3 Vector Spaces and Subspaces

3.1 Definition of Vector Spaces

In the following K denotes either the real number field \mathbf{R} , the set of real numbers with two binary operations, i.e., addition and multiplication, or the complex number field \mathbf{C} . K can be replaced by any algebraic structure called a *field* but assume $K = \mathbf{R}$ unless otherwise stated. Elements of K are called scalars.

 $K = \{0, 1\}$ with addition and multiplication defined by 0+0 = 0, 0+1 = 1+0 = 1, 1+1=0, and $0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0$, $1 \cdot 1 = 1$ is another example of a field.

Definition 3.1 [Vector Space Axioms] Let (K be a field and let) V be a set on which two operations are defined: additions and multiplication by scalars (numbers). (By *addition* we mean a rule for associating with each pair of elements $\boldsymbol{u}, \boldsymbol{v} \in V$ an element $\boldsymbol{u} + \boldsymbol{v} \in V$, called the *sum* of \boldsymbol{u} and \boldsymbol{v} , by *scalar multiplication* we mean a rule for associating with each scalar k and each element $\boldsymbol{u} \in V$ an element $k\boldsymbol{u} \in V$, called the *scalar multiple* of \boldsymbol{u} by k.) If the following axioms are satisfied, then we call V a vector space (over K) and we call the elements in V vectors.

- 1. If \boldsymbol{u} and \boldsymbol{v} are elements in V, then $\boldsymbol{u} + \boldsymbol{v}$ is in V.
- 2. $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$.
- 3. $\boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w}) = (\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w}$ for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$.
- 4. There is an element $\mathbf{0} \in V$, called a zero vector for V, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$.
- 5. For each $\boldsymbol{u} \in V$, there is an element $-\boldsymbol{u} \in V$, called a *negative* of \boldsymbol{u} , such that $\boldsymbol{u} + (-\boldsymbol{u}) = \boldsymbol{0}$.
- 6. If k is a scalar and \boldsymbol{u} is an element in V, then $k\boldsymbol{u}$ is in V.
- 7. $k(\boldsymbol{u} + \boldsymbol{v}) = k\boldsymbol{u} + k\boldsymbol{v}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$ and any scalar k.
- 8. $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$ for any vector $\mathbf{u} \in V$ and all scalars k and m.
- 9. $k(m\mathbf{u}) = (km)\mathbf{u}$ for any vector $\mathbf{u} \in V$ and all scalars k and m.
- 10. $1\boldsymbol{u} = \boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$.

Vector spaces over \boldsymbol{R} are called *real vector spaces* and vector spaces over \boldsymbol{C} complex vector spaces.

Remarks.

1. The zero element in Definition 3.1 4 is unique, i.e., if $\mathbf{0}'$ is another element in V satisfying $\mathbf{u} + \mathbf{0}' = \mathbf{u}$ for all $\mathbf{u} \in V$, then $\mathbf{0} = \mathbf{0}'$. See the following.

$$0 = 0 + 0' = 0' + 0 = 0'$$

2. The negative of \boldsymbol{u} is unique for each $\boldsymbol{u} \in V$ in Definition 3.1 5, i.e., if $(-\boldsymbol{u})'$ is another element in V satisfying $\boldsymbol{u} + (-\boldsymbol{u})' = \boldsymbol{0}$, then $-\boldsymbol{u} = (-\boldsymbol{u})'$.

Proposition 3.1 (5.1.1) Let V be a vector space, \boldsymbol{u} a vector in V, and k a scalar; then:

- (a) 0u = 0.
- (b) $k\mathbf{0} = \mathbf{0}$.
- (c) $(-1)\boldsymbol{u} = -\boldsymbol{u}$.
- (d) If $k\mathbf{u} = \mathbf{0}$, then k = 0 or $\mathbf{u} = \mathbf{0}$.

Proof. See page 226 for (a) and (c).

Example 3.1 [Examples of Vector Spaces]

- 1. The set $V = \mathbf{R}^n$ with the standard operations of addition and scalar multiplication is a (real) vector space for every positive integer n. R, R^2 , R^3 are three important special cases.
- 2. For positive integers m, n let $M_{m,n}(=M_{m,n}(\mathbf{R}))$ denotes the set of all $m \times n$ matrices with real entries. Then $V = M_{m,n}$ becomes a (real) vector space with the operations of matrix addition and scalar multiplication.
- 3. Let X be a set and $F(X, \mathbf{R})$ the set of real-valued functions defined on X. For $f \in F(X, \mathbf{R})$, f(x) denotes the value of f at $x \in X$. Then $V = F(X, \mathbf{R})$ becomes a (real) vector space with respect to the operations defined by the following.

$$(f+g)(x) = f(x) + g(x), (kf)(x) = kf(x)$$
 for all $f, g \in V$ and $k \in \mathbb{R}$.

