8 General Linear Transformations

8.1 Basic Properties

Definition 8.1 If T : V — W is a function from a vector space V into a vector
space W, then T' is called a linear transformation from V to W if | for all vectors w
and v in V and all scalars c,

(a) T(u+v)=T(u)+T(v) (b)T(cu)=cT(u).

In the special case where V' = W the linear transformation 7" : V' — V is called a
linear operator of V.

Example 8.1 A linear transformation from R" to R™ is first defined in Defini-
tion 2.2 as a function

T(:Clﬂx% <o ,Zlfn) = (y17y27 s 7ym)

for which the equations relating vy, yo, ..., Yy, with 1,29, ..., 2, are linear, and it
was expressed by a matrix multiplication:

T(x) = Az, where A = [T'(e;),T(e2),...,T(e,)].

The matrix A was called the standard matrix and denoted by A = [T] and T' =
T4. Moreover, linear transformations were characterized by the two properties in
Definition 8.1. See Theorem 2.2.

Example 8.2 Let V' be an inner product space and W a subspace of V. Then the
orthogonal projection projy, : V' — V is a linear transformation (or linear operator),
and that proj,, (V) = W.

Example 8.3 [Examples 11, 12] Let C*(a, b) be the set of functions that are dif-
ferentiable for all degrees of differentiation

1. D:C*>(a,b) — C>(a,b) (f(z) — f'(x)) is a linear operator.
2. 1:C>(a,b) — C>(a,b) (f(x) — [ f(t)dt) is a linear operator.
Lemma 8.1 (8.1.1) IfT:V — W is a linear transformation, then
(a) T(0) = 0.
(b) T(—v) = =T(v) for allv e V.

(c) T<Z kivi) = Z ki T(v;) for allvy,va, ..., v, €V and all scalars ky, ko, . .., k.
i=1

i=1
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Proof. (a): T(0) =T(040) =T(0)+7(0). By adding —7'(0) on both hand sides,
we have 0 = 7(0).

(b): T(v) +T(—v) = T(v + (—v)) = T(0) = 0. Hence by adding —T'(v) on
both hand sides, we have T'(—v) = —T'(v).

(c): This is straightforward as

T(Z kz”z) = T(kl’Ul + ]{?2’02 + -+ k:mvm)
=1

= T(kyvy) 4+ T(kova) + - - + T(knvm)
= k’lT(’Ul) + ]{?QT(’UQ) 4+ 4 k’mT(’Um)

Proposition 8.2 Let T} and Ty be linear transformations from V to W, and S =
{vi,v9,...,v,} a basis of V'. Then the following are equivalent.

(a) Ty =Ty, i.e., Ti(v) = Ty(v) for allv e V.
(b) Tl(’Ui) = TQ(’UZ‘) fOT all i = ]_, 2, Lo, n.

Proof. (a) = (b) is obvious.
(b) = (a) follows from Lemma 8.1 (c) as

v) =T, (i k’ivi> = ikiTl(vi) = Zj:k‘iTg(vl =T <Zk‘ v; ) Ty (v

n

when v is expressed as v = E kiv;. [
i=1

Proposition 8.3 Let V' and W be vector spaces, S = {vy,va,...,v,} a basis of
V oand wy,ws,...,w, € W. Then there exists a unique linear transformation T :
V — W such that T(v;) = w; for alli=1,2,...,n

Proof. The uniqueness follows from Propotion 8.2. Since for every vector v € V
there exist scalars ki, ko, ..., k, such that

v = kl’Ul + k2v2 + -+ knvn‘
By Proposition 4.1, ki, ks, . . ., k, are uniquely determined for each v. Let

T(v) = kyw; + kows + - - - + kyw,.

