9 Matrices and Linear Transformations

9.1 Matrices and Linear Transformations

Definition 9.1 Suppose that V is an n-dimensional vector space with a basis $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ and W is an m-dimensional vector space with a basis $B^{\prime}=$ $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$. For $\boldsymbol{x}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n} \in V$, the vector $\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \in$ \boldsymbol{R}^{n} is called the coordinate vector of \boldsymbol{x} with respect to the basis B and denoted by $[\boldsymbol{x}]_{B}$. Similarly for $\boldsymbol{y}=y_{1} \boldsymbol{w}_{1}+y_{2} \boldsymbol{w}_{2}+\cdots+y_{m} \boldsymbol{w}_{m},[\boldsymbol{y}]_{B^{\prime}}=\left[y_{1}, y_{2}, \ldots, y_{m}\right]^{T} \in \boldsymbol{R}^{m}$ is the coordinate vector of \boldsymbol{y} with respect to the basis B^{\prime}.

Let T be a linear transformation from V to W. Then the $m \times n$ matrix A defined by

$$
A=\left[\left[T\left(\boldsymbol{v}_{1}\right)\right]_{B^{\prime}},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{B^{\prime}}, \ldots,\left[T\left(\boldsymbol{v}_{m}\right)\right]_{B^{\prime}}\right]
$$

is called the matrix for T with respect to the bases B and B^{\prime} and denoted by $[T]_{B^{\prime}, B}$.
When $V=W$ and $B=B^{\prime}$, we write $[T]_{B}$ for $[T]_{B, B}$ and $[T]_{B}$ is called the matrix for T with respect to the basis B.

Proposition 9.1 Under the notation in Definition 9.1 the following hold.
(a) $[T]_{B^{\prime}, B}[\boldsymbol{x}]_{B}=[T(\boldsymbol{x})]_{B^{\prime}}$.
(b) $[T]_{B}[\boldsymbol{x}]_{B}=[T(\boldsymbol{x})]_{B}$, with $V=W$.

Proof. Since (b) is obtained by setting $B^{\prime}=B$ and $V=W$, it suffices to prove (a).
Since $\boldsymbol{x}^{\prime} \mapsto[T]_{B^{\prime}, B}\left(\boldsymbol{x}^{\prime}\right)$ is a linear mapping from \boldsymbol{R}^{n} to \boldsymbol{R}^{m}, we compute the both hand sides at basis vectors. Note that $\left[\boldsymbol{v}_{i}\right]_{B}=\boldsymbol{e}_{i}$.

$$
\left[T\left(\boldsymbol{v}_{i}\right)\right]_{B^{\prime}}=[T]_{B^{\prime}, B} \boldsymbol{e}_{i}=[T]_{B^{\prime}, B}\left[\boldsymbol{v}_{i}\right]_{B} .
$$

Hence the equality holds for all \boldsymbol{x}.
Proposition 9.2 (8.4.2) Let $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ be linear transformations and B, B^{\prime} and $B^{\prime \prime}$ basis of U, V, and W respectively. Then

$$
\left[T_{2} \circ T_{1}\right]_{B^{\prime \prime}, B}=\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left[T_{1}\right]_{B^{\prime}, B} .
$$

Proof. Let $\boldsymbol{x} \in U$. Then

$$
\begin{aligned}
{\left[T_{2} \circ T_{1}\right]_{B^{\prime \prime}, B}[\boldsymbol{x}]_{B} } & =\left[\left(T_{2} \circ T_{1}\right)(\boldsymbol{x})\right]_{B^{\prime \prime}}=\left[T_{2}\left(\left(T_{1}\right)(\boldsymbol{x})\right)\right]_{B^{\prime \prime}}=\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left[T_{1}(\boldsymbol{x})\right]_{B^{\prime}} \\
& =\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left(\left[T_{1}\right]_{B^{\prime}, B}[\boldsymbol{x}]_{B}\right)=\left(\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left[T_{1}\right]_{B^{\prime}, B}\right)[\boldsymbol{x}]_{B} .
\end{aligned}
$$

Therefore $\left[T_{2} \circ T_{1}\right]_{B^{\prime \prime}, B}=\left[T_{2}\right]_{B^{\prime \prime}, B^{\prime}}\left[T_{1}\right]_{B^{\prime}, B}$.
Proposition 9.3 (8.4.3) Let $T: V \rightarrow V$ be a linear transformation. If B is a basis of V, then the following are equaivalent:
(a) T is one-to-one.
(b) $[T]_{B}$ is invertible.

