6 Inner Product Spaces

6.1 Inner Product, Norm and Distance

Definition 6.1 An inner product on a real vector space V is a function that asso-
ciates a real number (u,v) with each pair of vectors w and v in V' in such a way
that the following axioms are satisfied for all vectors w,v and z in V' and all scalars

k.

(a) (u,v) = (u,v) (Symmetry axiom)

(b) (u+wv,2) = (u,2)+ (v, z) (Additive axiom)
(c) (ku,v) = k(u,v) (Homogeneity axiom)

(d) (v,v) > 0 (Positivity axiom)

and if (v,v) =0 if and only if v = 0.

A real vector space with an inner product is called a real inner product space.

Remarks.

1. Recall that for V = R", (u,v) = u-v = u’v (u,v € V) satisfies the
conditions above by Theorem 1.2. Hence it is an inner product defined in
Definition 6.1.

2. For all vectors u,v and z in V and all scalars k,

(z,u+v)=(z,u) + (z,v), (u,kv) = k(u,v).

3. (0,v) =0 for all v € V, as (0,v) = (00,v) = 0(0,v) = 0.

4. The definition above is only for real vector spaces, and the inequality in (d) is
the usual inequality among reals.

5. As for a complex vector space, a similar notion can be defined as in the next
definition. Then the following discussion is almost the same.

Definition 6.2 An inner product on a complex vector space V is a function that
associates a real number (u,v) with each pair of vectors w and v in V' in such a
way that the following axioms are satisfied for all vectors uw,v and z in V' and all
scalars k (k € C).

(a) (u,v) = (u,v) (Symmetry axiom)
(b) (u+wv,2z) = (u,z) + (v, z) (Additive axiom)

(¢) (ku,v) = k{u,v) (Homogeneity axiom)
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(d) (v,v) >0 (Positively axiom)
and if (v,v) = 0 if and only if v = 0.

A real vector space with an inner product is called a real inner product space.

Definition 6.3 If V is an inner product space, then the norm (or length) of a vector
u € V is denoted by ||u|| and is defined by
[l = (u, )72,

The distance between two points (vectors) w and v is denoted by d(u,v) and is
defined by
d(w,v) = |lu —vl|.

Example 6.1 [Excercise 6.1.30] Let A be an invertible n x n matrix. The following
defines an inner product on R".

(u,v) = Au - Av = (Au)" Av = u" AT Av.
Proof. The properties (a), (b), (c) are obvious. Clearly (u,u) = (Au) - (Au) >0
by the nonnegativity condition of the dot product in R". Moreover if (u,u) = 0
implies Au = 0. Since A is invertible, u = 0, and the condition (d) is proved. =
Example 6.2 For A, B € Mat,(R) let
(A, B) = tr(A"B).
Then (A, B) defines an inner product on Mat,, (R).

Example 6.3 Let f = f(z) and g = g(z) be two functions on Cla, b], the set of all
continuous functions on [a, b]. Define

b
(f.9) :/ f(x)g(x)dx.

Then (f,g) defines an inner product on Cla, b|.

6.2 Properties of Inner Product Space

Theorem 6.1 ((6.2.1) Cauchy-Schwarz Inequality) If uw and v are vectors in
a real inner product space, then

[(u, v)] < [|lul][v]].

Equality holds if and only if w and v are linearly dependent.
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Proof. If uw = 0, then there is nothing to prove. Assume that w # 0. Let ¢ be a
scalar. Then

[tu + v|]* = (tu + v, tu + v) = ||u]]*t* + 2(u, v)t + |Jv|*.

Since the right hand side is a polynomial of degree exactly equal to 2 in ¢ and the
left hand side is always nonnegative for all ¢t € R,

({w, v)* = Jul*[l0]* < 0.

Therefore we have the inequality.

Suppose the equality holds. Then there is a real number s such that ||su+wv|| = 0.
Hence by the property (d) in Definition 6.1, su + v = 0 and u and v are linearly
independent. Conversely if w and v are linearly dependent, then either w = 0 or
there exists a real such that su + v = 0. Hence the discriminant above is 0 and we
have equality. [ ]

If u, v are nonzero vectors, then

<1
[wllllv]l
Hence there is a unique angle # such that
0030:<u’—v> and 0 <0 <.
[[wllflv]]

Two vectors u,v € V are said to be orthogonal when (u,v) = 0.

Theorem 6.2 (6.2.2) Let u and v be vectors in an inner product space V, and k
a scalar. Then:

(a) flull = 0.

(b) |||l =0 if and only if uw = 0.
(e) l[kull = |&|[lw].

(d) fluw+o| < |lu| +|v|. (Triangle inequality)

Theorem 6.3 (6.2.3) Let u and v be vectors in an inner product space V, and k
a scalar. Then:

d
<d(u,w) + d(w,v). (Triangle inequality)
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Theorem 6.4 ((6.2.4) Generalization Theorem of Pythagoras) If u and v
are vectors in an inner vector space, then

I + vl* = [lul* + v]* < (u,v) = 0.
Exercise 6.1 [Quiz 6] Let A be an invertible m x n matrix. For u,v € R" let
(u,v) = Au - Av = (Au)" Av = u" AT Av.

1. Show that (u,v) satisfies the properties (a), (b) and (c) of an inner product
in Definition 6.1.

2. Show that if N(A) = {v € R" | Av = 0} = {0}, then (u,v) is an inner
product.

3. Show that if m > n, then (u,v) is not an inner product.

4. Suppose AT A is invertible. Show that m < n.
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