!The condition V = Span(S) is enough.
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Then the vector on the right hand side of the equation above is uniquely determined,
and this assignment 7' is a linear transformation satisfying the condition. To see
this let w = l1v1 + byvy + - - + L, v, € V. Then

Tu+wv) = T(lv + v+ -+ 0,0, + kvg + kova + - - + kyv,,)
T((ly + k1)vr + (o + k)va + -+ -+ (U + ki)vy)

= (L1 +k)wy+ (bo+ k)wy + -+ (U + kp)w,

= lwi+lbwy+ -+ Lw, + kiywy + kows + -+ - + kyw,

= T(lhvy + lyvg + - - - + lvy,) + T(kivy + kavy + -+ - + kpvy,)
= T(u)+T(v).

We can show T'(kv) = kT (v) similarly. |

Proposition 8.4 (8.1.2) Let T\ : U — V and Ty : V. — W be linear transforma-
tions. Then the composition of Ty with Ty defined by

T2 o T1 U —-W (CU = TQ(Tl(w)))
1s a linear transformation.

Proof. It suffices to prove the conditions (a) and (b) in Definition 8.1.
(a): For uy,us € U,

TyoTi(uy +us) = To(Thi(ur +uz)) = To(Ti(ur) + Ti(u2))
= TQ(Tl(Ul)) + TQ(Tl(Ug)) = TQ @) Tl('u,l) + TQ o Tl(UQ).

(b): For w € U and a scalary k,
Ty o Ty (ku) = To(Ti(ku)) = To (kT (w)) = kTo(Ti(uw)) = k(T3 0 T (u)).

Hence T5 0 T7 : U — W is a linear transformation. [

8.2 Kernel and Range

Proposition 8.5 (8.2.1) IfT :V — W is a linear transformation, then
(a) {v eV |T(v) =0} is a subspace of V.
(b) {T'(v) | v € V} is a subspace of W.

Proof. We apply Theorem 3.2.
(a): Let U ={v € V | T(v) = 0}. Note that forv e V, v e U < T(v) = 0.
Let vy,vs € U and k a scalar. Since T'(vy) = T'(v2) =0,

T(’Ul —+ ’Ug) = T(’Ul) -+ T(’Ug) =04+0=0.
Hence v; + vy € U whenever vy, v, € U. Similarly

T(k’vl) = ]{JT(’Ul) =£k0=0.
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Hence kv, € U whenever v, € U. Therefore U is a subspace of V.
(b): Let U ={T'(v) |v € V} and T'(v;),T(v2) € U, where vy,v2 € V. Then

T(vy)+T(vy) =T(vy +v3) €U
as v1 + vy € V. Moreover if k is a scalar,
kT (vqy) =T(kvy) €U
and U is a subspace of W. [

Definition 8.2 If T": V — W is a linear transformation, then the set of vectors
in V that 7' maps into O is called the kernel of T’ it is denoted by Ker(7T'). The
set of all vectors in W that are images under T of at least one vector in V' is called
the range of T’ it is denoted by Im(7"). The dimension of the range of T is called
the rank of T and is denoted by rank(T"), the dimension of the kernel is called the
nullity of T and is denoted by nullity (7).

Ker(T) ={v eV |Tw) =0} CcV, Im(T) ={Tw) | veV}cW,and
nullity(7") = dim(Ker (7)), rank(7") = dim(Im(7")).
The following is a generalization of Theorem 5.7. See also Theorem 7.3.

Theorem 8.6 (8.2.3) IfT :V — W is a linear transformation from an n-dimensional
vector space V' to a vector space W, then

rank(7") + nullity(7") = n.
Proof. Let U = Ker(T) and {w;,w,,...,w,} a basis of Im(7"). Hence r =
dim(Im(7")) = rank(T"). Since w; € Im(T") = {T'(v) | v € V} fori =1,2,...,r,
there exists v; € V such that f(v;) = w;. Let {u,ug,...,ux} be a basis of U.
Hence k = dim(Ker(7")) = nullity(7"). Our goal is to show r + k = n = dim(V). It
suffices to show that S = {vy,vs,..., V., Uy, Us, ..., us} is a basis of V.
Linear Independence: Suppose a1v1+asvo+- - -+, v, +b1u;+bous+- - -+brup =
0. Since uy, us, ..., u;, € Ker(T), by Lemma 8.1
0 = T(O) = T(CLl’Ul + avo + - - + @, v, + b1u1 + bg’LLQ + -+ bkuk)
= aT(vy) + aT(va) + -+ a,T(v,)

= aiwi + aws + -+ a,w,.

