6 Inner Product Spaces

6.1 Inner Product, Norm and Distance

Definition 6.1 An inner product on a real vector space V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Symmetry axiom)
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$ (Additive axiom)
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Homogeneity axiom)
(d) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ (Positivity axiom)
and if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.
A real vector space with an inner product is called a real inner product space.

Remarks.

1. Recall that for $V=\boldsymbol{R}^{n},\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{u}^{T} \boldsymbol{v}(\boldsymbol{u}, \boldsymbol{v} \in V)$ satisfies the conditions above by Theorem 1.2. Hence it is an inner product defined in Definition 6.1.
2. For all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars k,

$$
\langle\boldsymbol{z}, \boldsymbol{u}+\boldsymbol{v}\rangle=\langle\boldsymbol{z}, \boldsymbol{u}\rangle+\langle\boldsymbol{z}, \boldsymbol{v}\rangle,\langle\boldsymbol{u}, k \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle .
$$

3. $\langle\mathbf{0}, \boldsymbol{v}\rangle=0$ for all $\boldsymbol{v} \in V$, as $\langle\mathbf{0}, \boldsymbol{v}\rangle=\langle 00, \boldsymbol{v}\rangle=0\langle\mathbf{0}, \boldsymbol{v}\rangle=0$.
4. The definition above is only for real vector spaces, and the inequality in (d) is the usual inequality among reals.
5. As for a complex vector space, a similar notion can be defined as in the next definition. Then the following discussion is almost the same.

Definition 6.2 An inner product on a complex vector space V is a function that associates a real number $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ with each pair of vectors \boldsymbol{u} and \boldsymbol{v} in V in such a way that the following axioms are satisfied for all vectors $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{z} in V and all scalars $k(k \in \boldsymbol{C})$.
(a) $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\overline{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}$ (Symmetry axiom)
(b) $\langle\boldsymbol{u}+\boldsymbol{v}, \boldsymbol{z}\rangle=\langle\boldsymbol{u}, \boldsymbol{z}\rangle+\langle\boldsymbol{v}, \boldsymbol{z}\rangle$ (Additive axiom)
(c) $\langle k \boldsymbol{u}, \boldsymbol{v}\rangle=k\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ (Homogeneity axiom)
(d) $\langle\boldsymbol{v}, \boldsymbol{v}\rangle \geq 0$ (Positively axiom)
and if $\langle\boldsymbol{v}, \boldsymbol{v}\rangle=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.
A real vector space with an inner product is called a real inner product space.
Definition 6.3 If V is an inner product space, then the norm (or length) of a vector $\boldsymbol{u} \in V$ is denoted by $\|\boldsymbol{u}\|$ and is defined by

$$
\|\boldsymbol{u}\|=\langle\boldsymbol{u}, \boldsymbol{u}\rangle^{1 / 2}
$$

The distance between two points (vectors) \boldsymbol{u} and \boldsymbol{v} is denoted by $d(\boldsymbol{u}, \boldsymbol{v})$ and is defined by

$$
d(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\| .
$$

Example 6.1 [Excercise 6.1.30] Let A be an invertible $n \times n$ matrix. The following defines an inner product on \boldsymbol{R}^{n}.

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle=A \boldsymbol{u} \cdot A \boldsymbol{v}=(A \boldsymbol{u})^{T} A \boldsymbol{v}=\boldsymbol{u}^{T} A^{T} A \boldsymbol{v}
$$

Proof. The properties (a), (b), (c) are obvious. Clearly $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=(A \boldsymbol{u}) \cdot(A \boldsymbol{u}) \geq 0$ by the nonnegativity condition of the dot product in \boldsymbol{R}^{n}. Moreover if $\langle\boldsymbol{u}, \boldsymbol{u}\rangle=0$ implies $A \boldsymbol{u}=\mathbf{0}$. Since A is invertible, $\boldsymbol{u}=\mathbf{0}$, and the condition (d) is proved.

Example 6.2 For $A, B \in \operatorname{Mat}_{n}(\boldsymbol{R})$ let

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right) .
$$

Then $\langle A, B\rangle$ defines an inner product on $\operatorname{Mat}_{n}(\boldsymbol{R})$.
Example 6.3 Let $\boldsymbol{f}=f(x)$ and $\boldsymbol{g}=g(x)$ be two functions on $C[a, b]$, the set of all continuous functions on $[a, b]$. Define

$$
\langle\boldsymbol{f}, \boldsymbol{g}\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Then $\langle\boldsymbol{f}, \boldsymbol{g}\rangle$ defines an inner product on $C[a, b]$.

