left[\begin{array}{l}
1 \\
0 \\
8
\end{array}\right]-\frac{1}{101}\left[\begin{array}{c}
-1 \\
10 \\
0
\end{array}\right]=\left[\begin{array}{c}
100 / 101 \\
10 / 101 \\
8
\end{array}\right]
$$

(d) Show that $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.

Sol. Since $\operatorname{dim}\left(\boldsymbol{R}^{3}\right)=3$, it suffices to show that S is linearly independent. Let $B=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$. If S is linearly dependent, $x \boldsymbol{v}_{1}+y \boldsymbol{v}_{2}+z \boldsymbol{v}_{3}=\mathbf{0}$ has a nonzero solution. Hence $B \boldsymbol{x}=\mathbf{0}$ has a nonzero solution. But $\operatorname{det}(B)=162 \neq$ 0 . Hence B is invertible. So $\boldsymbol{x}=\mathbf{0}$ and S is linearly independent. (One can show the same by solving the linear equation.)
(e) Determine whether or not \boldsymbol{v}_{3} is in C.

Sol. This can be shown by showing that the linear equation $x \boldsymbol{a}_{1}+y \boldsymbol{a}_{2}=\boldsymbol{v}_{3}$ is inconsistent, i.e., it does not have a solution. But observe that $A \boldsymbol{v}_{1}=-6 \boldsymbol{v}_{2}$, $A \boldsymbol{v}_{2}=9 \boldsymbol{v}_{2}$ and $A \boldsymbol{v}_{3}=\mathbf{0}$. So $-6 \boldsymbol{v}_{1}$ and $9 \boldsymbol{v}_{2}$, hence $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ are in $C=\operatorname{Im}(T)$. Since $\operatorname{rank}(T)=2$, it is impossible for C to contain \boldsymbol{v}_{3}, as S is a basis of \boldsymbol{R}^{3}.
(f) Let $B=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ be the standard basis of \boldsymbol{R}^{3}. Find $[I]_{S, B}$, where $I: \boldsymbol{R}^{3} \rightarrow$ $\boldsymbol{R}^{3}(\boldsymbol{x} \mapsto \boldsymbol{x})$ (the identity operator).
Sol.

$$
[I]_{S, B}=\left[\left[\boldsymbol{e}_{1}\right]_{S},\left[\boldsymbol{e}_{2}\right]_{S},\left[\boldsymbol{e}_{3}\right]_{S}\right]=B^{-1}=\left[\begin{array}{ccc}
2 / 9 & -1 / 9 & 1 / 18 \\
1 / 27 & 1 / 27 & 1 / 27 \\
-20 / 27 & -2 / 27 & 5 / 54
\end{array}\right]
$$

Note that to find $\left[\boldsymbol{e}_{1}\right]_{S}$, we need to express \boldsymbol{e}_{1} as a linear combination of S. Hence we need the solution of $B \boldsymbol{x}=\boldsymbol{e}_{1}$. So $\boldsymbol{x}=B^{-1} \boldsymbol{e}_{1}$, which is the first column of B^{-1}. Similarly $\left[\boldsymbol{e}_{2}\right]_{S}$ is the second column of B^{-1} and $\left[\boldsymbol{e}_{3}\right]_{S}$ the third.
(g) Find $[T]_{S}$, the matrix for T with respect to the basis S.

Sol. As we have seen above, $A \boldsymbol{v}_{1}=-6 \boldsymbol{v}_{2}, A \boldsymbol{v}_{2}=9 \boldsymbol{v}_{2}$ and $A \boldsymbol{v}_{3}=\mathbf{0}$. Hence

$$
[T]_{S}=\left[\left[T\left(\boldsymbol{v}_{1}\right)\right]_{S},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{S},\left[T\left(\boldsymbol{v}_{3}\right)\right]_{S}\right]=\left[\left[-6 \boldsymbol{v}_{1}\right]_{S},\left[9 \boldsymbol{v}_{2}\right]_{S},[\mathbf{0}]_{S}\right]=\left[\begin{array}{ccc}
-6 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

3. Recall the definition of an inner product:

An inner product on a real vector space V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{v}, \boldsymbol{u}\rangle$ (Symmetry axiom)
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$ (Additive axiom)
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Homogeneity axiom)
(d)
(a) The condition (d) is missing in the definition of an inner product above. State it.
Sol. $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ and if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.
(b) Give an example of an inner product on a real vector space, which is different from the usual Euclidean Inner Product, and show that it satisfies the conditions above.
Sol. In $\boldsymbol{R}^{n},\langle\boldsymbol{u}, \boldsymbol{v}\rangle=2 \boldsymbol{u}^{T} \cdot \boldsymbol{v}$ is a inner product. (a)-(d) are easily checked.
(c) In an inner product space V, show

$$
d(\boldsymbol{u}, \boldsymbol{v}) \leq d(\boldsymbol{u}, \boldsymbol{w})+d(\boldsymbol{w}, \boldsymbol{v}) \text { for all } \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V .
$$

Sol. By definition it is equivalent to the following.