3.2 Subspaces

Definition 3.2 A subset W of a vector space V is called a *subspace* of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Theorem 3.2 (5.2.1) If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold.

- (a) $\boldsymbol{u} + \boldsymbol{v} \in W$ for all $\boldsymbol{u}, \boldsymbol{v} \in W$.
- (b) $k\mathbf{u} \in W$ for all $\mathbf{u} \in W$ and all scalars k.

Proof. See page 230. We apply Proposition 3.1 (c).

Proposition 3.3 (5.2.2) Let A be an $m \times n$ matrix, and $T = T_A$ a linear transformation defined by

$$T: \mathbf{R}^n \to \mathbf{R}^m \ (\mathbf{x} \mapsto A\mathbf{x}).$$

Then $W = \{ \boldsymbol{v} \in \boldsymbol{R}^n \mid T(\boldsymbol{v}) = \boldsymbol{0} \}$ is a subspace of a vector space $V = \boldsymbol{R}^n$. W is called the kernel of the linear transformation T and is denoted by Ker(T).

Proof. See page 233.

Example 3.2 Let $V = \mathbf{R}^3$. Then the plane W through the origin in \mathbf{R}^3 defined below is a subspace of V:

$$W = \{(x, y, z)^T \in \mathbf{R}^3 \mid ax + by + cz = 0, \text{ where } a, b, c \in \mathbf{R}\}.$$

Let $A = [a, b, c] \in M_{1,3}$. Then $W = \text{Ker}(T_A)$. Hence W is a subspace of V by Proporition 3.3. In particular W is a vector space.

Definition 3.3 [Linear Combination] A vector \boldsymbol{w} is called a *linear combination* of the vectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_r$ if it can be expressed in the form

$$oldsymbol{w} = k_1 oldsymbol{v}_1 + k_2 oldsymbol{v}_2 + \dots + k_r oldsymbol{v}_r$$

where k_1, k_2, \ldots, k_r are scalars.

Theorem 3.4 (5.2.3) If v_1, v_2, \ldots, v_r are vectors in a vector space V, then

- (a) The set W of all linear combinations of v_1, v_2, \ldots, v_r is a subspace of V.
- (b) W is the smallest subspace of V that contains v₁, v₂,..., v_r in the sense that every other subspace of V that contains v₁, v₂,..., v_r must contain W.

Proof. See page 236.

Definition 3.4 If $S = \{v_1, v_2, \ldots, v_r\}$ is a set of vectors in a vector space V, then the subspace W of V consisting of all linear combinations of the vectors in S is called the *space spanned* by v_1, v_2, \ldots, v_r , and we say that the vectors v_1, v_2, \ldots, v_r *span* W. To indicate that W is the space spanned by the vectors in the set $S = \{v_1, v_2, \ldots, v_r\}$, we write

$$W = \operatorname{Span}(S)$$
 or $W = \operatorname{Span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_r\}.$

Exercise 3.1 [Quiz 3]

- 1. Let V be a vector space and k a scalar. Show $k\mathbf{0} = \mathbf{0}$. In each step of your proof quote the axiom applied. [Hint: Exercise 5.1.29]
- 2. Let A, v_1 , v_2 , v_3 be as follows.

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 7 & -8 \\ -2 & 4 & -6 \end{bmatrix}, \ \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}, \ \boldsymbol{v}_2 = \begin{bmatrix} -2 \\ 7 \\ 4 \end{bmatrix}, \ \boldsymbol{v}_3 = \begin{bmatrix} 3 \\ -8 \\ -6 \end{bmatrix}.$$

- (a) Let $B = (A I)^2$. Show that $W = \{ \boldsymbol{v} \in \boldsymbol{R}^3 \mid B\boldsymbol{v} = 10\boldsymbol{v} \}$ is a subspace of $V = \boldsymbol{R}^3$.
- (b) Determine whether or not \boldsymbol{v}_3 is a linear combination of \boldsymbol{v}_1 and \boldsymbol{v}_2 .