8 General Linear Transformations

8.1 Basic Properties

Definition 8.1 If $T: V \rightarrow W$ is a function from a vector space V into a vector space W, then T is called a linear transformation from V to W if, for all vectors \boldsymbol{u} and \boldsymbol{v} in V and all scalars c,

$$
\text { (a) } T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v}) \quad \text { (b) } T(c \boldsymbol{u})=c T(\boldsymbol{u})
$$

In the special case where $V=W$, the linear transformation $T: V \rightarrow V$ is called a linear operator of V.

Example 8.1 A linear transformation from \boldsymbol{R}^{n} to \boldsymbol{R}^{m} is first defined in Definition 2.2 as a function

$$
T\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{m}\right)
$$

for which the equations relating $y_{1}, y_{2}, \ldots, y_{m}$ with $x_{1}, x_{2}, \ldots, x_{n}$ are linear, and it was expressed by a matrix multiplication:

$$
T(\boldsymbol{x})=A \boldsymbol{x}, \text { where } A=\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), \ldots, T\left(\boldsymbol{e}_{n}\right)\right] .
$$

The matrix A was called the standard matrix and denoted by $A=[T]$ and $T=$ T_{A}. Moreover, linear transformations were characterized by the two properties in Definition 8.1. See Theorem 2.2.

Example 8.2 Let V be an inner product space and W a subspace of V. Then the orthogonal projection $\operatorname{proj}_{W}: V \rightarrow V$ is a linear transformation (or linear operator), and that $\operatorname{proj}_{W}(V)=W$.

Example 8.3 [Examples 11, 12] Let $C^{\infty}(a, b)$ be the set of functions that are differentiable for all degrees of differentiation

1. $D: C^{\infty}(a, b) \rightarrow C^{\infty}(a, b)\left(f(x) \mapsto f^{\prime}(x)\right)$ is a linear operator.
2. $I: C^{\infty}(a, b) \rightarrow C^{\infty}(a, b)\left(f(x) \mapsto \int_{a}^{x} f(t) d t\right)$ is a linear operator.

Lemma 8.1 (8.1.1) If $T: V \rightarrow W$ is a linear transformation, then
(a) $T(\mathbf{0})=\mathbf{0}$.
(b) $T(-\boldsymbol{v})=-T(\boldsymbol{v})$ for all $\boldsymbol{v} \in V$.
(c) $T\left(\sum_{i=1}^{m} k_{i} \boldsymbol{v}_{i}\right)=\sum_{i=1}^{m} k_{i} T\left(\boldsymbol{v}_{i}\right)$ for all $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m} \in V$ and all scalars $k_{1}, k_{2}, \ldots, k_{m}$.

Proof. (a): $T(\mathbf{0})=T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$. By adding $-T(\mathbf{0})$ on both hand sides, we have $\mathbf{0}=T(\mathbf{0})$.
(b): $T(\boldsymbol{v})+T(-\boldsymbol{v})=T(\boldsymbol{v}+(-\boldsymbol{v}))=T(\mathbf{0})=\mathbf{0}$. Hence by adding $-T(\boldsymbol{v})$ on both hand sides, we have $T(-\boldsymbol{v})=-T(\boldsymbol{v})$.
(c): This is straightforward as

$$
\begin{aligned}
T\left(\sum_{i=1}^{m} k_{i} \boldsymbol{v}_{i}\right) & =T\left(k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{m} \boldsymbol{v}_{m}\right) \\
& =T\left(k_{1} \boldsymbol{v}_{1}\right)+T\left(k_{2} \boldsymbol{v}_{2}\right)+\cdots+T\left(k_{m} \boldsymbol{v}_{m}\right) \\
& =k_{1} T\left(\boldsymbol{v}_{1}\right)+k_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+k_{m} T\left(\boldsymbol{v}_{m}\right) \\
& =\sum_{i=1}^{m} k_{i} T\left(\boldsymbol{v}_{i}\right) .
\end{aligned}
$$

Proposition 8.2 Let T_{1} and T_{2} be linear transformations from V to W, and $S=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a basis of V^{1}. Then the following are equivalent.
(a) $T_{1}=T_{2}$, i.e., $T_{1}(\boldsymbol{v})=T_{2}(\boldsymbol{v})$ for all $\boldsymbol{v} \in V$.
(b) $T_{1}\left(\boldsymbol{v}_{i}\right)=T_{2}\left(\boldsymbol{v}_{i}\right)$ for all $i=1,2, \ldots, n$.