Morover, when these equivalent conditions hold,

$$
\left[T^{-1}\right]_{B}=[T]_{B}^{-1}
$$

Proof. (a) $\Rightarrow(\mathrm{b})$: Suppose T is one-to-one. Then T is bijective by Proposition 8.8. Hence there is a linear transformation T^{-1} such that $T \circ T^{-1}=T^{-1} \circ T=I$. Then by Proposition 9.2,

$$
[T]_{B}\left[T^{-1}\right]_{B}=\left[T \circ T^{-1}\right]_{B}=[I]_{B}=\left[T^{-1} \circ T\right]_{B}=\left[T^{-1}\right]_{B}[T]_{B} .
$$

Since $[I]_{B}=I,[T]_{B}$ is invertible and $\left[T^{-1}\right]_{B}=[T]_{B}^{-1}$.
(b) \Rightarrow (a): Suppose $[T]_{B}$ is invertible and $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$. Let T^{\prime} be a linear operator on V defined by $\left[T^{\prime}(\boldsymbol{x})\right]_{B}=\left([T]_{B}\right)^{-1}[\boldsymbol{x}]_{B}$. Then

$$
\begin{aligned}
{\left[\left(T^{\prime} \circ T\right)(\boldsymbol{x})\right]_{B} } & =\left[T^{\prime}(T(\boldsymbol{x}))\right]_{B}=\left([T]_{B}\right)^{-1}[T(\boldsymbol{x})]_{B} \\
& =\left([T]_{B}\right)^{-1}\left([T]_{B}[\boldsymbol{x}]_{B}\right)=\left([T]_{B}\right)^{-1}[T]_{B}[\boldsymbol{x}]_{B}=[\boldsymbol{x}]_{B}, \text { and } \\
{\left[\left(T \circ T^{\prime}\right)(\boldsymbol{x})\right]_{B} } & =\left([T]_{B}\left[T^{\prime}\right]_{B}\right)[\boldsymbol{x}]_{B}=[T]_{B}\left[T^{\prime}(\boldsymbol{x})\right]_{B} \\
& \left.=[T]_{B}\left([T]_{B}\right)^{-1}[\boldsymbol{x}]_{B}\right)=[T]_{B}\left([T]_{B}\right)^{-1}[\boldsymbol{x}]_{B}=[\boldsymbol{x}]_{B}
\end{aligned}
$$

Therefore $T \circ T^{\prime}=I=T^{\prime} \circ T$.

9.2 Similarity

Theorem 9.4 (8.5.2) Let $T: V \rightarrow V$ be a linear operator on a finite-dimensional vector space V, and let B and B^{\prime} be bases for V. Then

$$
[T]_{B^{\prime}}=P^{-1}[T]_{B} P
$$

where P is the transition matrix from B^{\prime} to B.
Proof. Let $P=[I]_{B, B^{\prime}}$. Then $P^{-1}=[I]_{B^{\prime}, B}$. Hence

$$
P^{-1}[T]_{B} P=P^{-1}=[I]_{B^{\prime}, B}[T]_{B}[I]_{B, B^{\prime}}=[I \circ T \circ I]_{B^{\prime}, B^{\prime}}=[T]_{B^{\prime}, B^{\prime}} .
$$

Definition 9.2 If A and B are square matrices, we say that B is similar to A if there is an invertible matrix P such that $B=P^{-1} A P$.

