9 Matrices and Linear Transformations

9.1 Matrices and Linear Transformations

Definition 9.1 Suppose that V is an n-dimensional vector space with a basis $B = \{v_1, v_2, \ldots, v_n\}$ and W is an m-dimensional vector space with a basis $B' = \{w_1, w_2, \ldots, w_m\}$. For $x = x_1v_1+x_2v_2+\cdots+x_nv_n \in V$, the vector $[x_1, x_2, \ldots, x_n]^T \in \mathbb{R}^n$ is called the *coordinate vector of* x with respect to the basis B and denoted by $[x]_B$. Similarly for $y = y_1w_1 + y_2w_2 + \cdots + y_mw_m$, $[y]_{B'} = [y_1, y_2, \ldots, y_m]^T \in \mathbb{R}^m$ is the coordinate vector of y with respect to the basis B'.

Let T be a linear transformation from V to W. Then the $m \times n$ matrix A defined by

$$A = [[T(\boldsymbol{v}_1)]_{B'}, [T(\boldsymbol{v}_2)]_{B'}, \dots, [T(\boldsymbol{v}_m)]_{B'}]$$

is called the matrix for T with respect to the bases B and B' and denoted by $[T]_{B',B}$.

When V = W and B = B', we write $[T]_B$ for $[T]_{B,B}$ and $[T]_B$ is called the *matrix* for T with respect to the basis B.

Proposition 9.1 Under the notation in Definition 9.1 the following hold.

- (a) $[T]_{B',B}[\boldsymbol{x}]_B = [T(\boldsymbol{x})]_{B'}.$
- (b) $[T]_B[\boldsymbol{x}]_B = [T(\boldsymbol{x})]_B$, with V = W.

Proof. Since (b) is obtained by setting B' = B and V = W, it suffices to prove (a).

Since $\mathbf{x}' \mapsto [T]_{B',B}(\mathbf{x}')$ is a linear mapping from \mathbf{R}^n to \mathbf{R}^m , we compute the both hand sides at basis vectors. Note that $[\mathbf{v}_i]_B = \mathbf{e}_i$.

$$[T(\boldsymbol{v}_i)]_{B'} = [T]_{B',B}\boldsymbol{e}_i = [T]_{B',B}[\boldsymbol{v}_i]_B.$$

Hence the equality holds for all \boldsymbol{x} .

Proposition 9.2 (8.4.2) Let $T_1 : U \to V$ and $T_2 : V \to W$ be linear transformations and B, B' and B'' basis of U, V, and W respectively. Then

$$[T_2 \circ T_1]_{B'',B} = [T_2]_{B'',B'} [T_1]_{B',B}$$

Proof. Let $\boldsymbol{x} \in U$. Then

$$[T_2 \circ T_1]_{B'',B}[\boldsymbol{x}]_B = [(T_2 \circ T_1)(\boldsymbol{x})]_{B''} = [T_2((T_1)(\boldsymbol{x}))]_{B''} = [T_2]_{B'',B'}[T_1(\boldsymbol{x})]_{B'} = [T_2]_{B'',B'}([T_1]_{B',B}[\boldsymbol{x}]_B) = ([T_2]_{B'',B'}[T_1]_{B',B})[\boldsymbol{x}]_B.$$

Therefore $[T_2 \circ T_1]_{B'',B} = [T_2]_{B'',B'}[T_1]_{B',B}.$

Proposition 9.3 (8.4.3) Let $T : V \to V$ be a linear transformation. If B is a basis of V, then the following are equalvalent:

(a) T is one-to-one.

(b) $[T]_B$ is invertible.

Morover, when these equivalent conditions hold,

$$[T^{-1}]_B = [T]_B^{-1}.$$

Proof. (a) \Rightarrow (b): Suppose *T* is one-to-one. Then *T* is bijective by Proposition 8.8. Hence there is a linear transformation T^{-1} such that $T \circ T^{-1} = T^{-1} \circ T = I$. Then by Proposition 9.2,

$$[T]_B[T^{-1}]_B = [T \circ T^{-1}]_B = [I]_B = [T^{-1} \circ T]_B = [T^{-1}]_B[T]_B.$$

Since $[I]_B = I$, $[T]_B$ is invertible and $[T^{-1}]_B = [T]_B^{-1}$.

(b) \Rightarrow (a): Suppose $[T]_B$ is invertible and $B = \{v_1, v_2, \dots, v_n\}$. Let T' be a linear operator on V defined by $[T'(\boldsymbol{x})]_B = ([T]_B)^{-1}[\boldsymbol{x}]_B$. Then

$$[(T' \circ T)(\boldsymbol{x})]_B = [T'(T(\boldsymbol{x}))]_B = ([T]_B)^{-1}[T(\boldsymbol{x})]_B$$

= $([T]_B)^{-1}([T]_B[\boldsymbol{x}]_B) = ([T]_B)^{-1}[T]_B[\boldsymbol{x}]_B = [\boldsymbol{x}]_B$, and
 $[(T \circ T')(\boldsymbol{x})]_B = ([T]_B[T']_B)[\boldsymbol{x}]_B = [T]_B[T'(\boldsymbol{x})]_B$
= $[T]_B([T]_B)^{-1}[\boldsymbol{x}]_B) = [T]_B([T]_B)^{-1}[\boldsymbol{x}]_B = [\boldsymbol{x}]_B$

Therefore $T \circ T' = I = T' \circ T$.