Since {w;, ws,...,w,} is a basis of Im(7"), it is linearly independent. Hence a; =
as = --- = a, = 0. Now the first equation yields byu; + baus + - - - + bpur, = 0 and
{w1,ug,...,u;} is a basis of U and linearly independent. Hence by = by = --- =

b = 0. Therefore, S is linearly independent.

V = Span(S): Let v € V. Since T'(v) € Im(T), there exist scalars ay, as, ..., a,
such that T'(v) = ayw; + asws + -+ - + a,w,. Let w = ajv, + agvs + -+ - + a,v,.
Then

T(w) = T(amvy+ avs + -+ + a,v,)
= aT(vy) + aT(va) + -+ a,T(v,)
= aiw; + aws + -+ a,w,

= T(v).
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Hence T'(v —w) =T(v) — T'(w) = 0 and v — w € Ker(7T'). Thus there exist scalars
bi,bg, ..., by such that v — w = byuy + bous + -+ - + bruy as {ug, us, ..., u} is a
basis of Ker(T'). Therefore

v = w+b1u1+b2uQ+- : -+bkuk = a1V1tava+-- -—I—arvr+b1u1+b2uQ+- : -+bkuk
is in Span(S). This completes the proof. [ ]

Proposition 8.7 (8.3.1) If T : V. — W is a linear transformation, then the fol-
lowing are equivalent.

(a) T is one-to-one, i.e., injective.

(b) Ker(T) = {0}.
(¢) nullity(T) =0

Proof. By definition (b) < (c). Suppose T' is one-to-one. Let v € Ker(7T'). Since
0 € Ker(T), T(0) = 0 = T(v). We have v = 0 as T is one-to-one. Hence
Ker(T') = {0}. This shows (a) = (b).

Suppose Ker(T) = {0} and T'(vy) = T(vy) with v1,v5 € V. Then T'(v; —vy) =
T(vy) — T(vg) = 0 and v; — vy € Ker(T) = {0}. Thus v; — vy = 0, or v, = V.
Therefore 7' is one-to-one. |

Proposition 8.8 (8.3.2) IfV is a finite-dimensional vector space, and T : V — V
1s a linear operator, then the following are equivalent.

a) T s one-to-one, 1i.e., injective.

(
(b) Ker(T) = {0}.

d) The range of T is V, i.e., surjective.

)

)
(¢) nullity(T) = 0.
(d)

)

(e) rank(7) =dim V.

Proof. (a) < (b) < (c) are already shown in Proposition 8.7. Let n = dim V.
then by Theorem 8.6, n = rank(7") + nullity(7"). Hence nullity(7") = 0 if and only
if rank(7") = n. Since rank(7T") = dim(Im(7")) and Im(T") is a subspace of V' by
Proposition 8.5, rank(7") = n = dim V' if and only if Im(7") = V' by Theorem 4.8
(d). This establishes the equivalence. n

Exercise 8.1 [Quiz 8] Let vy, vy, v3 and u be vectors in R® given below.

1 -2 3 2
V1 = -3 , Vg = 7 , V3 = -8 , U = 0
-2 4 —6 1

For u,v € R®, let (u,v) = u-v = u”v be the inner product, U = Span{vy, vs, v3},
and T = proj;;. You may quote the facts shown in previous quizzes.
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. Show that T'(vy) = vy, T(vs) = vy, T'(v3) = v3 and T(u) = 0.

. Show that 7' is a linear transformation using the definition of linear transfor-
mations.

. Show that T'oT =T
. Find Ker(T"), nullity(7"), Im(7") and rank(7T").

. Show that there is no linear transformation 7" : U — U such that T"(v1) = v,
T'(ve) = v3 and T'(v3) = v;.
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