
6 Inner Product Spaces

6.1 Inner Product, Norm and Distance

Definition 6.1 An inner product on a real vector space V is a function that asso-
ciates a real number 〈u, v〉 with each pair of vectors u and v in V in such a way
that the following axioms are satisfied for all vectors u, v and z in V and all scalars
k.

(a) 〈u,v〉 = 〈u, v〉 (Symmetry axiom)

(b) 〈u + v, z〉 = 〈u, z〉 + 〈v,z〉 (Additive axiom)

(c) 〈ku,v〉 = k〈u, v〉 (Homogeneity axiom)

(d) 〈v, v〉 ≥ 0 (Positivity axiom)

and if 〈v, v〉 = 0 if and only if v = 0.

A real vector space with an inner product is called a real inner product space.

Remarks.

1. Recall that for V = Rn, 〈u, v〉 = u · v = uT v (u,v ∈ V ) satisfies the
conditions above by Theorem 1.2. Hence it is an inner product defined in
Definition 6.1.

2. For all vectors u, v and z in V and all scalars k,

〈z, u + v〉 = 〈z,u〉 + 〈z, v〉, 〈u, kv〉 = k〈u,v〉.

3. 〈0,v〉 = 0 for all v ∈ V , as 〈0,v〉 = 〈00, v〉 = 0〈0,v〉 = 0.

4. The definition above is only for real vector spaces, and the inequality in (d) is
the usual inequality among reals.

5. As for a complex vector space, a similar notion can be defined as in the next
definition. Then the following discussion is almost the same.

Definition 6.2 An inner product on a complex vector space V is a function that
associates a real number 〈u, v〉 with each pair of vectors u and v in V in such a
way that the following axioms are satisfied for all vectors u,v and z in V and all
scalars k (k ∈ C).

(a) 〈u,v〉 = 〈u, v〉 (Symmetry axiom)

(b) 〈u + v, z〉 = 〈u, z〉 + 〈v,z〉 (Additive axiom)

(c) 〈ku,v〉 = k〈u, v〉 (Homogeneity axiom)
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(d) 〈v, v〉 ≥ 0 (Positively axiom)

and if 〈v, v〉 = 0 if and only if v = 0.

A real vector space with an inner product is called a real inner product space.

Definition 6.3 If V is an inner product space, then the norm (or length) of a vector
u ∈ V is denoted by ‖u‖ and is defined by

‖u‖ = 〈u, u〉1/2.

The distance between two points (vectors) u and v is denoted by d(u,v) and is
defined by

d(u,v) = ‖u − v‖.

Example 6.1 [Excercise 6.1.30] Let A be an invertible n×n matrix. The following
defines an inner product on Rn.

〈u, v〉 = Au · Av = (Au)T Av = uT AT Av.

Proof. The properties (a), (b), (c) are obvious. Clearly 〈u,u〉 = (Au) · (Au) ≥ 0
by the nonnegativity condition of the dot product in Rn. Moreover if 〈u, u〉 = 0
implies Au = 0. Since A is invertible, u = 0, and the condition (d) is proved.

Example 6.2 For A,B ∈ Matn(R) let

〈A,B〉 = tr(AT B).

Then 〈A, B〉 defines an inner product on Matn(R).

Example 6.3 Let f = f(x) and g = g(x) be two functions on C[a, b], the set of all
continuous functions on [a, b]. Define

〈f , g〉 =

∫ b

a

f(x)g(x)dx.

Then 〈f , g〉 defines an inner product on C[a, b].

6.2 Properties of Inner Product Space

Theorem 6.1 ((6.2.1) Cauchy-Schwarz Inequality) If u and v are vectors in
a real inner product space, then

|〈u,v〉| ≤ ‖u‖‖v‖.

Equality holds if and only if u and v are linearly dependent.
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Proof. If u = 0, then there is nothing to prove. Assume that u )= 0. Let t be a
scalar. Then

‖tu + v‖2 = 〈tu + v, tu + v〉 = ‖u‖2t2 + 2〈u,v〉t + ‖v‖2.

Since the right hand side is a polynomial of degree exactly equal to 2 in t and the
left hand side is always nonnegative for all t ∈ R,

(〈u,v〉)2 − ‖u‖2‖v‖2 ≤ 0.

Therefore we have the inequality.
Suppose the equality holds. Then there is a real number s such that ‖su+v‖ = 0.

Hence by the property (d) in Definition 6.1, su + v = 0 and u and v are linearly
independent. Conversely if u and v are linearly dependent, then either u = 0 or
there exists a real such that su + v = 0. Hence the discriminant above is 0 and we
have equality.

If u, v are nonzero vectors, then

−1 ≤ 〈u, v〉
‖u‖‖v‖ ≤ 1.

Hence there is a unique angle θ such that

cos θ =
〈u,v〉
‖u‖‖v‖ and 0 ≤ θ ≤ π.

Two vectors u,v ∈ V are said to be orthogonal when 〈u, v〉 = 0.

Theorem 6.2 (6.2.2) Let u and v be vectors in an inner product space V , and k
a scalar. Then:

(a) ‖u‖ ≥ 0.

(b) ‖u‖ = 0 if and only if u = 0.

(c) ‖ku‖ = |k|‖u‖.

(d) ‖u + v‖ ≤ ‖u‖ + ‖v‖. (Triangle inequality)

Theorem 6.3 (6.2.3) Let u and v be vectors in an inner product space V , and k
a scalar. Then:

(a) d(u, v) ≥ 0.

(b) d(u, v) = 0 if and only if u = v.

(c) d(u, v) = d(v, u).

(d) d(u, v) ≤ d(u, w) + d(w,v). (Triangle inequality)
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Theorem 6.4 ((6.2.4) Generalization Theorem of Pythagoras) If u and v
are vectors in an inner vector space, then

‖u + v‖2 = ‖u‖2 + ‖v‖2 ⇔ 〈u, v〉 = 0.

Exercise 6.1 [Quiz 6] Let A be an invertible m × n matrix. For u,v ∈ Rn let

〈u, v〉 = Au · Av = (Au)T Av = uT AT Av.

1. Show that 〈u,v〉 satisfies the properties (a), (b) and (c) of an inner product
in Definition 6.1.

2. Show that if N (A) = {v ∈ Rn | Av = 0} = {0}, then 〈u,v〉 is an inner
product.

3. Show that if m > n, then 〈u,v〉 is not an inner product.

4. Suppose AT A is invertible. Show that m ≤ n.
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