9.2 Similarity

Theorem 9.4 (8.5.2) Let $T: V \to V$ be a linear operator on a finite-dimensional vector space V, and let B and B' be bases for V. Then

$$[T]_{B'} = P^{-1}[T]_B P$$

where P is the transition matrix from B' to B.

Proof. Let
$$P = [I]_{B,B'}$$
. Then $P^{-1} = [I]_{B',B}$. Hence
 $P^{-1}[T]_B P = P^{-1} = [I]_{B',B}[T]_B[I]_{B,B'} = [I \circ T \circ I]_{B',B'} = [T]_{B',B'}.$

Definition 9.2 If A and B are square matrices, we say that B is similar to A if there is an invertible matrix P such that $B = P^{-1}AP$.

Example 9.1 Let $V = \mathbf{R}^3$. In Exercises we showed that V has three bases.

$$B = \{ \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3 \}, \ B' = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{e}_1 \}, \ \text{and} \ B'' = \{ \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3 \},$$

where

$$\boldsymbol{v}_{1} = \begin{bmatrix} 1\\ -3\\ -2 \end{bmatrix}, \ \boldsymbol{v}_{2} = \begin{bmatrix} -2\\ 7\\ 4 \end{bmatrix}, \ \boldsymbol{v}_{3} = \begin{bmatrix} 3\\ -8\\ -6 \end{bmatrix}, \ \boldsymbol{u}_{1} = \begin{bmatrix} \frac{1}{\sqrt{14}}\\ \frac{-3}{\sqrt{14}}\\ \frac{-2}{\sqrt{14}} \end{bmatrix}, \ \boldsymbol{u}_{2} = \begin{bmatrix} \frac{3}{\sqrt{70}}\\ \frac{5}{\sqrt{70}}\\ \frac{-6}{\sqrt{70}}\\ \frac{-6}{\sqrt{70}} \end{bmatrix}, \ \boldsymbol{u}_{3} = \begin{bmatrix} \frac{2}{\sqrt{5}}\\ 0\\ \frac{1}{\sqrt{5}} \end{bmatrix}$$

The first is the standard basis, and the last is an orthonormal basis. Let $T = \text{proj}_U$. We describe $[T]_B, [T]_{B'}, [T]_{B''}$ and $[I]_{B',B}, [I]_{B'',B}, I_{B'',B'}$.

$[T]_B$: By Quiz 7-5,

$$\boldsymbol{e}_1 = \frac{1}{\sqrt{14}}\boldsymbol{u}_1 + \frac{3}{\sqrt{70}}\boldsymbol{u}_2 + \frac{2}{\sqrt{5}}\boldsymbol{u}_3, \boldsymbol{e}_2 = \frac{-3}{\sqrt{14}}\boldsymbol{u}_1 + \frac{5}{\sqrt{70}}\boldsymbol{u}_2, \boldsymbol{e}_3 = \frac{-2}{\sqrt{14}}\boldsymbol{u}_1 - \frac{6}{\sqrt{70}}\boldsymbol{u}_2 + \frac{1}{\sqrt{5}}\boldsymbol{u}_3.$$

$$T(\boldsymbol{e}_{1}) = \frac{1}{\sqrt{14}}\boldsymbol{u}_{1} + \frac{3}{\sqrt{70}}\boldsymbol{u}_{2} = \boldsymbol{e}_{1} - \frac{2}{\sqrt{5}}\boldsymbol{u}_{3} = \frac{1}{5}[1,0,-2]^{T}$$

$$T(\boldsymbol{e}_{2}) = \boldsymbol{e}_{2}$$

$$T(\boldsymbol{e}_{3}) = \frac{-2}{\sqrt{14}}\boldsymbol{u}_{1} - \frac{6}{\sqrt{70}}\boldsymbol{u}_{2} = \boldsymbol{e}_{3} - \frac{1}{\sqrt{5}}\boldsymbol{u}_{3} = \frac{1}{5}[-2,0,4]^{T}$$

Hence

$$[T]_B = \begin{bmatrix} \frac{1}{5} & 0 & -\frac{2}{5} \\ 0 & 1 & 0 \\ -\frac{2}{5} & 0 & \frac{4}{5} \end{bmatrix}$$

 $[T]'_B$ Since $T(\boldsymbol{e}_1) = \frac{1}{5}[1, 0, -2]^T = \frac{1}{5}(7\boldsymbol{v}_1 + 3\boldsymbol{v}_2),$

$$[T]_{B'} = \begin{bmatrix} 1 & 0 & \frac{7}{5} \\ 0 & 1 & \frac{3}{5} \\ 0 & 0 & 0 \end{bmatrix}$$

