
8 General Linear Transformations

8.1 Basic Properties

Definition 8.1 If T : V → W is a function from a vector space V into a vector
space W , then T is called a linear transformation from V to W if , for all vectors u
and v in V and all scalars c,

(a) T (u + v) = T (u) + T (v) (b) T (cu) = cT (u).

In the special case where V = W , the linear transformation T : V → V is called a
linear operator of V .

Example 8.1 A linear transformation from Rn to Rm is first defined in Defini-
tion 2.2 as a function

T (x1, x2, . . . , xn) = (y1, y2, . . . , ym)

for which the equations relating y1, y2, . . . , ym with x1, x2, . . . , xn are linear, and it
was expressed by a matrix multiplication:

T (x) = Ax, where A = [T (e1), T (e2), . . . , T (en)].

The matrix A was called the standard matrix and denoted by A = [T ] and T =
TA. Moreover, linear transformations were characterized by the two properties in
Definition 8.1. See Theorem 2.2.

Example 8.2 Let V be an inner product space and W a subspace of V . Then the
orthogonal projection projW : V → V is a linear transformation (or linear operator),
and that projW (V ) = W .

Example 8.3 [Examples 11, 12] Let C∞(a, b) be the set of functions that are dif-
ferentiable for all degrees of differentiation

1. D : C∞(a, b) → C∞(a, b) (f(x) "→ f ′(x)) is a linear operator.

2. I : C∞(a, b) → C∞(a, b) (f(x) "→
∫ x

a f(t)dt) is a linear operator.

Lemma 8.1 (8.1.1) If T : V → W is a linear transformation, then

(a) T (0) = 0.

(b) T (−v) = −T (v) for all v ∈ V .

(c) T
( m∑

i=1

kivi

)
=

m∑

i=1

kiT (vi) for all v1, v2, . . . , vm ∈ V and all scalars k1, k2, . . . , km.
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Proof. (a): T (0) = T (0+0) = T (0)+T (0). By adding −T (0) on both hand sides,
we have 0 = T (0).

(b): T (v) + T (−v) = T (v + (−v)) = T (0) = 0. Hence by adding −T (v) on
both hand sides, we have T (−v) = −T (v).

(c): This is straightforward as

T
( m∑

i=1

kivi

)
= T (k1v1 + k2v2 + · · · + kmvm)

= T (k1v1) + T (k2v2) + · · · + T (kmvm)

= k1T (v1) + k2T (v2) + · · · + kmT (vm)

=
m∑

i=1

kiT (vi).

Proposition 8.2 Let T1 and T2 be linear transformations from V to W , and S =
{v1,v2, . . . , vn} a basis of V 1. Then the following are equivalent.

(a) T1 = T2, i.e., T1(v) = T2(v) for all v ∈ V .

(b) T1(vi) = T2(vi) for all i = 1, 2, . . . , n.

Proof. (a) ⇒ (b) is obvious.
(b) ⇒ (a) follows from Lemma 8.1 (c) as

T1(v) = T1

( n∑

i=1

kivi

)
=

n∑

i=1

kiT1(vi) =
n∑

i=1

kiT2(vi) = T2

( n∑

i=1

kivi

)
= T2(v),

when v is expressed as v =
n∑

i=1

kivi.

Proposition 8.3 Let V and W be vector spaces, S = {v1, v2, . . . , vn} a basis of
V and w1, w2, . . . , wn ∈ W . Then there exists a unique linear transformation T :
V → W such that T (vi) = wi for all i = 1, 2, . . . , n.

Proof. The uniqueness follows from Propotion 8.2. Since for every vector v ∈ V
there exist scalars k1, k2, . . . , kn such that

v = k1v1 + k2v2 + · · · + knvn.

By Proposition 4.1, k1, k2, . . . , kn are uniquely determined for each v. Let

T (v) = k1w1 + k2w2 + · · · + knwn.

