3 Vector Spaces and Subspaces

3.1 Definition of Vector Spaces

In the following K denotes either the real number field \boldsymbol{R}, the set of real numbers with two binary operations, i.e., addition and multiplication, or the complex number field $\boldsymbol{C} . K$ can be replaced by any algebraic structure called a field but assume $K=\boldsymbol{R}$ unless otherwise stated. Elements of K are called scalars.
$K=\{0,1\}$ with addition and multiplication defined by $0+0=0,0+1=1+0=$ $1,1+1=0$, and $0 \cdot 0=0 \cdot 1=1 \cdot 0=0,1 \cdot 1=1$ is another example of a field.

Definition 3.1 [Vector Space Axioms] Let (K be a field and let) V be a set on which two operations are defined: additions and multiplication by scalars (numbers). (By addition we mean a rule for associating with each pair of elements $\boldsymbol{u}, \boldsymbol{v} \in V$ an element $\boldsymbol{u}+\boldsymbol{v} \in V$, called the sum of \boldsymbol{u} and \boldsymbol{v}, by scalar multiplication we mean a rule for associating with each scalar k and each element $\boldsymbol{u} \in V$ an element $k \boldsymbol{u} \in V$, called the scalar multiple of \boldsymbol{u} by k.) If the following axioms are satisfied, then we call V a vector space (over K) and we call the elements in V vectors.

1. If \boldsymbol{u} and \boldsymbol{v} are elements in V, then $\boldsymbol{u}+\boldsymbol{v}$ is in V.
2. $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$.
3. $\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}$ for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$.
4. There is an element $\mathbf{0} \in V$, called a zero vector for V, such that $\boldsymbol{u}+\mathbf{0}=\boldsymbol{u}$ for all $\boldsymbol{u} \in V$.
5. For each $\boldsymbol{u} \in V$, there is an element $-\boldsymbol{u} \in V$, called a negative of \boldsymbol{u}, such that $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$.
6. If k is a scalar and \boldsymbol{u} is an element in V, then $k \boldsymbol{u}$ is in V.
7. $k(\boldsymbol{u}+\boldsymbol{v})=k \boldsymbol{u}+k \boldsymbol{v}$ for all $\boldsymbol{u}, \boldsymbol{v} \in V$ and any scalar k.
8. $(k+m) \boldsymbol{u}=k \boldsymbol{u}+m \boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$ and all scalars k and m.
9. $k(m \boldsymbol{u})=(k m) \boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$ and all scalars k and m.
10. $1 \boldsymbol{u}=\boldsymbol{u}$ for any vector $\boldsymbol{u} \in V$.

Vector spaces over \boldsymbol{R} are called real vector spaces and vector spaces over \boldsymbol{C} complex vector spaces.

Remarks.

1. The zero element in Definition 3.14 is unique, i.e., if $\mathbf{0}^{\prime}$ is another element in V satisfying $\boldsymbol{u}+\mathbf{0}^{\prime}=\boldsymbol{u}$ for all $\boldsymbol{u} \in V$, then $\mathbf{0}=\mathbf{0}^{\prime}$. See the following.

$$
\mathbf{0}=\mathbf{0}+\mathbf{0}^{\prime}=\mathbf{0}^{\prime}+\mathbf{0}=\mathbf{0}^{\prime} .
$$

2. The negative of \boldsymbol{u} is unique for each $\boldsymbol{u} \in V$ in Definition 3.15 , i.e., if $(-\boldsymbol{u})^{\prime}$ is another element in V satisfying $\boldsymbol{u}+(-\boldsymbol{u})^{\prime}=\mathbf{0}$, then $-\boldsymbol{u}=(-\boldsymbol{u})^{\prime}$.

Proposition 3.1 (5.1.1) Let V be a vector space, \boldsymbol{u} a vector in V, and k a scalar; then:
(a) $0 \boldsymbol{u}=\mathbf{0}$.
(b) $k \mathbf{0}=\mathbf{0}$.
(c) $(-1) \boldsymbol{u}=-\boldsymbol{u}$.
(d) If $k \boldsymbol{u}=\mathbf{0}$, then $k=0$ or $\boldsymbol{u}=\mathbf{0}$.

Proof. See page 226 for (a) and (c).