 $[T]_{B''}$: Since $T(\boldsymbol{u}_1) = \boldsymbol{u}_1, T(\boldsymbol{u}_2) = \boldsymbol{u}_2$ and $T(\boldsymbol{u}_3) = \boldsymbol{0}$,

$$[T]_{B''} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

 $[I]_{B',B}, [I]_{B'',B}, [I]_{B'',B'}$: We have as follows:

$$[I]_{B',B} = [\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{e}_1] = \begin{bmatrix} 1 & -2 & 1 \\ -3 & 7 & 0 \\ -2 & 4 & 0 \end{bmatrix}$$
$$[I]_{B'',B} = [\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3] = \begin{bmatrix} \frac{1}{\sqrt{14}} & \frac{3}{\sqrt{70}} & \frac{2}{\sqrt{5}} \\ \frac{-3}{\sqrt{14}} & \frac{5}{\sqrt{70}} & 0 \\ \frac{-2}{\sqrt{14}} & \frac{\sqrt{70}}{\sqrt{70}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$
$$[I]_{B'',B'} = \begin{bmatrix} \frac{\sqrt{14}}{14} & \frac{31\sqrt{70}}{70} & \frac{-7\sqrt{5}}{10} \\ 0 & \frac{\sqrt{70}}{5} & \frac{-3\sqrt{5}}{10} \\ 0 & 0 & \frac{\sqrt{5}}{2} \end{bmatrix}$$

Recall the situation in Definition 9.1. Suppose

$$T(\boldsymbol{v}_i) = \sum_{j=1}^m a_{j,i} \boldsymbol{w}_j = a_{1,i} \boldsymbol{w}_1 + a_{2,i} \boldsymbol{w}_2 + \dots + a_{m,i} \boldsymbol{w}_m.$$

Then $[T(v_i)]_{B'} = [a_{1,i}, a_{2,i}, \dots, a_{m,i}]^T$. Hence the *ij* entry of $[T]_{B,B'}$ is $a_{i,j}$.

We often describe as follows.

$$T[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n] = [T(\boldsymbol{v}_1), T(\boldsymbol{v}_2), \dots, T(\boldsymbol{v}_n)] = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_m][T]_{B,B'}.$$

It is because the ith column of the equation above reads

$$T(\boldsymbol{v}_i) = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_m][T(\boldsymbol{v}_i)]_{B'} = a_{1,i}\boldsymbol{w}_1 + a_{2,i}\boldsymbol{w}_2 + \dots + a_{m,i}\boldsymbol{w}_m$$

Note that since $\boldsymbol{x} = [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n][\boldsymbol{x}]_B$,

$$T(\boldsymbol{x}) = T[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n][\boldsymbol{x}]_B = [\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_m][T]_{B,B'}[\boldsymbol{x}]_B$$

and $[T(x)]_{B'} = [T]_{B,B'}[x]_B$. If V = W and $B = \{v_1, v_2\}$

If V = W and $B = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n\}$ and $B' = \{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n\}$ are bases and

$$\boldsymbol{u}_i = \sum_{j=1}^n p_{j,i} \boldsymbol{v}_j = p_{1,i} \boldsymbol{v}_1 + p_{2,i} \boldsymbol{v}_2 + \dots + p_{n,i} \boldsymbol{v}_n$$

then

 $[u_1, u_2, \ldots, u_n] = [v_1, v_2, \ldots, v_n]P$, and $[v_1, v_2, \ldots, v_n] = [u_1, u_2, \ldots, u_n]P^{-1}$.

Hence

$$[\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n][T]_{B'} = T[\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n]$$

$$= T([\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n]P)$$

$$= (T[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n])P \quad \text{why}?$$

$$= [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n][T]_BP$$

$$= [\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_n]P^{-1}[T]_BP.$$

Hence $[T]_{B'} = P^{-1}[T]_B P$.

9.3 Isomorphism Theorem

Definition 9.3 An *isomorphism* between V and W is a bijective linear transformation form V to W. When there is an isomorphism between V and W, we say V and W are isomorphic.

When V = W, isomorphisms are called *automorphisms*.

Proposition 9.5 Let V and W be finite-dimensional vector space. Then V and W are isomorphic, i.e., there is a bijective linear transformation from V to W if and only if dim $V = \dim W$. In particular, every real vector space of dimension n is isomorphic to \mathbf{R}^n .

Proof. Let *B* be a basis of *V*. Then $T: V \to \mathbb{R}^n (\mathbf{x} \mapsto [\mathbf{x}]_B)$ is an isomorphism. Hence *V* is isomorphic to *W* if and only if \mathbb{R}^n and \mathbb{R}^m are isomorphic. If n = m, \mathbb{R}^n and \mathbb{R}^m are isomophic. Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is an isomorphism. then $n = \operatorname{rank}(T) + \operatorname{nullity}(T) = \operatorname{rank}(T) = m$ by Proposition 8.7, as desired.