Example 9.1 Let $V=\boldsymbol{R}^{3}$. In Exercises we showed that V has three bases.

$$
B=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}, B^{\prime}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{e}_{1}\right\}, \text { and } B^{\prime \prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\},
$$

where
$\boldsymbol{v}_{1}=\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}-2 \\ 7 \\ 4\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}3 \\ -8 \\ -6\end{array}\right], \boldsymbol{u}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{14}} \\ \frac{-3}{\sqrt{14}} \\ \frac{-2}{\sqrt{14}}\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{c}\frac{3}{\sqrt{70}} \\ \frac{5}{\sqrt{70}} \\ \frac{-6}{\sqrt{70}}\end{array}\right], \boldsymbol{u}_{3}=\left[\begin{array}{c}\frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}}\end{array}\right]$.
The first is the standard basis, and the last is an orthonormal basis. Let $T=\operatorname{proj}_{U}$. We describe $[T]_{B},[T]_{B^{\prime}},[T]_{B^{\prime \prime}}$ and $[I]_{B^{\prime}, B},[I]_{B^{\prime \prime}, B}, I_{B^{\prime \prime}, B^{\prime}}$.
$[T]_{B}$: By Quiz 7-5,

$$
\begin{aligned}
& \boldsymbol{e}_{1}=\frac{1}{\sqrt{14}} \boldsymbol{u}_{1}+\frac{3}{\sqrt{70}} \boldsymbol{u}_{2}+\frac{2}{\sqrt{5}} \boldsymbol{u}_{3}, \boldsymbol{e}_{2}=\frac{-3}{\sqrt{14}} \boldsymbol{u}_{1}+\frac{5}{\sqrt{70}} \boldsymbol{u}_{2}, \boldsymbol{e}_{3}=\frac{-2}{\sqrt{14}} \boldsymbol{u}_{1}-\frac{6}{\sqrt{70}} \boldsymbol{u}_{2}+\frac{1}{\sqrt{5}} \boldsymbol{u}_{3} . \\
& T\left(\boldsymbol{e}_{1}\right)=\frac{1}{\sqrt{14}} \boldsymbol{u}_{1}+\frac{3}{\sqrt{70}} \boldsymbol{u}_{2}=\boldsymbol{e}_{1}-\frac{2}{\sqrt{5}} \boldsymbol{u}_{3}=\frac{1}{5}[1,0,-2]^{T} \\
& T\left(\boldsymbol{e}_{2}\right)=\boldsymbol{e}_{2} \\
& T\left(\boldsymbol{e}_{3}\right)=\frac{-2}{\sqrt{14}} \boldsymbol{u}_{1}-\frac{6}{\sqrt{70}} \boldsymbol{u}_{2}=\boldsymbol{e}_{3}-\frac{1}{\sqrt{5}} \boldsymbol{u}_{3}=\frac{1}{5}[-2,0,4]^{T}
\end{aligned}
$$

Hence

$$
[T]_{B}=\left[\begin{array}{ccc}
\frac{1}{5} & 0 & -\frac{2}{5} \\
0 & 1 & 0 \\
-\frac{2}{5} & 0 & \frac{4}{5}
\end{array}\right]
$$

$[T]_{B}^{\prime}$ Since $T\left(\boldsymbol{e}_{1}\right)=\frac{1}{5}[1,0,-2]^{T}=\frac{1}{5}\left(7 \boldsymbol{v}_{1}+3 \boldsymbol{v}_{2}\right)$,

$$
[T]_{B^{\prime}}=\left[\begin{array}{ccc}
1 & 0 & \frac{7}{5} \\
0 & 1 & \frac{3}{5} \\
0 & 0 & 0
\end{array}\right]
$$

$[T]_{B^{\prime \prime}}: \quad$ Since $T\left(\boldsymbol{u}_{1}\right)=\boldsymbol{u}_{1}, T\left(\boldsymbol{u}_{2}\right)=\boldsymbol{u}_{2}$ and $T\left(\boldsymbol{u}_{3}\right)=\mathbf{0}$,

$$
[T]_{B^{\prime \prime}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$[I]_{B^{\prime}, B},[I]_{B^{\prime \prime}, B},[I]_{B^{\prime \prime}, B^{\prime}}: \quad$ We have as follows:

$$
\begin{aligned}
& {[I]_{B^{\prime}, B}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{e}_{1}\right]=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-3 & 7 & 0 \\
-2 & 4 & 0
\end{array}\right]} \\
& {[I]_{B^{\prime \prime}, B}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{14}} & \frac{3}{\sqrt{70}} & \frac{2}{\sqrt{5}} \\
\frac{-3}{\sqrt{14}} & \frac{5}{\sqrt{70}} & 0 \\
\frac{-2}{\sqrt{14}} & \frac{-6}{\sqrt{70}} & \frac{1}{\sqrt{5}}
\end{array}\right]} \\
& {[I]_{B^{\prime \prime}, B^{\prime}}=\left[\begin{array}{ccc}
\frac{\sqrt{14}}{14} & \frac{31 \sqrt{70}}{70} & \frac{-7 \sqrt{5}}{10} \\
0 & \frac{\sqrt{70}}{5} & \frac{-3 \sqrt{5}}{10} \\
0 & 0 & \frac{\sqrt{5}}{2}
\end{array}\right]}
\end{aligned}
$$