Proof. (a) \Rightarrow (b) is obvious.
(b) \Rightarrow (a) follows from Lemma 8.1 (c) as

$$
T_{1}(\boldsymbol{v})=T_{1}\left(\sum_{i=1}^{n} k_{i} \boldsymbol{v}_{i}\right)=\sum_{i=1}^{n} k_{i} T_{1}\left(\boldsymbol{v}_{i}\right)=\sum_{i=1}^{n} k_{i} T_{2}\left(\boldsymbol{v}_{i}\right)=T_{2}\left(\sum_{i=1}^{n} k_{i} \boldsymbol{v}_{i}\right)=T_{2}(\boldsymbol{v}),
$$

when \boldsymbol{v} is expressed as $\boldsymbol{v}=\sum_{i=1}^{n} k_{i} \boldsymbol{v}_{i}$.
Proposition 8.3 Let V and W be vector spaces, $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ a basis of V and $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n} \in W$. Then there exists a unique linear transformation T : $V \rightarrow W$ such that $T\left(\boldsymbol{v}_{i}\right)=\boldsymbol{w}_{i}$ for all $i=1,2, \ldots, n$.

Proof. The uniqueness follows from Propotion 8.2. Since for every vector $\boldsymbol{v} \in V$ there exist scalars $k_{1}, k_{2}, \ldots, k_{n}$ such that

$$
\boldsymbol{v}=k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}
$$

By Proposition 4.1, $k_{1}, k_{2}, \ldots, k_{n}$ are uniquely determined for each \boldsymbol{v}. Let

$$
T(\boldsymbol{v})=k_{1} \boldsymbol{w}_{1}+k_{2} \boldsymbol{w}_{2}+\cdots+k_{n} \boldsymbol{w}_{n}
$$

[^0]Then the vector on the right hand side of the equation above is uniquely determined, and this assignment T is a linear transformation satisfying the condition. To see this let $\boldsymbol{u}=\ell_{1} \boldsymbol{v}_{1}+\ell_{2} \boldsymbol{v}_{2}+\cdots+\ell_{n} \boldsymbol{v}_{n} \in V$. Then

$$
\begin{aligned}
T(\boldsymbol{u}+\boldsymbol{v}) & =T\left(\ell_{1} \boldsymbol{v}_{1}+\ell_{2} \boldsymbol{v}_{2}+\cdots+\ell_{n} \boldsymbol{v}_{n}+k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}\right) \\
& =T\left(\left(\ell_{1}+k_{1}\right) \boldsymbol{v}_{1}+\left(\ell_{2}+k_{2}\right) \boldsymbol{v}_{2}+\cdots+\left(\ell_{n}+k_{n}\right) \boldsymbol{v}_{n}\right) \\
& =\left(\ell_{1}+k_{1}\right) \boldsymbol{w}_{1}+\left(\ell_{2}+k_{2}\right) \boldsymbol{w}_{2}+\cdots+\left(\ell_{n}+k_{n}\right) \boldsymbol{w}_{n} \\
& =\ell_{1} \boldsymbol{w}_{1}+\ell_{2} \boldsymbol{w}_{2}+\cdots+\ell_{n} \boldsymbol{w}_{n}+k_{1} \boldsymbol{w}_{1}+k_{2} \boldsymbol{w}_{2}+\cdots+k_{n} \boldsymbol{w}_{n} \\
& =T\left(\ell_{1} \boldsymbol{v}_{1}+\ell_{2} \boldsymbol{v}_{2}+\cdots+\ell_{n} \boldsymbol{v}_{n}\right)+T\left(k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}\right) \\
& =T(\boldsymbol{u})+T(\boldsymbol{v}) .
\end{aligned}
$$