$$
\|\boldsymbol{u}-\boldsymbol{v}\| \leq\|\boldsymbol{u}-\boldsymbol{w}\|+\|\boldsymbol{w}-\boldsymbol{v}\| .
$$

Set $\boldsymbol{a}=\boldsymbol{u}-\boldsymbol{w}$ and $\boldsymbol{b}=\boldsymbol{w}-\boldsymbol{v}$. Since $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{u}-\boldsymbol{v}$, it suffices to show that $\|\boldsymbol{a}+\boldsymbol{b}\| \leq\|\boldsymbol{a}\|+\|\boldsymbol{b}\|$, or $\|\boldsymbol{a}+\boldsymbol{b}\|^{2} \leq(\|\boldsymbol{a}\|+\|\boldsymbol{b}\|)^{2}$. Now

$$
\begin{aligned}
& (\|\boldsymbol{a}\|+\|\boldsymbol{b}\|)^{2}-\|\boldsymbol{a}+\boldsymbol{b}\|^{2} \\
& \quad=\|\boldsymbol{a}\|^{2}+2\|\boldsymbol{a}\|\|\boldsymbol{b}\|+\|\boldsymbol{b}\|^{2}-\langle\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{a}+\boldsymbol{b}\rangle \\
& \quad=\|\boldsymbol{a}\|^{2}+2\|\boldsymbol{a}\|\|\boldsymbol{b}\|+\|\boldsymbol{b}\|^{2}-\left(\|\boldsymbol{a}\|^{2}+2\langle\boldsymbol{a}, \boldsymbol{b}\rangle+\|\boldsymbol{b}\|^{2}\right) \\
& \quad=2(\|\boldsymbol{a}\|\|\boldsymbol{b}\|-\langle\boldsymbol{a}, \boldsymbol{b}\rangle) \geq 0
\end{aligned}
$$

by Theorem 2. Hence we have shown the inequality.
4. Let V be an n-dimensional vector space, W_{1} and W_{2} subspaces of V. Set $U=$ $\left\{\boldsymbol{w}_{1}+\boldsymbol{w}_{2} \mid \boldsymbol{w}_{1} \in W_{1}\right.$ and $\left.\boldsymbol{w}_{2} \in W_{2}\right\} .\left(U\right.$ is often denoted by $W_{1}+W_{2}$.)
(a) Show that $W=W_{1} \cap W_{2}=\left\{\boldsymbol{w} \mid \boldsymbol{w} \in W_{1}\right.$ and $\left.\boldsymbol{w} \in W_{2}\right\}$ is a subspace of V.

Sol. Let $\boldsymbol{u}, \boldsymbol{u}^{\prime} \in W_{1} \cap W_{2}$. Then $\boldsymbol{u}, \boldsymbol{u}^{\prime} \in W_{1}$ and $\boldsymbol{u}, \boldsymbol{u}^{\prime} \in W_{2}$. Since W_{1} and W_{2} are subspaces, $\boldsymbol{u}+\boldsymbol{u}^{\prime} \in W_{1}, \boldsymbol{u}+\boldsymbol{u}^{\prime} \in W_{2}$. Hence $\boldsymbol{u}+\boldsymbol{u}^{\prime} \in W_{1} \cap W_{2}$. Similarly $k \boldsymbol{u} \in W$ and $k \boldsymbol{u} \in W_{2}$ for all scalars k. Hence $k \boldsymbol{u} \in W_{1} \cap W_{2}$. Therefore, $W_{1} \cap W_{2}$ is a subspace. (See Theorem 3.2.)
(b) Show that U is a subspace of V.

Sol. Let $\boldsymbol{u}, \boldsymbol{u}^{\prime} \in U$. Then there exist $\boldsymbol{w}_{1}, \boldsymbol{w}_{1}^{\prime} \in W_{1}$ and $\boldsymbol{w}_{2}, \boldsymbol{w}_{2}^{\prime} \in W_{2}$ such that $\boldsymbol{u}=\boldsymbol{w}_{1}+\boldsymbol{w}_{2}$ and $\boldsymbol{u}^{\prime}=\boldsymbol{w}_{1}^{\prime}+\boldsymbol{w}_{2}^{\prime}$. Since $\boldsymbol{w}_{1}, \boldsymbol{w}_{1}^{\prime} \in W_{1}$ and $\boldsymbol{w}_{2}, \boldsymbol{w}_{2}^{\prime} \in W_{2}$ and W_{1} and W_{2} are subspaces, $\boldsymbol{w}_{1}+\boldsymbol{w}_{1}^{\prime} \in W_{1}, \boldsymbol{w}_{2}+\boldsymbol{w}_{2}^{\prime} \in W_{2}$. Hence $\boldsymbol{u}+\boldsymbol{u}^{\prime}=$ $\left(\boldsymbol{w}_{1}+\boldsymbol{w}_{1}^{\prime}\right)+\left(\boldsymbol{w}_{2}+\boldsymbol{w}_{2}^{\prime}\right) \in U$. Similarly $k \boldsymbol{u}=k \boldsymbol{w}_{1}+k \boldsymbol{w}_{2} \in U$ as $k \boldsymbol{w}_{1} \in W_{1}$ and $k \boldsymbol{w}_{2} \in W_{2}$.
(c) Show that there is a set of vectors

$$
S=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}, \boldsymbol{w}_{s+t+1}, \boldsymbol{w}_{s+t+2}, \ldots, \boldsymbol{w}_{s+t+r}\right\}
$$

of V satisfying the following conditions.
i. $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ is a basis of $W=W_{1} \cap W_{2}$,
ii. $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}\right\}$ is a basis of W_{1}; and
iii. $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+t+1}, \boldsymbol{w}_{s+t+2}, \ldots, \boldsymbol{w}_{s+t+r}\right\}$ is a basis of W_{2}.

