8 General Linear Transformations

8.1 Basic Properties

Definition 8.1 If $T: V \to W$ is a function from a vector space V into a vector space W, then T is called a *linear transformation* from V to W if, for all vectors \boldsymbol{u} and \boldsymbol{v} in V and all scalars c,

(a)
$$T(\boldsymbol{u} + \boldsymbol{v}) = T(\boldsymbol{u}) + T(\boldsymbol{v})$$
 (b) $T(c\boldsymbol{u}) = cT(\boldsymbol{u})$.

In the special case where V = W, the linear transformation $T: V \to V$ is called a *linear operator* of V.

Example 8.1 A linear transformation from \mathbb{R}^n to \mathbb{R}^m is first defined in Definition 2.2 as a function

$$T(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_m)$$

for which the equations relating y_1, y_2, \ldots, y_m with x_1, x_2, \ldots, x_n are linear, and it was expressed by a matrix multiplication:

$$T(\boldsymbol{x}) = A\boldsymbol{x}$$
, where $A = [T(\boldsymbol{e}_1), T(\boldsymbol{e}_2), \dots, T(\boldsymbol{e}_n)]$.

The matrix A was called the standard matrix and denoted by A = [T] and $T = T_A$. Moreover, linear transformations were characterized by the two properties in Definition 8.1. See Theorem 2.2.

Example 8.2 Let V be an inner product space and W a subspace of V. Then the orthogonal projection $\operatorname{proj}_W : V \to V$ is a linear transformation (or linear operator), and that $\operatorname{proj}_W(V) = W$.

Example 8.3 [Examples 11, 12] Let $C^{\infty}(a, b)$ be the set of functions that are differentiable for all degrees of differentiation

1. $D: C^{\infty}(a, b) \to C^{\infty}(a, b)$ $(f(x) \mapsto f'(x))$ is a linear operator.

2.
$$I: C^{\infty}(a,b) \to C^{\infty}(a,b) \ (f(x) \mapsto \int_{a}^{x} f(t)dt)$$
 is a linear operator.

Lemma 8.1 (8.1.1) If $T: V \to W$ is a linear transformation, then

(a)
$$T(0) = 0$$
.

(b)
$$T(-\boldsymbol{v}) = -T(\boldsymbol{v})$$
 for all $\boldsymbol{v} \in V$.

(c)
$$T\left(\sum_{i=1}^{m} k_i \boldsymbol{v}_i\right) = \sum_{i=1}^{m} k_i T(\boldsymbol{v}_i) \text{ for all } \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m \in V \text{ and all scalars } k_1, k_2, \dots, k_m.$$

Proof. (a): $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0})$. By adding $-T(\mathbf{0})$ on both hand sides, we have $\mathbf{0} = T(\mathbf{0})$.

(b): $T(\boldsymbol{v}) + T(-\boldsymbol{v}) = T(\boldsymbol{v} + (-\boldsymbol{v})) = T(\boldsymbol{0}) = \boldsymbol{0}$. Hence by adding $-T(\boldsymbol{v})$ on both hand sides, we have $T(-\boldsymbol{v}) = -T(\boldsymbol{v})$.

(c): This is straightforward as

$$T\left(\sum_{i=1}^{m} k_i \boldsymbol{v}_i\right) = T(k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_m \boldsymbol{v}_m)$$

$$= T(k_1 \boldsymbol{v}_1) + T(k_2 \boldsymbol{v}_2) + \dots + T(k_m \boldsymbol{v}_m)$$

$$= k_1 T(\boldsymbol{v}_1) + k_2 T(\boldsymbol{v}_2) + \dots + k_m T(\boldsymbol{v}_m)$$

$$= \sum_{i=1}^{m} k_i T(\boldsymbol{v}_i).$$

Proposition 8.2 Let T_1 and T_2 be linear transformations from V to W, and $S = \{v_1, v_2, \ldots, v_n\}$ a basis of V^1 . Then the following are equivalent.

