5 Dimensions of Subspaces

5.1 Row Space, Column Space and Nullspace

Definition 5.1 For an $m \times n$ matrix

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ & & \ddots & \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix},$$

the vectors

$$egin{array}{rll} m{r}_1 &=& [a_{1,1},a_{1,2},\ldots,a_{1,n}] \ m{r}_2 &=& [a_{2,1},a_{2,2},\ldots,a_{2,n}] \ dots && dots \ && dots \$$

in \mathbf{R}^n formed from the rows of A are called the row vectors of A and the vectors

$$oldsymbol{c}_1 = \left[egin{array}{c} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{m,1} \end{array}
ight], oldsymbol{c}_2 = \left[egin{array}{c} a_{1,2} \\ a_{2,2} \\ \vdots \\ a_{m,2} \end{array}
ight], \cdots, oldsymbol{c}_n = \left[egin{array}{c} a_{1,n} \\ a_{2,n} \\ \vdots \\ a_{m,n} \end{array}
ight]$$

in \mathbf{R}^n formed from the columns of A are called the *column vectors* of A.

Let $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^T$ and $\boldsymbol{y} = [y_1, y_2, \dots, y_m]$. Then the following are useful.

$$A\boldsymbol{x} = [\boldsymbol{c}_1, \boldsymbol{c}_2, \dots, \boldsymbol{c}_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \boldsymbol{c}_1 + x_2 \boldsymbol{c}_2 + \dots + x_n \boldsymbol{c}_n,$$
$$\boldsymbol{y}_A = [y_1, y_2, \dots, y_m] \begin{bmatrix} \boldsymbol{r}_1 \\ \boldsymbol{r}_2 \\ \vdots \\ \boldsymbol{r}_m \end{bmatrix} = y_1 \boldsymbol{r}_1 + y_2 \boldsymbol{r}_2 + \dots + y_m \boldsymbol{r}_m.$$

Definition 5.2 Let A be an $m \times n$ matrix, then the subspace of \mathbb{R}^n spanned by the row vectors of A is called the *row space* of A, and the subspace of \mathbb{R}^m spanned by the column vectors of A is called the *column* space of A. The solution space of the homogeneous system of equations $A\mathbf{x} = \mathbf{0}$, which is a subspace of \mathbb{R}^n , is called the *nullspace* of A.

The dimension of the column space of a matrix A is called the *rank* of A and is denoted by rank(A). The dimension of the nullspace of A is called the *nullity* of A and is denoted by nullity(A).

Let A be an $m \times n$ matrix and r_1, r_2, \ldots, r_m and c_1, c_2, \ldots, c_n vectors defined above. Then

Row Space of A: $\mathcal{R}(A) = \text{Span}\{r_1, r_2, \dots, r_m\} \subset \mathbb{R}^n$.

Column Space of A: $C(A) = \text{Span}\{c_1, c_2, \dots, c_n\} \subset \mathbb{R}^m$. rank $(A) = \dim(C(A))$.

Nullspace of A: $\mathcal{N}(A) = \{ \boldsymbol{v} \in \boldsymbol{R}^n \mid A\boldsymbol{v} = \boldsymbol{0} \} = \operatorname{Ker}(T_A) \subset \boldsymbol{R}^n$, where T_A is a linear transformation define by $T_A : \boldsymbol{R}^n \to \boldsymbol{R}^m \ (\boldsymbol{x} \mapsto A\boldsymbol{x})$. nullity $(A) = \operatorname{dim}(\mathcal{N}(A))$.

These are all subspaces. Namely $\mathcal{R}(A)$ is a subspace of \mathbf{R}^n (row vector space), $\mathcal{C}(A)$ a subspace of \mathbf{R}^m (column vector space), and $\mathcal{N}(A)$ a subspace of \mathbf{R}^n (column vector space). See Proposition 3.3 and Theorem 3.4.