Example 3.1 [Examples of Vector Spaces]

1. The set $V=\boldsymbol{R}^{n}$ with the standard operations of addition and scalar multiplication is a (real) vector space for every positive integer $n . R, R^{2}, R^{3}$ are three important special cases.
2. For positive integers m, n let $M_{m, n}\left(=M_{m, n}(\boldsymbol{R})\right)$ denotes the set of all $m \times n$ matrices with real entries. Then $V=M_{m, n}$ becomes a (real) vector space with the operations of matrix addition and scalar multiplication.
3. Let X be a set and $F(X, \boldsymbol{R})$ the set of real-valued functions defined on X. For $f \in F(X, \boldsymbol{R}), f(x)$ denotes the value of f at $x \in X$. Then $V=F(X, \boldsymbol{R})$ becomes a (real) vector space with respect to the operations defined by the following.

$$
(f+g)(x)=f(x)+g(x),(k f)(x)=k f(x) \text { for all } f, g \in V \text { and } k \in \boldsymbol{R} .
$$

3.2 Subspaces

Definition 3.2 A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Theorem 3.2 (5.2.1) If W is a nonempty subset of a vector space V, then W is a subspace of V if and only if the following conditions hold.
(a) $\boldsymbol{u}+\boldsymbol{v} \in W$ for all $\boldsymbol{u}, \boldsymbol{v} \in W$.
(b) $k \boldsymbol{u} \in W$ for all $\boldsymbol{u} \in W$ and all scalars k.

Proof. See page 230. We apply Proposition 3.1 (c).

Proposition 3.3 (5.2.2) Let A be an $m \times n$ matrix, and $T=T_{A}$ a linear transformation defined by

$$
T: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{m}(\boldsymbol{x} \mapsto A \boldsymbol{x})
$$

Then $W=\left\{\boldsymbol{v} \in \boldsymbol{R}^{n} \mid T(\boldsymbol{v})=\mathbf{0}\right\}$ is a subspace of a vector space $V=\boldsymbol{R}^{n}$. W is called the kernel of the linear transformation T and is denoted by $\operatorname{Ker}(T)$.

Proof. See page 233.
Example 3.2 Let $V=\boldsymbol{R}^{3}$. Then the plane W through the origin in \boldsymbol{R}^{3} defined below is a subspace of V :

$$
W=\left\{(x, y, z)^{T} \in \boldsymbol{R}^{3} \mid a x+b y+c z=0, \text { where } a, b, c \in \boldsymbol{R}\right\} .
$$

Let $A=[a, b, c] \in M_{1,3}$. Then $W=\operatorname{Ker}\left(T_{A}\right)$. Hence W is a subspace of V by Proporition 3.3. In particular W is a vector space.
Definition 3.3 [Linear Combination] A vector \boldsymbol{w} is called a linear combination of the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ if it can be expressed in the form

$$
\boldsymbol{w}=k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{r} \boldsymbol{v}_{r}
$$

where $k_{1}, k_{2}, \ldots, k_{r}$ are scalars.
Theorem 3.4 (5.2.3) If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ are vectors in a vector space V, then
(a) The set W of all linear combinations of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ is a subspace of V.
(b) W is the smallest subspace of V that contains $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ in the sense that every other subspace of V that contains $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ must contain W.

Proof. See page 236.
Definition 3.4 If $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ is a set of vectors in a vector space V, then the subspace W of V consisting of all linear combinations of the vectors in S is called the space spanned by $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$, and we say that the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}$ span W. To indicate that W is the space spanned by the vectors in the set $S=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$, we write

$$
W=\operatorname{Span}(S) \text { or } W=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\} .
$$

Exercise 3.1 [Quiz 3]

1. Let V be a vector space and k a scalar. Show $k \mathbf{0}=\mathbf{0}$. In each step of your proof quote the axiom applied. [Hint: Exercise 5.1.29]
2. Let $A, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ be as follows.

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-3 & 7 & -8 \\
-2 & 4 & -6
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-3 \\
-2
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-2 \\
7 \\
4
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
3 \\
-8 \\
-6
\end{array}\right] .
$$

(a) Let $B=(A-I)^{2}$. Show that $W=\left\{\boldsymbol{v} \in \boldsymbol{R}^{3} \mid B \boldsymbol{v}=10 \boldsymbol{v}\right\}$ is a subspace of $V=\boldsymbol{R}^{3}$.
(b) Determine whether or not \boldsymbol{v}_{3} is a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.

