
9 Matrices and Linear Transformations

9.1 Matrices and Linear Transformations

Definition 9.1 Suppose that V is an n-dimensional vector space with a basis
B = {v1, v2, . . . , vn} and W is an m-dimensional vector space with a basis B′ =
{w1, w2, . . . , wm}. For x = x1v1+x2v2+· · ·+xnvn ∈ V , the vector [x1, x2, . . . , xn]T ∈
Rn is called the coordinate vector of x with respect to the basis B and denoted by
[x]B. Similarly for y = y1w1 + y2w2 + · · · + ymwm, [y]B′ = [y1, y2, . . . , ym]T ∈ Rm

is the coordinate vector of y with respect to the basis B′.
Let T be a linear transformation from V to W . Then the m×n matrix A defined

by
A = [[T (v1)]B′ , [T (v2)]B′ , . . . , [T (vm)]B′ ]

is called the matrix for T with respect to the bases B and B′ and denoted by [T ]B′,B.
When V = W and B = B′, we write [T ]B for [T ]B,B and [T ]B is called the matrix

for T with respect to the basis B.

Proposition 9.1 Under the notation in Definition 9.1 the following hold.

(a) [T ]B′,B[x]B = [T (x)]B′.

(b) [T ]B[x]B = [T (x)]B, with V = W .

Proof. Since (b) is obtained by setting B′ = B and V = W , it suffices to prove (a).
Since x′ #→ [T ]B′,B(x′) is a linear mapping from Rn to Rm, we compute the both

hand sides at basis vectors. Note that [vi]B = ei.

[T (vi)]B′ = [T ]B′,Bei = [T ]B′,B[vi]B.

Hence the equality holds for all x.

Proposition 9.2 (8.4.2) Let T1 : U → V and T2 : V → W be linear transforma-
tions and B, B′ and B′′ basis of U , V , and W respectively. Then

[T2 ◦ T1]B′′,B = [T2]B′′,B′ [T1]B′,B.

Proof. Let x ∈ U . Then

[T2 ◦ T1]B′′,B[x]B = [(T2 ◦ T1)(x)]B′′ = [T2((T1)(x))]B′′ = [T2]B′′,B′ [T1(x)]B′

= [T2]B′′,B′([T1]B′,B[x]B) = ([T2]B′′,B′ [T1]B′,B)[x]B.

Therefore [T2 ◦ T1]B′′,B = [T2]B′′,B′ [T1]B′,B.

Proposition 9.3 (8.4.3) Let T : V → V be a linear transformation. If B is a
basis of V , then the following are equaivalent:

(a) T is one-to-one.
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(b) [T ]B is invertible.

Morover, when these equivalent conditions hold,

[T−1]B = [T ]−1
B .

Proof. (a) ⇒ (b): Suppose T is one-to-one. Then T is bijective by Proposition 8.8.
Hence there is a linear transformation T−1 such that T ◦ T−1 = T−1 ◦ T = I. Then
by Proposition 9.2,

[T ]B[T−1]B = [T ◦ T−1]B = [I]B = [T−1 ◦ T ]B = [T−1]B[T ]B.

Since [I]B = I, [T ]B is invertible and [T−1]B = [T ]−1
B .

(b) ⇒ (a): Suppose [T ]B is invertible and B = {v1,v2, . . . , vn}. Let T ′ be a
linear operator on V defined by [T ′(x)]B = ([T ]B)−1[x]B. Then

[(T ′ ◦ T )(x)]B = [T ′(T (x))]B = ([T ]B)−1[T (x)]B
= ([T ]B)−1([T ]B[x]B) = ([T ]B)−1[T ]B[x]B = [x]B, and

[(T ◦ T ′)(x)]B = ([T ]B[T ′]B)[x]B = [T ]B[T ′(x)]B
= [T ]B([T ]B)−1[x]B) = [T ]B([T ]B)−1[x]B = [x]B

Therefore T ◦ T ′ = I = T ′ ◦ T .

9.2 Similarity

Theorem 9.4 (8.5.2) Let T : V → V be a linear operator on a finite-dimensional
vector space V , and let B and B′ be bases for V . Then

[T ]B′ = P−1[T ]BP

where P is the transition matrix from B′ to B.

Proof. Let P = [I]B,B′ . Then P−1 = [I]B′,B. Hence

P−1[T ]BP = P−1 = [I]B′,B[T ]B[I]B,B′ = [I ◦ T ◦ I]B′,B′ = [T ]B′,B′ .

Definition 9.2 If A and B are square matrices, we say that B is similar to A if
there is an invertible matrix P such that B = P−1AP .

Example 9.1 Let V = R3. In Exercises we showed that V has three bases.