We can show $T(k \boldsymbol{v})=k T(\boldsymbol{v})$ similarly.
Proposition 8.4 (8.1.2) Let $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ be linear transformations. Then the composition of T_{2} with T_{1} defined by

$$
T_{2} \circ T_{1}: U \rightarrow W\left(\boldsymbol{x} \mapsto T_{2}\left(T_{1}(\boldsymbol{x})\right)\right) .
$$

is a linear transformation.
Proof. It suffices to prove the conditions (a) and (b) in Definition 8.1.
(a): For $\boldsymbol{u}_{1}, \boldsymbol{u}_{2} \in U$,

$$
\begin{aligned}
T_{2} \circ T_{1}\left(\boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right) & =T_{2}\left(T_{1}\left(\boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)\right)=T_{2}\left(T_{1}\left(\boldsymbol{u}_{1}\right)+T_{1}\left(\boldsymbol{u}_{2}\right)\right) \\
& =T_{2}\left(T_{1}\left(\boldsymbol{u}_{1}\right)\right)+T_{2}\left(T_{1}\left(\boldsymbol{u}_{2}\right)\right)=T_{2} \circ T_{1}\left(\boldsymbol{u}_{1}\right)+T_{2} \circ T_{1}\left(\boldsymbol{u}_{2}\right) .
\end{aligned}
$$

(b): For $\boldsymbol{u} \in U$ and a scalary k,

$$
T_{2} \circ T_{1}(k \boldsymbol{u})=T_{2}\left(T_{1}(k \boldsymbol{u})\right)=T_{2}\left(k T_{1}(\boldsymbol{u})\right)=k T_{2}\left(T_{1}(\boldsymbol{u})\right)=k\left(T_{2} \circ T_{1}(\boldsymbol{u})\right) .
$$

Hence $T_{2} \circ T_{1}: U \rightarrow W$ is a linear transformation.

8.2 Kernel and Range

Proposition 8.5 (8.2.1) If $T: V \rightarrow W$ is a linear transformation, then
(a) $\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\}$ is a subspace of V.
(b) $\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ is a subspace of W.

Proof. We apply Theorem 3.2.
(a): Let $U=\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\}$. Note that for $\boldsymbol{v} \in V, \boldsymbol{v} \in U \Leftrightarrow T(\boldsymbol{v})=\mathbf{0}$.

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in U$ and k a scalar. Since $T\left(\boldsymbol{v}_{1}\right)=T\left(\boldsymbol{v}_{2}\right)=\mathbf{0}$,

$$
T\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right)=T\left(\boldsymbol{v}_{1}\right)+T\left(\boldsymbol{v}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0} .
$$

Hence $\boldsymbol{v}_{1}+\boldsymbol{v}_{2} \in U$ whenever $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in U$. Similarly

$$
T\left(k \boldsymbol{v}_{1}\right)=k T\left(\boldsymbol{v}_{1}\right)=k \mathbf{0}=\mathbf{0} .
$$

Hence $k \boldsymbol{v}_{1} \in U$ whenever $\boldsymbol{v}_{1} \in U$. Therefore U is a subspace of V.
(b): Let $U=\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ and $T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right) \in U$, where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in V$. Then

$$
T\left(\boldsymbol{v}_{1}\right)+T\left(\boldsymbol{v}_{2}\right)=T\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}\right) \in U
$$

as $\boldsymbol{v}_{1}+\boldsymbol{v}_{2} \in V$. Moreover if k is a scalar,

$$
k T\left(\boldsymbol{v}_{1}\right)=T\left(k \boldsymbol{v}_{1}\right) \in U
$$

and U is a subspace of W.
Definition 8.2 If $T: V \rightarrow W$ is a linear transformation, then the set of vectors in V that T maps into $\mathbf{0}$ is called the kernel of T; it is denoted by $\operatorname{Ker}(T)$. The set of all vectors in W that are images under T of at least one vector in V is called the range of T; it is denoted by $\operatorname{Im}(T)$. The dimension of the range of T is called the rank of T and is denoted by $\operatorname{rank}(T)$, the dimension of the kernel is called the nullity of T and is denoted by nullity (T).
$\operatorname{Ker}(T)=\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\} \subset V, \operatorname{Im}(T)=\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\} \subset W$, and $\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{Ker}(T)), \operatorname{rank}(T)=\operatorname{dim}(\operatorname{Im}(T))$.