Recall the situation in Definition 9.1. Suppose

$$
T\left(\boldsymbol{v}_{i}\right)=\sum_{j=1}^{m} a_{j, i} \boldsymbol{w}_{j}=a_{1, i} \boldsymbol{w}_{1}+a_{2, i} \boldsymbol{w}_{2}+\cdots+a_{m, i} \boldsymbol{w}_{m} .
$$

Then $\left[T\left(\boldsymbol{v}_{i}\right)\right]_{B^{\prime}}=\left[a_{1, i}, a_{2, i}, \ldots, a_{m, i}\right]^{T}$. Hence the $i j$ entry of $[T]_{B, B^{\prime}}$ is $a_{i, j}$.
We often describe as follows.

$$
T\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]=\left[T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), \ldots, T\left(\boldsymbol{v}_{n}\right)\right]=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right][T]_{B, B^{\prime}} .
$$

It is because the i th column of the equation above reads

$$
T\left(\boldsymbol{v}_{i}\right)=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right]\left[T\left(\boldsymbol{v}_{i}\right)\right]_{B^{\prime}}=a_{1, i} \boldsymbol{w}_{1}+a_{2, i} \boldsymbol{w}_{2}+\cdots+a_{m, i} \boldsymbol{w}_{m} .
$$

Note that since $\boldsymbol{x}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right][\boldsymbol{x}]_{B}$,

$$
T(\boldsymbol{x})=T\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right][\boldsymbol{x}]_{B}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right][T]_{B, B^{\prime}}[\boldsymbol{x}]_{B}
$$

and $[T(\boldsymbol{x})]_{B^{\prime}}=[T]_{B, B^{\prime}}[\boldsymbol{x}]_{B}$.
If $V=W$ and $B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ and $B^{\prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ are bases and

$$
\boldsymbol{u}_{i}=\sum_{j=1}^{n} p_{j, i} \boldsymbol{v}_{j}=p_{1, i} \boldsymbol{v}_{1}+p_{2, i} \boldsymbol{v}_{2}+\cdots+p_{n, i} \boldsymbol{v}_{n},
$$

then

$$
\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right]=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] P, \text { and }\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right] P^{-1}
$$

Hence

$$
\begin{aligned}
{\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right][T]_{B^{\prime}} } & =T\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right] \\
& =T\left(\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] P\right) \\
& =\left(T\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]\right) P \quad \text { why? } \\
& =\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right][T]_{B} P \\
& =\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right] P^{-1}[T]_{B} P .
\end{aligned}
$$

Hence $[T]_{B^{\prime}}=P^{-1}[T]_{B} P$.

9.3 Isomorphism Theorem

Definition 9.3 An isomorphism between V and W is a bijective linear transformation form V to W. When there is an isomorphism between V and W, we say V and W are isomorphic.

When $V=W$, isomorphisms are called automorphisms.
Proposition 9.5 Let V and W be finite-dimensional vector space. Then V and W are isomorphic, i.e., there is a bijective linear transformation from V to W if and only if $\operatorname{dim} V=\operatorname{dim} W$. In particular, every real vector space of dimension n is isomorphic to \boldsymbol{R}^{n}.

Proof. Let B be a basis of V. Then $T: V \rightarrow \boldsymbol{R}^{n}\left(\boldsymbol{x} \mapsto[\boldsymbol{x}]_{B}\right)$ is an isomorphism. Hence V is isomorphic to W if and only if \boldsymbol{R}^{n} and \boldsymbol{R}^{m} are isomorphic. If $n=m$, \boldsymbol{R}^{n} and \boldsymbol{R}^{m} are isomophic. Suppose $T: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}$ is an isomorphism. then $n=\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{rank}(T)=m$ by Proposition 8.7, as desired.