Proposition 5.1 (5.5.1) A system of linear equations $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Proof. Let $A = [c_1, c_2, ..., c_n]$ and $\boldsymbol{x} = (x_1, x_2, ..., x_n)^T$. Then

$$A\boldsymbol{x} = x_1\boldsymbol{c}_1 + x_2\boldsymbol{c}_2 + \dots + x_n\boldsymbol{c}_n.$$

Hence $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $\mathbf{b} \in \text{Span}\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\} = \mathcal{C}(A)$.

Theorem 5.2 (5.5.2) If x_0 denotes any single solution of a consistent linear system Ax = b, and if v_1, v_2, \ldots, v_k form a basis for the nullspace of A, then every solution of Ax = b can be expressed in the form

$$oldsymbol{x} = oldsymbol{x}_0 + c_1 oldsymbol{v}_1 + c_2 oldsymbol{v}_2 + \dots + c_k oldsymbol{v}_k$$

and, conversely, for all choices of scalars c_1, c_2, \dots, c_k , the vector \boldsymbol{x} in this formula is a solution of $A\boldsymbol{x} = \boldsymbol{b}$.

Proof. By assumption, $A\boldsymbol{x}_0 = \boldsymbol{b}$ and $A\boldsymbol{x} = \boldsymbol{b}$. Then

$$A(\boldsymbol{x} - \boldsymbol{x}_0) = A\boldsymbol{x} - A\boldsymbol{x}_0 = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{0}.$$

Hence $\boldsymbol{x} - \boldsymbol{x}_0 \in \mathcal{N}(A)$. Since $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k\}$ is a basis for the null space $\mathcal{N}(A)$ of A, there exist scalars c_1, c_2, \dots, c_k such that

$$\boldsymbol{x} - \boldsymbol{x}_0 = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k.$$

Therefore

$$\boldsymbol{x} = \boldsymbol{x}_0 + c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k.$$

On the other hand, let $\boldsymbol{x} = \boldsymbol{x}_0 + c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k$. Then

$$A\boldsymbol{x} = A(\boldsymbol{x}_0 + c_1\boldsymbol{v}_1 + c_2\boldsymbol{v}_2 + \dots + c_k\boldsymbol{v}_k) = A\boldsymbol{x}_0 + c_1A\boldsymbol{v}_1 + c_2A\boldsymbol{v}_2 + \dots + c_kA\boldsymbol{v}_k = \boldsymbol{b}.$$

Recall that $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \in \mathcal{N}(A) = \{ \boldsymbol{v} \in \boldsymbol{R}^n \mid A\boldsymbol{v} = \boldsymbol{0} \}$. Hence $\boldsymbol{x}_0 + c_1 \boldsymbol{v}_1 + c_1 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k$ is a solution of $A\boldsymbol{x} = \boldsymbol{b}$.

Remarks.

- 1. x_0 in the previous theorem is called a *particular solution* of Ax = b.
- 2. $x_0 + c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ is called the general solution of Ax = b.
- 3. $c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ is called the general solution of A x = 0.
- 4. If a particular solution x_0 and a basis $\{v_1, v_2, \ldots, v_k\}$ of the nullspace of A, i.e., $\mathcal{N}(A)$ are given, each solution $A\mathbf{x} = \mathbf{b}$ is expressed uniquely in the form

$$\boldsymbol{x} = \boldsymbol{x}_0 + c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_k \boldsymbol{v}_k,$$

i.e., scalars c_1, c_2, \ldots, c_k are uniquely determined for each solution \boldsymbol{x} .

Lemma 5.3 Let A be an $m \times r$ matrix and B an $r \times n$ matrix. Then

$$\mathcal{R}(AB) \subset \mathcal{R}(B), \ \mathcal{C}(AB) \subset \mathcal{C}(A).$$

Proof. Let $A = [a_{i,j}] = [\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_r]$ and $B = [b_{i,j}], B^T = [\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_r]$. Then the *i*-th row of AB is

$$a_{i,1}\boldsymbol{b}_1^T + a_{i,2}\boldsymbol{b}_2^T + \dots + a_{1,r}\boldsymbol{b}_r^T \in \mathcal{R}(B),$$

and the *j*-th column of AB is

$$b_{1,j}\boldsymbol{a}_1 + b_{2,j}\boldsymbol{a}_2 + \dots + b_{r,j}\boldsymbol{a}_r \in \mathcal{C}(A).$$