B = {e1, e2, e3}, B′ = {v1,v2, e1}, and B′′ = {u1,u2,u3},

where

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , u1 =





1√
14

−3√
14

−2√
14



 , u2 =





3√
70
5√
70

−6√
70



 ,u3 =




2√
5

0
1√
5



 .

The first is the standard basis, and the last is an orthonormal basis. Let T = projU .
We describe [T ]B, [T ]B′ , [T ]B′′ and [I]B′,B, [I]B′′,B, IB′′,B′ .
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[T ]B: By Quiz 7-5,

e1 =
1√
14

u1+
3√
70

u2+
2√
5
u3, e2 =

−3√
14

u1+
5√
70

u2, e3 =
−2√
14

u1−
6√
70

u2+
1√
5
u3.

T (e1) =
1√
14

u1 +
3√
70

u2 = e1 −
2√
5
u3 =

1

5
[1, 0,−2]T

T (e2) = e2

T (e3) =
−2√
14

u1 −
6√
70

u2 = e3 −
1√
5
u3 =

1

5
[−2, 0, 4]T

Hence

[T ]B =




1
5 0 −2

5
0 1 0
−2

5 0 4
5





[T ]′B Since T (e1) = 1
5 [1, 0,−2]T = 1

5(7v1 + 3v2),

[T ]B′ =




1 0 7

5
0 1 3

5
0 0 0





[T ]B′′: Since T (u1) = u1, T (u2) = u2 and T (u3) = 0,

[T ]B′′ =




1 0 0
0 1 0
0 0 0





[I]B′,B, [I]B′′,B, [I]B′′,B′: We have as follows:

[I]B′,B = [v1,v2, e1] =




1 −2 1
−3 7 0
−2 4 0





[I]B′′,B = [u1,u2,u3] =





1√
14

3√
70

2√
5

−3√
14

5√
70

0
−2√
14

−6√
70

1√
5





[I]B′′,B′ =





√
14

14
31

√
70

70
−7

√
5

10

0
√

70
5

−3
√

5
10

0 0
√

5
2





Recall the situation in Definition 9.1. Suppose

T (vi) =
m∑

j=1

aj,iwj = a1,iw1 + a2,iw2 + · · · + am,iwm.
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Then [T (vi)]B′ = [a1,i, a2,i, . . . , am,i]T . Hence the ij entry of [T ]B,B′ is ai,j.

We often describe as follows.

T [v1,v2, . . . , vn] = [T (v1), T (v2), . . . , T (vn)] = [w1,w2, . . . , wm][T ]B,B′ .

It is because the ith column of the equation above reads

T (vi) = [w1, w2, . . . , wm][T (vi)]B′ = a1,iw1 + a2,iw2 + · · · + am,iwm.

Note that since x = [v1, v2, . . . , vn][x]B,

T (x) = T [v1,v2, . . . , vn][x]B = [w1,w2, . . . , wm][T ]B,B′ [x]B

and [T (x)]B′ = [T ]B,B′ [x]B.
If V = W and B = {v1, v2, . . . , vn} and B′ = {u1, u2, . . . , un} are bases and

ui =
n∑

j=1

pj,ivj = p1,iv1 + p2,iv2 + · · · + pn,ivn,

then

[u1, u2, . . . , un] = [v1,v2, . . . , vn]P, and [v1,v2, . . . , vn] = [u1,u2, . . . , un]P−1.

Hence

[u1,u2, . . . , un][T ]B′ = T [u1, u2, . . . , un]

= T ([v1, v2, . . . , vn]P )

= (T [v1, v2, . . . , vn])P why?

= [v1, v2, . . . , vn][T ]BP

= [u1,u2, . . . , un]P−1[T ]BP.

Hence [T ]B′ = P−1[T ]BP .

9.3 Isomorphism Theorem

Definition 9.3 An isomorphism between V and W is a bijective linear transfor-
mation form V to W . When there is an isomorphism between V and W , we say V
and W are isomorphic.

When V = W , isomorphisms are called automorphisms.

Proposition 9.5 Let V and W be finite-dimensional vector space. Then V and W
are isomorphic, i.e., there is a bijective linear transformation from V to W if and
only if dim V = dim W . In particular, every real vector space of dimension n is
isomorphic to Rn.

Proof. Let B be a basis of V . Then T : V → Rn (x #→ [x]B) is an isomorphism.
Hence V is isomorphic to W if and only if Rn and Rm are isomorphic. If n = m,
Rn and Rm are isomophic. Suppose T : Rn → Rm is an isomorphism. then
n = rank(T ) + nullity(T ) = rank(T ) = m by Proposition 8.7, as desired.
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