4 Linear Independence and Basis

Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3} \in \boldsymbol{R}^{3}$ given below and $W=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right]
$$

Since $\boldsymbol{v}_{3}=5 \boldsymbol{v}_{1}+\boldsymbol{v}_{2}, W=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}=\left\{a \boldsymbol{v}_{1}+b \boldsymbol{v}_{2} \mid a, b \in K\right\}$. Moreover, the expression $a \boldsymbol{v}_{1}+b \boldsymbol{v}_{2}$ is unique, i.e., if $a \boldsymbol{v}_{1}+\boldsymbol{v}_{2}=a^{\prime} \boldsymbol{v}_{1}+b^{\prime} \boldsymbol{v}_{2}$ then $a=a^{\prime}$ and $b=b^{\prime}$. Hence $f: W \rightarrow \boldsymbol{R}^{2}\left(a \boldsymbol{v}_{1}+b \boldsymbol{v}_{2} \mapsto(a, b)\right)$ is a bijection, and W can be regarded as a vector space similar to \boldsymbol{R}^{2}. We call $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ a basis of W and $\operatorname{dim}(W)=2$. As for \boldsymbol{R}^{2}, let $\boldsymbol{e}_{1}=(1,0)$ and $\boldsymbol{e}_{2}=(0,1)$. Then $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ is a (standard) basis, and $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ in W plays a similar role of $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$ in \boldsymbol{R}^{2}. In this case W is a plane through the origin in \boldsymbol{R}^{3}, and it is natural to think W as an object similar to \boldsymbol{R}^{2}. In the following we study a basis and dimension of a general vector space.

4.1 Linear Independence

Definition 4.1 Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a nonempty set of vectors. If the equation

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\mathbf{0}
$$

has only one solution, namely, $k_{1}=k_{2}=\cdots=k_{r}=0$, then S is called a linearly independent set. If there are other solutions, then S is called a linearly dependent set.

Proposition $4.1(5.3 .1,5.4 .1)$ Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a nonempty set of vectors. Then the following are equivalent.
(a) S is a linearly independent set.
(b) No vector in S is expressible as a linear combination of the other vectors in S.
(c) For each vector $\boldsymbol{v}, k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\boldsymbol{v}$ has at most one solution, i.e., if

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=k_{1}^{\prime} \boldsymbol{v}_{1}+k_{2}^{\prime} \boldsymbol{v}_{2}+\cdots+k_{r}^{\prime} \boldsymbol{v}_{r}
$$

then $k_{1}=k_{1}^{\prime}, k_{2}=k_{2}^{\prime}, \ldots, k_{r}=k_{r}^{\prime}$.
Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{c})$: Suppose

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=k_{1}^{\prime} \boldsymbol{v}_{1}+k_{2}^{\prime} \boldsymbol{v}_{2}+\cdots+k_{r}^{\prime} \boldsymbol{v}_{r}
$$

Then

$$
\left(k_{1}-k_{1}^{\prime}\right) \boldsymbol{v}_{1}+\left(k_{2}-k_{2}^{\prime}\right) \boldsymbol{v}_{2}+\cdots+\left(k_{r}-k_{r}^{\prime}\right) \boldsymbol{v}_{r}=\mathbf{0}
$$

Now (a) implies that $k_{1}-k_{1}^{\prime}=k_{2}-k_{2}^{\prime}=\cdots=k_{r}-k_{r}^{\prime}=0$.
$(c) \Rightarrow(b)$: Suppose not. Then

$$
\boldsymbol{v}_{i}=k_{1} \boldsymbol{v}_{1}+\cdots+k_{i-1} \boldsymbol{v}_{i-1}+k_{i+1} \boldsymbol{v}_{i+1}+\cdots+k_{r} \boldsymbol{v}_{r} .
$$

Comparing the coefficients of \boldsymbol{v}_{i} on both hand sides, we have $1=0$ by (c), a contradiction.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: Suppose

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}=\mathbf{0}
$$

such that not all $k_{1}, k_{2}, \ldots, k_{r}$ zero. Say $k_{i} \neq 0$. Then

$$
\boldsymbol{v}_{i}=\frac{-k_{1}}{k_{i}} \boldsymbol{v}_{1}+\cdots+\frac{-k_{i-1}}{k_{i}} \boldsymbol{v}_{i-1}+\frac{-k_{i+1}}{k_{i}} \boldsymbol{v}_{i+1}+\cdots+\frac{-k_{r}}{k_{i}} \boldsymbol{v}_{r} .
$$

This contradicts (b).
Theorem 4.2 (1.2.1) A homogeneous system of linear equations with more unknowns than equations has infinitely many solutions.