Proposition 5.4 (5.5.3, 5.5.4, 5.5.5) Let A be an $m \times n$ matrix and P an invertible matrix of size $m \times m$,

- (a) Elementary row operations do not change the nullspace of a matrix. Moreover, $\mathcal{N}(A) = \mathcal{N}(PA).$
- (b) Elementary row operations do not change the row space of a matrix. Moreover, $\mathcal{R}(A) = \mathcal{R}(PA).$
- (c) $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_r\} \subset \boldsymbol{R}^n$ is a linearly independent set if and only if $\{P\boldsymbol{v}_1, P\boldsymbol{v}_2, \dots, P\boldsymbol{v}_r\} \subset \boldsymbol{R}^n$ is a linearly independent set.

Proof. (a): $\boldsymbol{v} \in \mathcal{N}(A) \Leftrightarrow A\boldsymbol{v} = \boldsymbol{0} \Leftrightarrow PA\boldsymbol{v} = \boldsymbol{0} \Leftrightarrow \boldsymbol{v} \in \mathcal{N}(PA)$. Note that if $PA\boldsymbol{v} = \boldsymbol{0}$, then $A\boldsymbol{v} = P^{-1}PA\boldsymbol{v} = P^{-1}\boldsymbol{0} = \boldsymbol{0}$.

(b): Lemma 5.3 is applicable. Let $\boldsymbol{p}_1, \boldsymbol{p}_2, \dots, \boldsymbol{p}_m$ be the rows of P. Then $\mathcal{R}(PA) =$ Span{ $\boldsymbol{p}_1A, \boldsymbol{p}_2A, \dots, \boldsymbol{p}_mA$ } $\subset \mathcal{R}(A)$. Similarly we have $\mathcal{R}(A) = \mathcal{R}(P^{-1}PA) \subset \mathcal{R}(PA)$. Hence $\mathcal{R}(A) = \mathcal{R}(PA)$.

(c): Since $k_1 v_1 + k_2 v_2 + \cdots + k_r v_r = 0$ if and only if $k_1 P v_1 + k_2 P v_2 + \cdots + k_r P v_r = 0$, the assertion is clear.

5.2 Rank and Nullity

Proposition 5.5 (5.5.6) If a matrix R is in row-echeron form, then the row vectors with the leading 1's form a basis for the row space of R, and the column vectors with the leading 1's of the row vectors form a basis for the column space of R.

Theorem 5.6 (5.6.1) If A is any matrix, then the row space and column space of A have the same dimension. Hence $\operatorname{rank}(A) = \operatorname{rank}(A^T)$.

Proof. Let A' be the reduced row-echelon form of A. Then

 $\operatorname{rank}(A) = \operatorname{rank}(A') = \dim(\mathcal{C}(A')) = \dim(\mathcal{R}(A')) = \dim(\mathcal{R}(A)) = \operatorname{rank}(A^T).$

Theorem 5.7 ((5.6.3) Dimension Theorem for Matrices) If A is a matrix with n columns, then

$$\operatorname{rank}(A) + \operatorname{nullity}(A) = n.$$

Proof. Let B be the reduced row-echelon form of A. Then rank(A) = rank(B) and rullity(A) = rullity(B). Hence it suffices to prove the assertion for a matrix which is already in a reduced row-echelon form. Then rank(A) is the number of leading 1s, and rullity(A) is the number of free variables.

Example 5.1 Let us consider the following system of linear equations and the augmented matrix [A, b].