Sol. \quad Since W, W_{1}, W_{2} are all subspaces of V, these spaces are finite dimensional by Theorem 1 (d), and these have bases. First take a basis $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ of W. (i). Since $W \subset W_{1}$, and $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ is linearly independent, it can be enlarged to a basis of W_{1} by inserting appropriate vectors $\boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}$ into $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$. We applied Theorem 1 (c). Hence (ii). The condition (iii) is similar by inserting $\boldsymbol{w}_{s+t+1}, \boldsymbol{w}_{s+t+2}, \ldots, \boldsymbol{w}_{s+t+r}$.
(d) Show that $U=\operatorname{Span}(S)$.

Sol. Every vector of U is a sum of a vector \boldsymbol{u}_{1} in W_{1} and a vector \boldsymbol{u}_{2} in W_{2}. Since $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}\right\} \subset S$ is a basis of $W_{1}, \boldsymbol{u}_{1}$ is a linear combination of these vectors and hence it is in $\operatorname{Span}(S)$. Similarly $\boldsymbol{u}_{2} \in \operatorname{Span}(S)$. Since $\operatorname{Span}(S)$ is a subspace (Theorem 3.4), $\boldsymbol{u}_{1}+\boldsymbol{u}_{2} \in \operatorname{Span}(S)$ and $U \subset \operatorname{Span}(S)$. Since $S \subset U$, and U is a subspace, $\operatorname{Span}(S) \subset U$. We have $U=\operatorname{Span}(S)$.
(e) Show that S is a basis of U.

Sol. It suffices to show that S is linearly independent. Suppose

$$
\begin{aligned}
\mathbf{0}= & a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{s} \boldsymbol{w}_{s}+a_{s+1} \boldsymbol{w}_{s+1}+a_{s+2} \boldsymbol{w}_{s+2} \\
& +\cdots+a_{s+t} \boldsymbol{w}_{s+t}+a_{s+t+1} \boldsymbol{w}_{s+t+1}+a_{s+t+2} \boldsymbol{w}_{s+t+2}+\cdots+a_{s+t+r} \boldsymbol{w}_{s+t+r} .
\end{aligned}
$$

Consider

$$
\begin{aligned}
& a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{s} \boldsymbol{w}_{s}+a_{s+1} \boldsymbol{w}_{s+1}+a_{s+2} \boldsymbol{w}_{s+2}+\cdots+a_{s+t} \boldsymbol{w}_{s+t} \\
& \quad=-\left(a_{s+t+1} \boldsymbol{w}_{s+t+1}+a_{s+t+2} \boldsymbol{w}_{s+t+2}+\cdots+a_{s+t+r} \boldsymbol{w}_{s+t+r}\right) .
\end{aligned}
$$

Since the left hand side is in W_{1} and the right hand side is in W_{2}, it is in $W=W_{1} \cap W_{2}$. So it can be written as a linear combination of $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$. Set

$$
\begin{aligned}
& a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{s} \boldsymbol{w}_{s}+a_{s+1} \boldsymbol{w}_{s+1}+a_{s+2} \boldsymbol{w}_{s+2}+\cdots+a_{s+t} \boldsymbol{w}_{s+t} \\
& \quad=-\left(a_{s+t+1} \boldsymbol{w}_{s+t+1}+a_{s+t+2} \boldsymbol{w}_{s+t+2}+\cdots+a_{s+t+r} \boldsymbol{w}_{s+t+r}\right) \\
& \quad=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\cdots+c_{s} \boldsymbol{w}_{s} .
\end{aligned}
$$

By the uniqueness of expression in W_{1} proved in Problem 1, by equating the first line with the third line, we have $a_{s+1}=a_{s+2}=\cdots=a_{s+t}=0$. Now we have

$$
a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{s} \boldsymbol{w}_{s}+a_{s+1} \boldsymbol{w}_{s+1}+a_{s+2} \boldsymbol{w}_{s+2}+\cdots+a_{s+t} \boldsymbol{w}_{s+t}=\mathbf{0}
$$

and $a_{1}=a_{2}=\cdots=a_{s}=a_{s+1}=a_{s+2}=\cdots=a_{s+t}=0$ as $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}, \boldsymbol{w}_{s+1}, \boldsymbol{w}_{s+2}, \ldots, \boldsymbol{w}_{s+t}\right\}$ is a basis of W_{1} and is linearly independent.

Problem 4 proves that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.

