5 Dimensions of Subspaces

5.1 Row Space, Column Space and Nullspace

Definition 5.1 For an $m \times n$ matrix

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
& \cdots & \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]
$$

the vectors

$$
\begin{aligned}
\boldsymbol{r}_{1}= & {\left[a_{1,1}, a_{1,2}, \ldots, a_{1, n}\right] } \\
\boldsymbol{r}_{2}= & {\left[a_{2,1}, a_{2,2}, \ldots, a_{2, n}\right] } \\
\vdots & \vdots \\
\boldsymbol{r}_{m}= & {\left[a_{m, 1}, a_{m, 2}, \ldots, a_{m, n}\right] }
\end{aligned}
$$

in \boldsymbol{R}^{n} formed from the rows of A are called the row vectors of A and the vectors

$$
\boldsymbol{c}_{1}=\left[\begin{array}{c}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{m, 1}
\end{array}\right], \boldsymbol{c}_{2}=\left[\begin{array}{c}
a_{1,2} \\
a_{2,2} \\
\vdots \\
a_{m, 2}
\end{array}\right], \cdots, \boldsymbol{c}_{n}=\left[\begin{array}{c}
a_{1, n} \\
a_{2, n} \\
\vdots \\
a_{m, n}
\end{array}\right]
$$

in \boldsymbol{R}^{n} formed from the columns of A are called the column vectors of A.
Let $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ and $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{m}\right]$. Then the following are useful.

$$
\begin{aligned}
A \boldsymbol{x} & =\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \boldsymbol{c}_{1}+x_{2} \boldsymbol{c}_{2}+\cdots+x_{n} \boldsymbol{c}_{n} \\
\boldsymbol{y} A & =\left[y_{1}, y_{2}, \ldots, y_{m}\right]\left[\begin{array}{c}
\boldsymbol{r}_{1} \\
\boldsymbol{r}_{2} \\
\vdots \\
\boldsymbol{r}_{m}
\end{array}\right]=y_{1} \boldsymbol{r}_{1}+y_{2} \boldsymbol{r}_{2}+\cdots+y_{m} \boldsymbol{r}_{m} .
\end{aligned}
$$

Definition 5.2 Let A be an $m \times n$ matrix, then the subspace of \boldsymbol{R}^{n} spanned by the row vectors of A is called the row space of A, and the subspace of \boldsymbol{R}^{m} spanned by the column vectors of A is called the column space of A. The solution space of the homogeneous system of equations $\boldsymbol{A x}=\mathbf{0}$, which is a subspace of \boldsymbol{R}^{n}, is called the nullspace of A.

The dimension of the column space of a matrix A is called the rank of A and is denoted by $\operatorname{rank}(A)$. The dimension of the nullspace of A is called the nullity of A and is denoted by nullity (A).

Let A be an $m \times n$ matrix and $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{m}$ and $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}$ vectors defined above. Then

Row Space of $A: \mathcal{R}(A)=\operatorname{Span}\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{m}\right\} \subset \boldsymbol{R}^{n}$.
Column Space of $A: \mathcal{C}(A)=\operatorname{Span}\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right\} \subset \boldsymbol{R}^{m} . \operatorname{rank}(A)=\operatorname{dim}(\mathcal{C}(A))$.
Nullspace of $A: \mathcal{N}(A)=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid A \boldsymbol{v}=\mathbf{0}\right\}=\operatorname{Ker}\left(T_{A}\right) \subset \boldsymbol{R}^{n}$, where T_{A} is a linear transformation define by $T_{A}: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}(\boldsymbol{x} \mapsto A \boldsymbol{x})$. $\operatorname{nullity}(A)=$ $\operatorname{dim}(\mathcal{N}(A))$.

These are all subspaces. Namely $\mathcal{R}(A)$ is a subspace of \boldsymbol{R}^{n} (row vector space), $\mathcal{C}(A)$ a subspace of \boldsymbol{R}^{m} (column vector space), and $\mathcal{N}(A)$ a subspace of \boldsymbol{R}^{n} (column vector space). See Proposition 3.3 and Theorem 3.4.

Proposition 5.1 (5.5.1) A system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is in the column space of A.