 $\begin{cases} x_1 + 0x_2 + x_3 + 0x_4 + x_5 + 3x_6 &= -1 \\ -x_1 + 0x_2 - x_3 + 0x_4 + 0x_5 - 4x_6 &= -1 \\ 0x_1 + x_2 - 2x_3 + 3x_4 + 0x_5 - x_6 &= 3 \\ -2x_1 - 2x_2 + 2x_3 - 6x_4 - 2x_5 - 4x_6 &= -4 \end{cases} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 3 & -1 \\ -1 & 0 & -1 & 0 & 0 & -4 & -1 \\ 0 & 1 & -2 & 3 & 0 & -1 & 3 \\ -2 & -2 & 2 & -6 & -2 & -4 & -4 \end{bmatrix}$

$$[A, \mathbf{b}] \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 3 & -1 \\ 0 & 1 & -2 & 3 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 & 1 \\ 0 & 1 & -2 & 3 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = [A', \mathbf{b}']$$

Then there is an invertible matrix P such that PA = A' and Pb = b'. Let c_1, c_2, \ldots, c_6 be the column vectors of A, c'_1, c'_2, \ldots, c'_6 the column vectors of A', r_1, r_2, r_3, r_4 be the row vectors of A, r'_1, r'_2, r'_3, r'_4 the row vectors of A'.

- 1. $A\mathbf{x} = \mathbf{b} \Leftrightarrow A'\mathbf{x} = \mathbf{b}'$. Hence the solution to the first equation is the solution to the second and vice versa.
- 2. The equation $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $A'\mathbf{x} = \mathbf{b}'$ is consistent.
- 3. $C(A') = \text{Span}\{c'_1, c'_2, c'_5\} = \{(a, b, c, 0)^T \mid a, b, c \in \mathbf{R}\}$. In particular $b' \in C(A')$ and the equation is consistent.

- 4. $C(A) = \text{Span}\{c_1, c_2, c_5\}$. In particular the equation Ax = b is consistent if and only if $b \in \text{Span}\{c_1, c_2, c_5\}$. $\dim(C(A)) = \dim(C(A')) = 3$.
- 5. $\mathcal{R}(A) = \mathcal{R}(A') = \operatorname{Span}\{c'_1, c'_2, c'_3\}$ and $\dim(\mathcal{R}(A)) = \dim(\mathcal{R}(A')) = 3$.
- 6. $\mathcal{N}(A) = \mathcal{N}(A') = \text{Span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ where $\boldsymbol{v}_1 = (-1, 2, 1, 0, 0, 0)^T$, $\boldsymbol{v}_2 = (0, -3, 0, 1, 0, 0)^T$, and $\boldsymbol{v}_3 = (-4, 1, 0, 0, 1, 1)^T$, and $\dim(\mathcal{N}(A)) = \dim(\mathcal{N}(A')) = 3$.
- 7. $\boldsymbol{x}_0 = (1, 3, 0, 0, -2, 0)^T$.

$$\begin{cases} x_1 = 1 - s - 4u, \\ x_2 = 3 + 2s - 3t + u, \\ x_3 = s, \\ x_4 = t, \\ x_5 = -2 + u, \\ x_6 = u. \end{cases} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 0 \\ -2 \\ 0 \end{bmatrix} + s \cdot \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + u \cdot \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

s, t and u are parameters.

Exercise 5.1 [Quiz 5] Let A be the coefficient matrix, and B the augmented matrix of a system of linear equations $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x} = [x_1, x_2, x_3, x_4, x_5, x_6]^T$. Let C be a reduced row-echelon form obtained from B by a series of elementary row operations.

$$B = [A, \mathbf{b}] = \begin{bmatrix} 3 & -3 & 0 & 3 & -6 & -3 & -6 \\ 2 & -2 & 1 & 5 & -3 & -1 & 1 \\ -3 & 3 & 0 & -3 & 6 & 1 & -8 \\ -1 & 1 & 2 & 5 & 4 & 0 & -9 \end{bmatrix} \rightarrow C = \begin{bmatrix} 1 & -1 & 0 & 1 & -2 & 0 & 5 \\ 0 & 0 & 1 & 3 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 1. Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
- 2. Find a basis of the row space of A.
- 3. Find a basis of the column space of A.
- 4. Find a basis of the nullspace of A.
- 5. Find the general solution of the equation $A\mathbf{x} = \mathbf{b}$.