- (a) $T_1 = T_2$, *i.e.*, $T_1(\boldsymbol{v}) = T_2(\boldsymbol{v})$ for all $\boldsymbol{v} \in V$.
- (b) $T_1(\boldsymbol{v}_i) = T_2(\boldsymbol{v}_i)$ for all i = 1, 2, ..., n.

Proof. (a) \Rightarrow (b) is obvious.

(b) \Rightarrow (a) follows from Lemma 8.1 (c) as

$$T_1(\boldsymbol{v}) = T_1\left(\sum_{i=1}^n k_i \boldsymbol{v}_i\right) = \sum_{i=1}^n k_i T_1(\boldsymbol{v}_i) = \sum_{i=1}^n k_i T_2(\boldsymbol{v}_i) = T_2\left(\sum_{i=1}^n k_i \boldsymbol{v}_i\right) = T_2(\boldsymbol{v}),$$

when \boldsymbol{v} is expressed as $\boldsymbol{v} = \sum_{i=1}^{n} k_i \boldsymbol{v}_i$.

Proposition 8.3 Let V and W be vector spaces, $S = \{v_1, v_2, ..., v_n\}$ a basis of V and $w_1, w_2, ..., w_n \in W$. Then there exists a unique linear transformation $T : V \to W$ such that $T(v_i) = w_i$ for all i = 1, 2, ..., n.

Proof. The uniqueness follows from Proportion 8.2. Since for every vector $v \in V$ there exist scalars k_1, k_2, \ldots, k_n such that

$$\boldsymbol{v} = k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_n \boldsymbol{v}_n.$$

By Proposition 4.1, k_1, k_2, \ldots, k_n are uniquely determined for each \boldsymbol{v} . Let

$$T(\boldsymbol{v}) = k_1 \boldsymbol{w}_1 + k_2 \boldsymbol{w}_2 + \dots + k_n \boldsymbol{w}_n.$$

¹The condition V = Span(S) is enough.

Then the vector on the right hand side of the equation above is uniquely determined, and this assignment T is a linear transformation satisfying the condition. To see this let $\boldsymbol{u} = \ell_1 \boldsymbol{v}_1 + \ell_2 \boldsymbol{v}_2 + \cdots + \ell_n \boldsymbol{v}_n \in V$. Then

$$T(\boldsymbol{u} + \boldsymbol{v}) = T(\ell_1 \boldsymbol{v}_1 + \ell_2 \boldsymbol{v}_2 + \dots + \ell_n \boldsymbol{v}_n + k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_n \boldsymbol{v}_n)$$

$$= T((\ell_1 + k_1) \boldsymbol{v}_1 + (\ell_2 + k_2) \boldsymbol{v}_2 + \dots + (\ell_n + k_n) \boldsymbol{v}_n)$$

$$= (\ell_1 + k_1) \boldsymbol{w}_1 + (\ell_2 + k_2) \boldsymbol{w}_2 + \dots + (\ell_n + k_n) \boldsymbol{w}_n$$

$$= \ell_1 \boldsymbol{w}_1 + \ell_2 \boldsymbol{w}_2 + \dots + \ell_n \boldsymbol{w}_n + k_1 \boldsymbol{w}_1 + k_2 \boldsymbol{w}_2 + \dots + k_n \boldsymbol{w}_n$$

$$= T(\ell_1 \boldsymbol{v}_1 + \ell_2 \boldsymbol{v}_2 + \dots + \ell_n \boldsymbol{v}_n) + T(k_1 \boldsymbol{v}_1 + k_2 \boldsymbol{v}_2 + \dots + k_n \boldsymbol{v}_n)$$

$$= T(\boldsymbol{u}) + T(\boldsymbol{v}).$$

We can show $T(k\boldsymbol{v}) = kT(\boldsymbol{v})$ similarly.

Proposition 8.4 (8.1.2) Let $T_1 : U \to V$ and $T_2 : V \to W$ be linear transformations. Then the composition of T_2 with T_1 defined by

$$T_2 \circ T_1 : U \to W \ (\boldsymbol{x} \mapsto T_2(T_1(\boldsymbol{x}))).$$

is a linear transformation.