1The condition V = Span(S) is enough.
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Then the vector on the right hand side of the equation above is uniquely determined,
and this assignment T is a linear transformation satisfying the condition. To see
this let u = !1v1 + !2v2 + · · · + !nvn ∈ V . Then

T (u + v) = T (!1v1 + !2v2 + · · · + !nvn + k1v1 + k2v2 + · · · + knvn)

= T ((!1 + k1)v1 + (!2 + k2)v2 + · · · + (!n + kn)vn)

= (!1 + k1)w1 + (!2 + k2)w2 + · · · + (!n + kn)wn

= !1w1 + !2w2 + · · · + !nwn + k1w1 + k2w2 + · · · + knwn

= T (!1v1 + !2v2 + · · · + !nvn) + T (k1v1 + k2v2 + · · · + knvn)

= T (u) + T (v).

We can show T (kv) = kT (v) similarly.

Proposition 8.4 (8.1.2) Let T1 : U → V and T2 : V → W be linear transforma-
tions. Then the composition of T2 with T1 defined by

T2 ◦ T1 : U → W (x "→ T2(T1(x))).

is a linear transformation.

Proof. It suffices to prove the conditions (a) and (b) in Definition 8.1.
(a): For u1,u2 ∈ U ,

T2 ◦ T1(u1 + u2) = T2(T1(u1 + u2)) = T2(T1(u1) + T1(u2))

= T2(T1(u1)) + T2(T1(u2)) = T2 ◦ T1(u1) + T2 ◦ T1(u2).

(b): For u ∈ U and a scalary k,

T2 ◦ T1(ku) = T2(T1(ku)) = T2(kT1(u)) = kT2(T1(u)) = k(T2 ◦ T1(u)).

Hence T2 ◦ T1 : U → W is a linear transformation.

8.2 Kernel and Range

Proposition 8.5 (8.2.1) If T : V → W is a linear transformation, then

(a) {v ∈ V | T (v) = 0} is a subspace of V .

(b) {T (v) | v ∈ V } is a subspace of W .

Proof. We apply Theorem 3.2.
(a): Let U = {v ∈ V | T (v) = 0}. Note that for v ∈ V , v ∈ U ⇔ T (v) = 0.

Let v1,v2 ∈ U and k a scalar. Since T (v1) = T (v2) = 0,

T (v1 + v2) = T (v1) + T (v2) = 0 + 0 = 0.

Hence v1 + v2 ∈ U whenever v1, v2 ∈ U . Similarly

T (kv1) = kT (v1) = k0 = 0.
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Hence kv1 ∈ U whenever v1 ∈ U . Therefore U is a subspace of V .
(b): Let U = {T (v) | v ∈ V } and T (v1), T (v2) ∈ U , where v1,v2 ∈ V . Then

T (v1) + T (v2) = T (v1 + v2) ∈ U

as v1 + v2 ∈ V . Moreover if k is a scalar,

kT (v1) = T (kv1) ∈ U

and U is a subspace of W .

Definition 8.2 If T : V → W is a linear transformation, then the set of vectors
in V that T maps into 0 is called the kernel of T ; it is denoted by Ker(T ). The
set of all vectors in W that are images under T of at least one vector in V is called
the range of T ; it is denoted by Im(T ). The dimension of the range of T is called
the rank of T and is denoted by rank(T ), the dimension of the kernel is called the
nullity of T and is denoted by nullity(T ).

Ker(T ) = {v ∈ V | T (v) = 0} ⊂ V , Im(T ) = {T (v) | v ∈ V } ⊂ W , and
nullity(T ) = dim(Ker(T )), rank(T ) = dim(Im(T )).

The following is a generalization of Theorem 5.7. See also Theorem 7.3.

Theorem 8.6 (8.2.3) If T : V → W is a linear transformation from an n-dimensional
vector space V to a vector space W , then

rank(T ) + nullity(T ) = n.

Proof. Let U = Ker(T ) and {w1,w2, . . . , wr} a basis of Im(T ). Hence r =
dim(Im(T )) = rank(T ). Since wi ∈ Im(T ) = {T (v) | v ∈ V } for i = 1, 2, . . . , r,
there exists vi ∈ V such that f(vi) = wi. Let {u1,u2, . . . , uk} be a basis of U .
Hence k = dim(Ker(T )) = nullity(T ). Our goal is to show r + k = n = dim(V ). It
suffices to show that S = {v1, v2, . . . , vr, u1,u2, . . . , uk} is a basis of V .