Theorem 4.3 (5.3.3) Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ be a set of vectors in \boldsymbol{R}^{n}. If $r>n$, then S is linearly dependent. In particular, if $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right]$, then a system of linear equation $A \boldsymbol{x}=\mathbf{0}$ has a nonzero solution.

Proof. See Theorem 1.2.1.
Proposition 4.4 (5.3.4) If the functions $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{n}$ have $n-1$ continuous derivatives on the interval (a, b), and if the Wronskian of these functions is not identically zero on (a, b), then these functions form a linearly independent vectors in $C^{(n-1)}(a, b)$.

4.2 Basis and Dimension

Definition 4.2 If V is a vector space and $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a set of vectors fo V, then S is called a basis for V if the following two conditions hold:
(a) S is linearly independent.
(b) S spans V, i.e., every vector in V can be written as a linear combination of vectors in S.
V is called finite-dimensional if it contains a finite set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ that forms a basis. If no such set exists, V is called infinite-dimensional.

Theorem 4.5 (5.4.2) Let V be a finite-dimensional vector space, and let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis.
(a) If a set has more than n vectors, then it is linearly dependent.
(b) If a set has fewer than n vectors, then it does not span V.

Proof. (a): Since $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m} \in V=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$, there exist $a_{i, j}$ $(1 \leq i \leq m, 1 \leq j \leq n)$ such that

$$
\begin{aligned}
\boldsymbol{w}_{1}= & a_{1,1} \boldsymbol{v}_{1}+a_{1,2} \boldsymbol{v}_{2}+\cdots+a_{1, n} \boldsymbol{v}_{n} \\
\boldsymbol{w}_{2}= & a_{2,1} \boldsymbol{v}_{1}+a_{2,2} \boldsymbol{v}_{2}+\cdots+a_{2, n} \boldsymbol{v}_{n} \\
\vdots & \vdots \\
\boldsymbol{w}_{m}= & a_{m, 1} \boldsymbol{v}_{1}+a_{m, 2} \boldsymbol{v}_{2}+\cdots+a_{m, n} \boldsymbol{v}_{n} .
\end{aligned}
$$

Suppose $m>n$. Then by Theorem 4.3, there exist scalars $k_{1}, k_{2}, \ldots, k_{m}$ not all zero such that

$$
k_{1}\left[\begin{array}{c}
a_{1,1} \\
a_{1.2} \\
\vdots \\
a_{1, n}
\end{array}\right]+k_{2}\left[\begin{array}{c}
a_{2,1} \\
a_{2.2} \\
\vdots \\
a_{2, n}
\end{array}\right]+\cdots+k_{m}\left[\begin{array}{c}
a_{m, 1} \\
a_{m .2} \\
\vdots \\
a_{m, n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Then

$$
\begin{aligned}
& k_{1} \boldsymbol{w}_{1}+k_{2} \boldsymbol{w}_{2}+\cdots+k_{m} \boldsymbol{w}_{m} \\
& \quad=\sum_{j=1}^{m} k_{j}\left(a_{j, 1} \boldsymbol{v}_{1}+a_{j, 2} \boldsymbol{v}_{2}+\cdots+a_{j, n} \boldsymbol{v}_{n}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} k_{j} a_{j, i} \boldsymbol{v}_{i} \\
& =\sum_{i=1}^{n}\left(\sum_{j=1}^{m} k_{j} a_{j, i}\right) \boldsymbol{v}_{i}=\sum_{i=1}^{n}\left(k_{1} a_{1, i}+k_{2} a_{2, i}+\cdots+k_{m} a_{m, i}\right) \boldsymbol{v}_{i} \\
& =\mathbf{0}
\end{aligned}
$$