Proof. It suffices to prove the conditions (a) and (b) in Definition 8.1. (a): For $\boldsymbol{u}_1, \boldsymbol{u}_2 \in U$,

$$T_2 \circ T_1(\boldsymbol{u}_1 + \boldsymbol{u}_2) = T_2(T_1(\boldsymbol{u}_1 + \boldsymbol{u}_2)) = T_2(T_1(\boldsymbol{u}_1) + T_1(\boldsymbol{u}_2))$$

= $T_2(T_1(\boldsymbol{u}_1)) + T_2(T_1(\boldsymbol{u}_2)) = T_2 \circ T_1(\boldsymbol{u}_1) + T_2 \circ T_1(\boldsymbol{u}_2).$

(b): For $\boldsymbol{u} \in U$ and a scalary k,

$$T_2 \circ T_1(k\boldsymbol{u}) = T_2(T_1(k\boldsymbol{u})) = T_2(kT_1(\boldsymbol{u})) = kT_2(T_1(\boldsymbol{u})) = k(T_2 \circ T_1(\boldsymbol{u})).$$

Hence $T_2 \circ T_1 : U \to W$ is a linear transformation.

8.2 Kernel and Range

Proposition 8.5 (8.2.1) If $T: V \to W$ is a linear transformation, then

- (a) $\{ \boldsymbol{v} \in V \mid T(\boldsymbol{v}) = \boldsymbol{0} \}$ is a subspace of V.
- (b) $\{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ is a subspace of W.

Proof. We apply Theorem 3.2.

(a): Let $U = \{ \boldsymbol{v} \in V \mid T(\boldsymbol{v}) = \boldsymbol{0} \}$. Note that for $\boldsymbol{v} \in V$, $\boldsymbol{v} \in U \Leftrightarrow T(\boldsymbol{v}) = \boldsymbol{0}$. Let $\boldsymbol{v}_1, \boldsymbol{v}_2 \in U$ and k a scalar. Since $T(\boldsymbol{v}_1) = T(\boldsymbol{v}_2) = \boldsymbol{0}$,

$$T(v_1 + v_2) = T(v_1) + T(v_2) = 0 + 0 = 0.$$

Hence $v_1 + v_2 \in U$ whenever $v_1, v_2 \in U$. Similarly

$$T(k\boldsymbol{v}_1) = kT(\boldsymbol{v}_1) = k\mathbf{0} = \mathbf{0}.$$

Hence $k v_1 \in U$ whenever $v_1 \in U$. Therefore U is a subspace of V.

(b): Let $U = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ and $T(\boldsymbol{v}_1), T(\boldsymbol{v}_2) \in U$, where $\boldsymbol{v}_1, \boldsymbol{v}_2 \in V$. Then

$$T(\boldsymbol{v}_1) + T(\boldsymbol{v}_2) = T(\boldsymbol{v}_1 + \boldsymbol{v}_2) \in U$$

as $\boldsymbol{v}_1 + \boldsymbol{v}_2 \in V$. Moreover if k is a scalar,

$$kT(\boldsymbol{v}_1) = T(k\boldsymbol{v}_1) \in U$$

and U is a subspace of W.

Definition 8.2 If $T: V \to W$ is a linear transformation, then the set of vectors in V that T maps into **0** is called the *kernel* of T; it is denoted by Ker(T). The set of all vectors in W that are images under T of at least one vector in V is called the *range* of T; it is denoted by Im(T). The dimension of the range of T is called the *rank* of T and is denoted by rank(T), the dimension of the kernel is called the *nullity* of T and is denoted by nullity(T).

 $\operatorname{Ker}(T) = \{ \boldsymbol{v} \in V \mid T(\boldsymbol{v}) = \boldsymbol{0} \} \subset V, \operatorname{Im}(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\} \subset W, \text{ and}$ $\operatorname{nullity}(T) = \operatorname{dim}(\operatorname{Ker}(T)), \operatorname{rank}(T) = \operatorname{dim}(\operatorname{Im}(T)).$

The following is a generalization of Theorem 5.7. See also Theorem 7.3.