The following is a generalization of Theorem 5.7. See also Theorem 7.3.
Theorem 8.6 (8.2.3) If $T: V \rightarrow W$ is a linear transformation from an n-dimensional vector space V to a vector space W, then

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=n
$$

Proof. Let $U=\operatorname{Ker}(T)$ and $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{r}\right\}$ a basis of $\operatorname{Im}(T)$. Hence $r=$ $\operatorname{dim}(\operatorname{Im}(T))=\operatorname{rank}(T)$. Since $\boldsymbol{w}_{i} \in \operatorname{Im}(T)=\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ for $i=1,2, \ldots, r$, there exists $\boldsymbol{v}_{i} \in V$ such that $f\left(\boldsymbol{v}_{i}\right)=\boldsymbol{w}_{i}$. Let $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ be a basis of U. Hence $k=\operatorname{dim}(\operatorname{Ker}(T))=\operatorname{nullity}(T)$. Our goal is to show $r+k=n=\operatorname{dim}(V)$. It suffices to show that $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}, \boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is a basis of V.

Linear Independence: Suppose $a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{r} \boldsymbol{v}_{r}+b_{1} \boldsymbol{u}_{1}+b_{2} \boldsymbol{u}_{2}+\cdots+b_{k} \boldsymbol{u}_{k}=$ 0. Since $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k} \in \operatorname{Ker}(T)$, by Lemma 8.1

$$
\begin{aligned}
\mathbf{0} & =T(\mathbf{0})=T\left(a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{r} \boldsymbol{v}_{r}+b_{1} \boldsymbol{u}_{1}+b_{2} \boldsymbol{u}_{2}+\cdots+b_{k} \boldsymbol{u}_{k}\right) \\
& =a_{1} T\left(\boldsymbol{v}_{1}\right)+a_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+a_{r} T\left(\boldsymbol{v}_{r}\right) \\
& =a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{r} \boldsymbol{w}_{r} .
\end{aligned}
$$

Since $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{r}\right\}$ is a basis of $\operatorname{Im}(T)$, it is linearly independent. Hence $a_{1}=$ $a_{2}=\cdots=a_{r}=0$. Now the first equation yields $b_{1} \boldsymbol{u}_{1}+b_{2} \boldsymbol{u}_{2}+\cdots+b_{k} \boldsymbol{u}_{k}=\mathbf{0}$ and $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is a basis of U and linearly independent. Hence $b_{1}=b_{2}=\cdots=$ $b_{k}=0$. Therefore, S is linearly independent.
$V=\operatorname{Span}(S):$ Let $\boldsymbol{v} \in V$. Since $T(\boldsymbol{v}) \in \operatorname{Im}(T)$, there exist scalars $a_{1}, a_{2}, \ldots, a_{r}$ such that $T(\boldsymbol{v})=a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{r} \boldsymbol{w}_{r}$. Let $\boldsymbol{w}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{r} \boldsymbol{v}_{r}$. Then

$$
\begin{aligned}
T(\boldsymbol{w}) & =T\left(a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{r} \boldsymbol{v}_{r}\right) \\
& =a_{1} T\left(\boldsymbol{v}_{1}\right)+a_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+a_{r} T\left(\boldsymbol{v}_{r}\right) \\
& =a_{1} \boldsymbol{w}_{1}+a_{2} \boldsymbol{w}_{2}+\cdots+a_{r} \boldsymbol{w}_{r} \\
& =T(\boldsymbol{v}) .
\end{aligned}
$$

Hence $T(\boldsymbol{v}-\boldsymbol{w})=T(\boldsymbol{v})-T(\boldsymbol{w})=\mathbf{0}$ and $\boldsymbol{v}-\boldsymbol{w} \in \operatorname{Ker}(T)$. Thus there exist scalars $b_{1}, b_{2}, \ldots, b_{k}$ such that $\boldsymbol{v}-\boldsymbol{w}=b_{1} \boldsymbol{u}_{1}+b_{2} \boldsymbol{u}_{2}+\cdots+b_{k} \boldsymbol{u}_{k}$ as $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ is a basis of $\operatorname{Ker}(T)$. Therefore
$\boldsymbol{v}=\boldsymbol{w}+b_{1} \boldsymbol{u}_{1}+b_{2} \boldsymbol{u}_{2}+\cdots+b_{k} \boldsymbol{u}_{k}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{r} \boldsymbol{v}_{r}+b_{1} \boldsymbol{u}_{1}+b_{2} \boldsymbol{u}_{2}+\cdots+b_{k} \boldsymbol{u}_{k}$ is in $\operatorname{Span}(S)$. This completes the proof.