Therefore $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$ is a linearly dependent set.
(b): Suppose $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$ spans V and $m<n$. Since $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in V$, there exist $a_{i, j}(1 \leq i \leq m, 1 \leq j \leq n)$ such that

$$
\begin{aligned}
\boldsymbol{v}_{1}= & a_{1,1} \boldsymbol{w}_{1}+a_{2,1} \boldsymbol{w}_{2}+\cdots+a_{m, 1} \boldsymbol{w}_{m} \\
\boldsymbol{v}_{2}= & a_{1,2} \boldsymbol{w}_{1}+a_{2,2} \boldsymbol{w}_{2}+\cdots+a_{m, 2} \boldsymbol{w}_{m} \\
\vdots & \vdots \\
\boldsymbol{v}_{n}= & a_{1, n} \boldsymbol{w}_{1}+a_{2, n} \boldsymbol{w}_{2}+\cdots+a_{m, n} \boldsymbol{w}_{m} .
\end{aligned}
$$

Since $n>m$, by by Theorem 4.3, there exist scalars $k_{1}, k_{2}, \ldots, k_{n}$ not all zero such that

$$
k_{1}\left[\begin{array}{c}
a_{1,1} \\
a_{2.1} \\
\vdots \\
a_{m, 1}
\end{array}\right]+k_{2}\left[\begin{array}{c}
a_{1,2} \\
a_{2.2} \\
\vdots \\
a_{m, 2}
\end{array}\right]+\cdots+k_{n}\left[\begin{array}{c}
a_{1, n} \\
a_{2 . n} \\
\vdots \\
a_{m, n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Then

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{n} k_{j}\left(a_{1, j} \boldsymbol{w}_{1}+a_{2, j} \boldsymbol{w}_{2}+\cdots+a_{m, j} \boldsymbol{w}_{n}\right)=\sum_{j=1}^{n} \sum_{i=1}^{m} k_{j} a_{i, j} \boldsymbol{w}_{i} \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} k_{j} a_{i, j}\right) \boldsymbol{w}_{i}=\sum_{i=1}^{m}\left(k_{1} a_{i, 1}+k_{2} a_{i, 2}+\cdots+k_{m} a_{i, m}\right) \boldsymbol{v}_{i} \\
& =\mathbf{0}
\end{aligned}
$$

This contradicts that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a linearly independent set.
Corollary 4.6 (5.4.3) All bases for a finite-dimensional vector space have the same number of vectors.

Definition 4.3 The dimension of a finite-dimensional vector space V, denoted by $\operatorname{dim}(V)$, is defined to be the number of vectors in a basis for V. (In addition, we define the zero vector space to have dimension zero.)
Proposition 4.7 (5.4.4) Let S be a nonempty set of vectors in a vector space V.
(a) If S is a linearly independent set, and $\boldsymbol{v} \notin \operatorname{Span}(S)$, then $S \cup\{\boldsymbol{v}\}$ is a linearly independent set.
(b) If \boldsymbol{v} is a vector in S that is expressible as a linear combination of other vectors in S, then $\operatorname{Span}(S \backslash\{\boldsymbol{v}\})=\operatorname{Span}(S)$.

Theorem 4.8 (5.4.5, 5.4.6, 5.4.7) Let V be an n-dimensional vector space, and S a set of vectors in V
(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S spans V.
(b) If S spans V but not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
(c) If S is linearly independent that is not already a basis for V, then S can be enlarged to a basis of V by inserting appropriate vectors into S.
(d) If W is a subspace of V, then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover if $\operatorname{dim}(W)=$ $\operatorname{dim}(V)$, then $W=V$.
Exercise 4.1 [Quiz 4] Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ and \boldsymbol{e}_{3} be vectors in \boldsymbol{R}^{3} given below.
$\boldsymbol{v}_{1}=\left[\begin{array}{c}1 \\ -3 \\ -2\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}-2 \\ 7 \\ 4\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}3 \\ -8 \\ -6\end{array}\right], \boldsymbol{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.

1. Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis of $U=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$.
2. Show that $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.
3. Show that $\boldsymbol{e}_{1} \notin \operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$.
4. Show that $\left\{\boldsymbol{e}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is a basis of \boldsymbol{R}^{3}.
5. Express \boldsymbol{e}_{2} as a linear combination of $\boldsymbol{e}_{1}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}$.