Theorem 8.6 (8.2.3) If $T: V \to W$ is a linear transformation from an n-dimensional vector space V to a vector space W, then

$$\operatorname{rank}(T) + \operatorname{nullity}(T) = n.$$

Proof. Let U = Ker(T) and $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_r\}$ a basis of Im(T). Hence $r = \dim(\text{Im}(T)) = \operatorname{rank}(T)$. Since $\boldsymbol{w}_i \in \text{Im}(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in V\}$ for $i = 1, 2, \dots, r$, there exists $\boldsymbol{v}_i \in V$ such that $f(\boldsymbol{v}_i) = \boldsymbol{w}_i$. Let $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\}$ be a basis of U. Hence $k = \dim(\text{Ker}(T)) = \operatorname{nullity}(T)$. Our goal is to show $r + k = n = \dim(V)$. It suffices to show that $S = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_r, \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_k\}$ is a basis of V.

Linear Independence: Suppose $a_1 v_1 + a_2 v_2 + \cdots + a_r v_r + b_1 u_1 + b_2 u_2 + \cdots + b_k u_k =$ **0**. Since $u_1, u_2, \ldots, u_k \in \text{Ker}(T)$, by Lemma 8.1

$$0 = T(\mathbf{0}) = T(a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_r \mathbf{v}_r + b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2 + \dots + b_k \mathbf{u}_k)$$

= $a_1 T(\mathbf{v}_1) + a_2 T(\mathbf{v}_2) + \dots + a_r T(\mathbf{v}_r)$
= $a_1 \mathbf{w}_1 + a_2 \mathbf{w}_2 + \dots + a_r \mathbf{w}_r.$

Since $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \ldots, \boldsymbol{w}_r\}$ is a basis of Im(T), it is linearly independent. Hence $a_1 = a_2 = \cdots = a_r = 0$. Now the first equation yields $b_1\boldsymbol{u}_1 + b_2\boldsymbol{u}_2 + \cdots + b_k\boldsymbol{u}_k = \mathbf{0}$ and $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_k\}$ is a basis of U and linearly independent. Hence $b_1 = b_2 = \cdots = b_k = 0$. Therefore, S is linearly independent.

V = Span(S): Let $\boldsymbol{v} \in V$. Since $T(\boldsymbol{v}) \in \text{Im}(T)$, there exist scalars a_1, a_2, \ldots, a_r such that $T(\boldsymbol{v}) = a_1 \boldsymbol{w}_1 + a_2 \boldsymbol{w}_2 + \cdots + a_r \boldsymbol{w}_r$. Let $\boldsymbol{w} = a_1 \boldsymbol{v}_1 + a_2 \boldsymbol{v}_2 + \cdots + a_r \boldsymbol{v}_r$. Then

$$T(\boldsymbol{w}) = T(a_1\boldsymbol{v}_1 + a_2\boldsymbol{v}_2 + \dots + a_r\boldsymbol{v}_r)$$

= $a_1T(\boldsymbol{v}_1) + a_2T(\boldsymbol{v}_2) + \dots + a_rT(\boldsymbol{v}_r)$
= $a_1\boldsymbol{w}_1 + a_2\boldsymbol{w}_2 + \dots + a_r\boldsymbol{w}_r$
= $T(\boldsymbol{v}).$

Hence $T(\boldsymbol{v} - \boldsymbol{w}) = T(\boldsymbol{v}) - T(\boldsymbol{w}) = \boldsymbol{0}$ and $\boldsymbol{v} - \boldsymbol{w} \in \text{Ker}(T)$. Thus there exist scalars b_1, b_2, \ldots, b_k such that $\boldsymbol{v} - \boldsymbol{w} = b_1 \boldsymbol{u}_1 + b_2 \boldsymbol{u}_2 + \cdots + b_k \boldsymbol{u}_k$ as $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_k\}$ is a basis of Ker(T). Therefore

 $\boldsymbol{v} = \boldsymbol{w} + b_1 \boldsymbol{u}_1 + b_2 \boldsymbol{u}_2 + \dots + b_k \boldsymbol{u}_k = a_1 \boldsymbol{v}_1 + a_2 \boldsymbol{v}_2 + \dots + a_r \boldsymbol{v}_r + b_1 \boldsymbol{u}_1 + b_2 \boldsymbol{u}_2 + \dots + b_k \boldsymbol{u}_k$

is in Span(S). This completes the proof.