Proposition 8.7 (8.3.1) If $T: V \rightarrow W$ is a linear transformation, then the following are equivalent.
(a) T is one-to-one, i.e., injective.
(b) $\operatorname{Ker}(T)=\{\mathbf{0}\}$.
(c) $\operatorname{nullity}(T)=0$

Proof. By definition (b) \Leftrightarrow (c). Suppose T is one-to-one. Let $\boldsymbol{v} \in \operatorname{Ker}(T)$. Since $\mathbf{0} \in \operatorname{Ker}(T), T(\mathbf{0})=\mathbf{0}=T(\boldsymbol{v})$. We have $\boldsymbol{v}=\mathbf{0}$ as T is one-to-one. Hence $\operatorname{Ker}(T)=\{\mathbf{0}\}$. This shows $(\mathrm{a}) \Rightarrow(\mathrm{b})$.

Suppose $\operatorname{Ker}(T)=\{\mathbf{0}\}$ and $T\left(\boldsymbol{v}_{1}\right)=T\left(\boldsymbol{v}_{2}\right)$ with $\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \in V$. Then $T\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)=$ $T\left(\boldsymbol{v}_{1}\right)-T\left(\boldsymbol{v}_{2}\right)=\mathbf{0}$ and $\boldsymbol{v}_{1}-\boldsymbol{v}_{2} \in \operatorname{Ker}(T)=\{\mathbf{0}\}$. Thus $\boldsymbol{v}_{1}-\boldsymbol{v}_{2}=\mathbf{0}$, or $\boldsymbol{v}_{1}=\boldsymbol{v}_{2}$. Therefore T is one-to-one.

Proposition 8.8 (8.3.2) If V is a finite-dimensional vector space, and $T: V \rightarrow V$ is a linear operator, then the following are equivalent.
(a) T is one-to-one, i.e., injective.
(b) $\operatorname{Ker}(T)=\{\mathbf{0}\}$.
(c) $\operatorname{nullity}(T)=0$.
(d) The range of T is V, i.e., surjective.
(e) $\operatorname{rank}(T)=\operatorname{dim} V$.

Proof. (a) $\Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$ are already shown in Proposition 8.7. Let $n=\operatorname{dim} V$. then by Theorem 8.6, $n=\operatorname{rank}(T)+\operatorname{nullity}(T)$. Hence nullity $(T)=0$ if and only if $\operatorname{rank}(T)=n$. Since $\operatorname{rank}(T)=\operatorname{dim}(\operatorname{Im}(T))$ and $\operatorname{Im}(T)$ is a subspace of V by Proposition 8.5, $\operatorname{rank}(T)=n=\operatorname{dim} V$ if and only if $\operatorname{Im}(T)=V$ by Theorem 4.8 (d). This establishes the equivalence.

Exercise 8.1 [Quiz 8] Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ and \boldsymbol{u} be vectors in \boldsymbol{R}^{3} given below.

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right], \boldsymbol{u}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{3}$, let $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}$ be the inner product, $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$, and $T=\operatorname{proj}_{U}$. You may quote the facts shown in previous quizzes.

1. Show that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{1}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{2}, T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{3}$ and $T(\boldsymbol{u})=\mathbf{0}$.
2. Show that T is a linear transformation using the definition of linear transformations.
3. Show that $T \circ T=T$.
4. Find $\operatorname{Ker}(T)$, $\operatorname{nullity}(T), \operatorname{Im}(T)$ and $\operatorname{rank}(T)$.
5. Show that there is no linear transformation $T^{\prime}: U \rightarrow U$ such that $T^{\prime}\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{2}$, $T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{3}$ and $T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{v}_{1}$.

[^0]: ${ }^{1}$ The condition $V=\operatorname{Span}(S)$ is enough.