6.2 Properties of Inner Product Space

Theorem 6.1 ((6.2.1) Cauchy-Schwarz Inequality) If \boldsymbol{u} and \boldsymbol{v} are vectors in a real inner product space, then

$$
|\langle\boldsymbol{u}, \boldsymbol{v}\rangle| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\| .
$$

Equality holds if and only if \boldsymbol{u} and \boldsymbol{v} are linearly dependent.

Proof. If $\boldsymbol{u}=\mathbf{0}$, then there is nothing to prove. Assume that $\boldsymbol{u} \neq \mathbf{0}$. Let t be a scalar. Then

$$
\|t \boldsymbol{u}+\boldsymbol{v}\|^{2}=\langle t \boldsymbol{u}+\boldsymbol{v}, t \boldsymbol{u}+\boldsymbol{v}\rangle=\|\boldsymbol{u}\|^{2} t^{2}+2\langle\boldsymbol{u}, \boldsymbol{v}\rangle t+\|\boldsymbol{v}\|^{2} .
$$

Since the right hand side is a polynomial of degree exactly equal to 2 in t and the left hand side is always nonnegative for all $t \in \boldsymbol{R}$,

$$
(\langle\boldsymbol{u}, \boldsymbol{v}\rangle)^{2}-\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \leq 0
$$

Therefore we have the inequality.
Suppose the equality holds. Then there is a real number s such that $\|s \boldsymbol{u}+\boldsymbol{v}\|=0$. Hence by the property (d) in Definition 6.1, su$+\boldsymbol{v}=\mathbf{0}$ and \boldsymbol{u} and \boldsymbol{v} are linearly independent. Conversely if \boldsymbol{u} and \boldsymbol{v} are linearly dependent, then either $\boldsymbol{u}=\mathbf{0}$ or there exists a real such that $s \boldsymbol{u}+\boldsymbol{v}=\mathbf{0}$. Hence the discriminant above is 0 and we have equality.

If $\boldsymbol{u}, \boldsymbol{v}$ are nonzero vectors, then

$$
-1 \leq \frac{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \leq 1
$$

Hence there is a unique angle θ such that

$$
\cos \theta=\frac{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} \text { and } 0 \leq \theta \leq \pi
$$

Two vectors $\boldsymbol{u}, \boldsymbol{v} \in V$ are said to be orthogonal when $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0$.
Theorem 6.2 (6.2.2) Let \boldsymbol{u} and \boldsymbol{v} be vectors in an inner product space V, and k a scalar. Then:
(a) $\|\boldsymbol{u}\| \geq 0$.
(b) $\|\boldsymbol{u}\|=0$ if and only if $\boldsymbol{u}=\mathbf{0}$.
(c) $\|k \boldsymbol{u}\|=|k|\|\boldsymbol{u}\|$.
(d) $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\|$.

Theorem 6.3 (6.2.3) Let \boldsymbol{u} and \boldsymbol{v} be vectors in an inner product space V, and k a scalar. Then:
(a) $d(\boldsymbol{u}, \boldsymbol{v}) \geq 0$.
(b) $d(\boldsymbol{u}, \boldsymbol{v})=0$ if and only if $\boldsymbol{u}=\boldsymbol{v}$.
(c) $d(\boldsymbol{u}, \boldsymbol{v})=d(\boldsymbol{v}, \boldsymbol{u})$.
(d) $d(\boldsymbol{u}, \boldsymbol{v}) \leq d(\boldsymbol{u}, \boldsymbol{w})+d(\boldsymbol{w}, \boldsymbol{v})$.
(Triangle inequality)

Theorem 6.4 ((6.2.4) Generalization Theorem of Pythagoras) If \boldsymbol{u} and \boldsymbol{v} are vectors in an inner vector space, then

$$
\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2} \Leftrightarrow\langle\boldsymbol{u}, \boldsymbol{v}\rangle=0
$$

Exercise 6.1 [Quiz 6] Let A be an invertible $m \times n$ matrix. For $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{R}^{n}$ let

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle=A \boldsymbol{u} \cdot A \boldsymbol{v}=(A \boldsymbol{u})^{T} A \boldsymbol{v}=\boldsymbol{u}^{T} A^{T} A \boldsymbol{v}
$$

1. Show that $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ satisfies the properties (a), (b) and (c) of an inner product in Definition 6.1.
2. Show that if $\mathcal{N}(A)=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid A \boldsymbol{v}=\mathbf{0}\right\}=\{\mathbf{0}\}$, then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ is an inner product.
3. Show that if $m>n$, then $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ is not an inner product.
4. Suppose $A^{T} A$ is invertible. Show that $m \leq n$.