Proposition 8.7 (8.3.1) If $T: V \to W$ is a linear transformation, then the following are equivalent.

- (a) T is one-to-one, i.e., injective.
- (b) $Ker(T) = \{0\}.$
- (c) nullity(T) = 0

Proof. By definition (b) \Leftrightarrow (c). Suppose T is one-to-one. Let $\boldsymbol{v} \in \text{Ker}(T)$. Since $\boldsymbol{0} \in \text{Ker}(T), T(\boldsymbol{0}) = \boldsymbol{0} = T(\boldsymbol{v})$. We have $\boldsymbol{v} = \boldsymbol{0}$ as T is one-to-one. Hence $\text{Ker}(T) = \{\boldsymbol{0}\}$. This shows (a) \Rightarrow (b).

Suppose Ker(*T*) = {**0**} and *T*(v_1) = *T*(v_2) with $v_1, v_2 \in V$. Then *T*($v_1 - v_2$) = *T*(v_1) - *T*(v_2) = **0** and $v_1 - v_2 \in \text{Ker}(T) = \{0\}$. Thus $v_1 - v_2 = 0$, or $v_1 = v_2$. Therefore *T* is one-to-one.

Proposition 8.8 (8.3.2) If V is a finite-dimensional vector space, and $T: V \to V$ is a linear operator, then the following are equivalent.

(a) T is one-to-one, i.e., injective.

(b)
$$Ker(T) = \{0\}.$$

- (c) nullity(T) = 0.
- (d) The range of T is V, i.e., surjective.
- (e) $\operatorname{rank}(T) = \dim V$.

Proof. (a) \Leftrightarrow (b) \Leftrightarrow (c) are already shown in Proposition 8.7. Let $n = \dim V$. then by Theorem 8.6, $n = \operatorname{rank}(T) + \operatorname{nullity}(T)$. Hence $\operatorname{nullity}(T) = 0$ if and only if $\operatorname{rank}(T) = n$. Since $\operatorname{rank}(T) = \dim(\operatorname{Im}(T))$ and $\operatorname{Im}(T)$ is a subspace of V by Proposition 8.5, $\operatorname{rank}(T) = n = \dim V$ if and only if $\operatorname{Im}(T) = V$ by Theorem 4.8 (d). This establishes the equivalence.

Exercise 8.1 [Quiz 8] Let v_1, v_2, v_3 and u be vectors in \mathbf{R}^3 given below.

$$\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}, \ \boldsymbol{v}_2 = \begin{bmatrix} -2 \\ 7 \\ 4 \end{bmatrix}, \ \boldsymbol{v}_3 = \begin{bmatrix} 3 \\ -8 \\ -6 \end{bmatrix}, \ \boldsymbol{u} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^3$, let $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v}$ be the inner product, $U = \text{Span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$, and $T = \text{proj}_U$. You may quote the facts shown in previous quizzes.

- 1. Show that $T(v_1) = v_1$, $T(v_2) = v_2$, $T(v_3) = v_3$ and T(u) = 0.
- 2. Show that T is a linear transformation using the definition of linear transformations.
- 3. Show that $T \circ T = T$.
- 4. Find Ker(T), nullity(T), Im(T) and rank(T).
- 5. Show that there is no linear transformation $T': U \to U$ such that $T'(\boldsymbol{v}_1) = \boldsymbol{v}_2$, $T(\boldsymbol{v}_2) = \boldsymbol{v}_3$ and $T(\boldsymbol{v}_3) = \boldsymbol{v}_1$.