Proof. Let $A=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right]$ and $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. Then

$$
A \boldsymbol{x}=x_{1} \boldsymbol{c}_{1}+x_{2} \boldsymbol{c}_{2}+\cdots+x_{n} \boldsymbol{c}_{n} .
$$

Hence $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if $\boldsymbol{b} \in \operatorname{Span}\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{n}\right\}=\mathcal{C}(A)$.
Theorem 5.2 (5.5.2) If \boldsymbol{x}_{0} denotes any single solution of a consistent linear system $A \boldsymbol{x}=\boldsymbol{b}$, and if $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ form a basis for the nullspace of A, then every solution of $A \boldsymbol{x}=\boldsymbol{b}$ can be expressed in the form

$$
\boldsymbol{x}=\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}
$$

and, conversely, for all choices of scalars $c_{1}, c_{2}, \cdots, c_{k}$, the vector \boldsymbol{x} in this formula is a solution of $A \boldsymbol{x}=\boldsymbol{b}$.

Proof. By assumption, $A \boldsymbol{x}_{0}=\boldsymbol{b}$ and $A \boldsymbol{x}=\boldsymbol{b}$. Then

$$
A\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)=A \boldsymbol{x}-A \boldsymbol{x}_{0}=\boldsymbol{b}-\boldsymbol{b}=\mathbf{0}
$$

Hence $\boldsymbol{x}-\boldsymbol{x}_{0} \in \mathcal{N}(A)$. Since $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a basis for the null space $\mathcal{N}(A)$ of A, there exist scalars $c_{1}, c_{2}, \ldots, c_{k}$ such that

$$
\boldsymbol{x}-\boldsymbol{x}_{0}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k} .
$$

Therefore

$$
\boldsymbol{x}=\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k} .
$$

On the other hand, let $\boldsymbol{x}=\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}$. Then
$A \boldsymbol{x}=A\left(\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}\right)=A \boldsymbol{x}_{0}+c_{1} A \boldsymbol{v}_{1}+c_{2} A \boldsymbol{v}_{2}+\cdots+c_{k} A \boldsymbol{v}_{k}=\boldsymbol{b}$.
Recall that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k} \in \mathcal{N}(A)=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid A \boldsymbol{v}=\mathbf{0}\right\}$. Hence $\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{1} \boldsymbol{v}_{2}+$ $\cdots+c_{k} \boldsymbol{v}_{k}$ is a solution of $A \boldsymbol{x}=\boldsymbol{b}$.

Remarks.

1. \boldsymbol{x}_{0} in the previous theorem is called a particular sotution of $A \boldsymbol{x}=\boldsymbol{b}$.
2. $\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}$ is called the general solution of $A \boldsymbol{x}=\boldsymbol{b}$.
3. $c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}$ is called the general solution of $A \boldsymbol{x}=\underline{0}$.
4. If a particular solution x_{0} and a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ of the nullspace of A, i.e., $\mathcal{N}(A)$ are given, each solution $A \boldsymbol{x}=\boldsymbol{b}$ is expressed uniquely in the form

$$
\boldsymbol{x}=\boldsymbol{x}_{0}+c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k},
$$

i.e., scalars $c_{1}, c_{2}, \ldots, c_{k}$ are uniquely determined for each solution \boldsymbol{x}.

Lemma 5.3 Let A be an $m \times r$ matrix and B an $r \times n$ matrix. Then

$$
\mathcal{R}(A B) \subset \mathcal{R}(B), \mathcal{C}(A B) \subset \mathcal{C}(A)
$$

Proof. Let $A=\left[a_{i, j}\right]=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{r}\right]$ and $B=\left[b_{i, j}\right], B^{T}=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{r}\right]$. Then the i-th row of $A B$ is

$$
a_{i, 1} \boldsymbol{b}_{1}^{T}+a_{i, 2} \boldsymbol{b}_{2}^{T}+\cdots+a_{1, r} \boldsymbol{b}_{r}^{T} \in \mathcal{R}(B),
$$

and the j-th column of $A B$ is

$$
b_{1, j} \boldsymbol{a}_{1}+b_{2, j} \boldsymbol{a}_{2}+\cdots+b_{r, j} \boldsymbol{a}_{r} \in \mathcal{C}(A) .
$$

Proposition $5.4(5.5 .3,5.5 .4,5.5 .5)$ Let A be an $m \times n$ matrix and P an invertible matrix of size $m \times m$,
(a) Elementary row operations do not change the nullspace of a matrix. Moreover, $\mathcal{N}(A)=\mathcal{N}(P A)$.
(b) Elementary row operations do not change the row space of a matrix. Moreover, $\mathcal{R}(A)=\mathcal{R}(P A)$.
(c) $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\} \subset \boldsymbol{R}^{n}$ is a linearly independent set if and only if $\left\{P \boldsymbol{v}_{1}, P \boldsymbol{v}_{2}, \ldots, P \boldsymbol{v}_{r}\right\} \subset \boldsymbol{R}^{n}$ is a linearly independent set.