Linear Independence: Suppose a1v1+a2v2+· · ·+arvr+b1u1+b2u2+· · ·+bkuk =
0. Since u1,u2, . . . , uk ∈ Ker(T ), by Lemma 8.1

0 = T (0) = T (a1v1 + a2v2 + · · · + arvr + b1u1 + b2u2 + · · · + bkuk)

= a1T (v1) + a2T (v2) + · · · + arT (vr)

= a1w1 + a2w2 + · · · + arwr.

Since {w1,w2, . . . , wr} is a basis of Im(T ), it is linearly independent. Hence a1 =
a2 = · · · = ar = 0. Now the first equation yields b1u1 + b2u2 + · · · + bkuk = 0 and
{u1, u2, . . . , uk} is a basis of U and linearly independent. Hence b1 = b2 = · · · =
bk = 0. Therefore, S is linearly independent.

V = Span(S): Let v ∈ V . Since T (v) ∈ Im(T ), there exist scalars a1, a2, . . . , ar

such that T (v) = a1w1 + a2w2 + · · · + arwr. Let w = a1v1 + a2v2 + · · · + arvr.
Then

T (w) = T (a1v1 + a2v2 + · · · + arvr)

= a1T (v1) + a2T (v2) + · · · + arT (vr)

= a1w1 + a2w2 + · · · + arwr

= T (v).
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Hence T (v −w) = T (v)− T (w) = 0 and v −w ∈ Ker(T ). Thus there exist scalars
b1, b2, . . . , bk such that v − w = b1u1 + b2u2 + · · · + bkuk as {u1,u2, . . . , uk} is a
basis of Ker(T ). Therefore

v = w+b1u1 +b2u2 + · · ·+bkuk = a1v1 +a2v2 + · · ·+arvr +b1u1 +b2u2 + · · ·+bkuk

is in Span(S). This completes the proof.

Proposition 8.7 (8.3.1) If T : V → W is a linear transformation, then the fol-
lowing are equivalent.

(a) T is one-to-one, i.e., injective.

(b) Ker(T ) = {0}.

(c) nullity(T ) = 0

Proof. By definition (b) ⇔ (c). Suppose T is one-to-one. Let v ∈ Ker(T ). Since
0 ∈ Ker(T ), T (0) = 0 = T (v). We have v = 0 as T is one-to-one. Hence
Ker(T ) = {0}. This shows (a) ⇒ (b).

Suppose Ker(T ) = {0} and T (v1) = T (v2) with v1, v2 ∈ V . Then T (v1 − v2) =
T (v1) − T (v2) = 0 and v1 − v2 ∈ Ker(T ) = {0}. Thus v1 − v2 = 0, or v1 = v2.
Therefore T is one-to-one.

Proposition 8.8 (8.3.2) If V is a finite-dimensional vector space, and T : V → V
is a linear operator, then the following are equivalent.

(a) T is one-to-one, i.e., injective.

(b) Ker(T ) = {0}.

(c) nullity(T ) = 0.

(d) The range of T is V , i.e., surjective.

(e) rank(T ) = dim V .

Proof. (a) ⇔ (b) ⇔ (c) are already shown in Proposition 8.7. Let n = dim V .
then by Theorem 8.6, n = rank(T ) + nullity(T ). Hence nullity(T ) = 0 if and only
if rank(T ) = n. Since rank(T ) = dim(Im(T )) and Im(T ) is a subspace of V by
Proposition 8.5, rank(T ) = n = dim V if and only if Im(T ) = V by Theorem 4.8
(d). This establishes the equivalence.

Exercise 8.1 [Quiz 8] Let v1,v2,v3 and u be vectors in R3 given below.

v1 =




1
−3
−2



 , v2 =




−2
7
4



 , v3 =




3
−8
−6



 , u =




2
0
1



 .

For u, v ∈ R3, let 〈u,v〉 = u ·v = uT v be the inner product, U = Span{v1,v2, v3},
and T = projU . You may quote the facts shown in previous quizzes.
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1. Show that T (v1) = v1, T (v2) = v2, T (v3) = v3 and T (u) = 0.

2. Show that T is a linear transformation using the definition of linear transfor-
mations.

3. Show that T ◦ T = T .

4. Find Ker(T ), nullity(T ), Im(T ) and rank(T ).

5. Show that there is no linear transformation T ′ : U → U such that T ′(v1) = v2,
T (v2) = v3 and T (v3) = v1.
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