Proof. (a): $\boldsymbol{v} \in \mathcal{N}(A) \Leftrightarrow A \boldsymbol{v}=\mathbf{0} \Leftrightarrow P A \boldsymbol{v}=\mathbf{0} \Leftrightarrow \boldsymbol{v} \in \mathcal{N}(P A)$. Note that if $P A \boldsymbol{v}=\mathbf{0}$, then $A \boldsymbol{v}=P^{-1} P A \boldsymbol{v}=P^{-1} \mathbf{0}=\mathbf{0}$.
(b): Lemma 5.3 is applicable. Let $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{m}$ be the rows of P.Then $\mathcal{R}(P A)=$ $\operatorname{Span}\left\{\boldsymbol{p}_{1} A, \boldsymbol{p}_{2} A, \ldots, \boldsymbol{p}_{m} A\right\} \subset \mathcal{R}(A)$. Similarly we have $\mathcal{R}(A)=\mathcal{R}\left(P^{-1} P A\right) \subset$ $\mathcal{R}(P A)$. Hence $\mathcal{R}(A)=\mathcal{R}(P A)$.
(c): Since $k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\mathbf{0}$ if and only if $k_{1} P \boldsymbol{v}_{1}+k_{2} P \boldsymbol{v}_{2}+\cdots+k_{r} P \boldsymbol{v}_{r}=$ $\mathbf{0}$, the assertion is clear.

5.2 Rank and Nullity

Proposition 5.5 (5.5.6) If a matrix R is in row-echeron form, then the row vectors with the leading 1's form a basis for the row space of R, and the column vectors with the leading 1's of the row vectors form a basis for the column space of R.

Theorem 5.6 (5.6.1) If A is any matrix, then the row space and column space of A have the same dimension. Hence $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.

Proof. Let A^{\prime} be the reduced row-echelon form of A. Then

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)=\operatorname{dim}\left(\mathcal{C}\left(A^{\prime}\right)\right)=\operatorname{dim}\left(\mathcal{R}\left(A^{\prime}\right)\right)=\operatorname{dim}(\mathcal{R}(A))=\operatorname{rank}\left(A^{T}\right)
$$

Theorem 5.7 ((5.6.3) Dimension Theorem for Matrices) If A is a matrix with n columns, then

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n .
$$

Proof. Let B be the reduced row-echelon form of A. Then $\operatorname{rank}(A)=\operatorname{rank}(B)$ and $\operatorname{nullity}(A)=\operatorname{nullity}(B)$. Hence it suffices to prove the assertion for a matrix which is already in a reduced row-echelon form. Then $\operatorname{rank}(A)$ is the number of leading 1 s , and $\operatorname{nullity}(A)$ is the number of free variables.

Example 5.1 Let us consider the following system of linear equations and the augmented matrix $[A, \boldsymbol{b}]$.

$$
\left\{\begin{array}{clc}
x_{1}+0 x_{2}+x_{3}+0 x_{4}+x_{5}+3 x_{6} & = & -1 \\
-x_{1}+0 x_{2}-x_{3}+0 x_{4}+0 x_{5}-4 x_{6} & = & -1 \\
0 x_{1}+x_{2}-2 x_{3}+3 x_{4}+0 x_{5}-x_{6} & = & 3 \\
-2 x_{1}-2 x_{2}+2 x_{3}-6 x_{4}-2 x_{5}-4 x_{6} & = & -4
\end{array}\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 1 & 3 & -1 \\
-1 & 0 & -1 & 0 & 0 & -4 & -1 \\
0 & 1 & -2 & 3 & 0 & -1 & 3 \\
-2 & -2 & 2 & -6 & -2 & -4 & -4
\end{array}\right]\right.
$$

$$
[A, \boldsymbol{b}] \rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 1 & 3 & -1 \\
0 & 1 & -2 & 3 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 4 & 1 \\
0 & 1 & -2 & 3 & 0 & -1 & 3 \\
0 & 0 & 0 & 0 & 1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[A^{\prime}, \boldsymbol{b}^{\prime}\right]
$$

Then there is an invertible matrix P such that $P A=A^{\prime}$ and $P \boldsymbol{b}=\boldsymbol{b}^{\prime}$. Let $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{6}$ be the column vectors of $A, \boldsymbol{c}_{1}^{\prime}, \boldsymbol{c}_{2}^{\prime}, \ldots, \boldsymbol{c}_{6}^{\prime}$ the column vectors of $A^{\prime}, \boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \boldsymbol{r}_{4}$ be the row vectors of $A, \boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}, \boldsymbol{r}_{3}^{\prime}, \boldsymbol{r}_{4}^{\prime}$ the row vectors of A^{\prime}.

1. $A \boldsymbol{x}=\boldsymbol{b} \Leftrightarrow A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$. Hence the solution to the first equation is the solution to the second and vice versa.
2. The equation $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if $A^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$ is consistent.
3. $\mathcal{C}\left(A^{\prime}\right)=\operatorname{Span}\left\{\boldsymbol{c}_{1}^{\prime}, \boldsymbol{c}_{2}^{\prime}, \boldsymbol{c}_{5}^{\prime}\right\}=\left\{(a, b, c, 0)^{T} \mid a, b, c \in \boldsymbol{R}\right\}$. In particular $\boldsymbol{b}^{\prime} \in \mathcal{C}\left(A^{\prime}\right)$ and the equation is consistent.
4. $\mathcal{C}(A)=\operatorname{Span}\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{5}\right\}$. In particular the equation $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if $\boldsymbol{b} \in \operatorname{Span}\left\{\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{5}\right\} . \operatorname{dim}(\mathcal{C}(A))=\operatorname{dim}\left(\mathcal{C}\left(A^{\prime}\right)\right)=3$.
5. $\mathcal{R}(A)=\mathcal{R}\left(A^{\prime}\right)=\operatorname{Span}\left\{\boldsymbol{c}_{1}^{\prime}, \boldsymbol{c}_{2}^{\prime}, \boldsymbol{c}_{3}^{\prime}\right\}$ and $\operatorname{dim}(\mathcal{R}(A))=\operatorname{dim}\left(\mathcal{R}\left(A^{\prime}\right)\right)=3$.
6. $\mathcal{N}(A)=\mathcal{N}\left(A^{\prime}\right)=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ where $\boldsymbol{v}_{1}=(-1,2,1,0,0,0)^{T}, \boldsymbol{v}_{2}=(0,-3,0,1,0,0)^{T}$, and $\boldsymbol{v}_{3}=(-4,1,0,0,1,1)^{T}$, and $\operatorname{dim}(\mathcal{N}(A))=\operatorname{dim}\left(\mathcal{N}\left(A^{\prime}\right)\right)=3$.
7. $\boldsymbol{x}_{0}=(1,3,0,0,-2,0)^{T}$.

$$
\left\{\begin{array}{ccc}
x_{1}= & 1-s-4 u, \\
x_{2} & = & 3+2 s-3 t+u, \\
x_{3} & = & s, \\
x_{4} & = & t, \\
x_{5} & = & -2+u, \\
x_{6} & = & u .
\end{array} \quad\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
0 \\
0 \\
-2 \\
0
\end{array}\right]+s \cdot\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t \cdot\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+u \cdot\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right]\right.
$$

s, t and u are parameters.
Exercise 5.1 [Quiz 5] Let A be the coefficient matrix, and B the augmented matrix of a system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]^{T}$. Let C be a reduced row-echelon form obtained from B by a series of elementary row operations.
$B=[A, \boldsymbol{b}]=\left[\begin{array}{ccccccc}3 & -3 & 0 & 3 & -6 & -3 & -6 \\ 2 & -2 & 1 & 5 & -3 & -1 & 1 \\ -3 & 3 & 0 & -3 & 6 & 1 & -8 \\ -1 & 1 & 2 & 5 & 4 & 0 & -9\end{array}\right] \rightarrow C=\left[\begin{array}{ccccccc}1 & -1 & 0 & 1 & -2 & 0 & 5 \\ 0 & 0 & 1 & 3 & 1 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

1. Find $\operatorname{rank}(A)$ and $\operatorname{nullity}(A)$.
2. Find a basis of the row space of A.
3. Find a basis of the column space of A.
4. Find a basis of the nullspace of A.
5. Find the general solution of the equation $A \boldsymbol{x}=\boldsymbol{b}$.
