Final Exam 2006／7

（Total：100pts）

Division：ID\＃：Name：

In the following if you use a theorem，state it．As for the following theorem，state which item（a）－（d）is applied．

Theorem 1 Let V be an n－dimensional vector space，and S a set of vectors in V ．
（a）Suppose S has exactly n vectors．Then S is linearly independent if and only if S spans V ．
（b）If S spans V but not a basis for V ，then S can be reduced to a basis for V by removing appropriate vectors from S ．
（c）If S is linearly independent that is not already a basis for V ，then S can be enlarged to a basis of V by inserting appropriate vectors into S ．
（d）If W is a subspace of V ，then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$ ．Moreover if $\operatorname{dim}(W)=\operatorname{dim}(V)$ ， then $W=V$ ．

1．Let V be an inner product space．Suppose $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a set of nonzero orthogonal vectors in V ．
（a）Show that S is a linearly independent set．

Points：

$1 .(a)$	(b)	(c)	(d)	$2 .(a)$	(b)	(c)	$3 .(a)$	(b)	(c)	(d)	(e)	(f)

Message：（1）数学について（2）この授業について特に改善点について（3）その他何で もどうぞ（裏面も使って下さい）［HP 掲載不可のときは明記のこと］
(b) In addition assume that $\left\|\boldsymbol{v}_{1}\right\|=\left\|\boldsymbol{v}_{2}\right\|=\left\|\boldsymbol{v}_{3}\right\|=\left\|\boldsymbol{v}_{4}\right\|=\sqrt{2}$. Evaluate (5 pts)

$$
\left\|\frac{1}{2}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)\right\| .
$$

(c) Find the rank of the following matrix

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

(d) Determine whether the following set of vectors is linearly independent. (5 pts)

$$
\left\{\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, \boldsymbol{v}_{2}-\boldsymbol{v}_{3}, \boldsymbol{v}_{3}-\boldsymbol{v}_{4}, \boldsymbol{v}_{4}-\boldsymbol{v}_{1}\right\} .
$$

2. Let $T: V \rightarrow W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right\}$ be a linearly independent set of vectors in V and $\boldsymbol{w}_{1}=T\left(\boldsymbol{v}_{1}\right), \boldsymbol{w}_{2}=T\left(\boldsymbol{v}_{2}\right), \ldots, \boldsymbol{w}_{s}=T\left(\boldsymbol{v}_{s}\right)$. Let

$$
U=\operatorname{Ker}(T)=\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\}
$$

(a) Show that U is a subspace of V.
(b) Suppose that $\boldsymbol{v} \in V$ satisties that $\boldsymbol{v} \notin \operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right)$. Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}, \boldsymbol{v}\right\}$ is linearly independent.
(10 pts)
(c) Suppose that $\operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right) \cap U=\{\mathbf{0}\}$. Show that $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ is linearly independent.
(10 pts)
3. Let $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ be a linear transformation, $A=[T]$ the standard matrix of T given below, and $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{2}$ the column vectors of A.

$$
A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]=\left[\begin{array}{lll}
0 & 6 & 0 \\
1 & 2 & 3 \\
0 & 2 & 4
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
9 \\
-3 \\
1
\end{array}\right] .
$$

We consider four sets of vectors: $B=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$, the standard basis of $\boldsymbol{R}^{3}, B^{\prime}=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$, where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ are given above, $S=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\}$, the set of column vectors of A, and $S^{\prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$, the orthonormal basis of \boldsymbol{R}^{3} to be constructed in (b). You may use the fact that B is actually a basis of \boldsymbol{R}^{3} and $A \boldsymbol{v}_{1}=6 \boldsymbol{v}_{1}$, $A \boldsymbol{v}_{2}=2 \boldsymbol{v}_{2}$ and $A \boldsymbol{v}_{3}=-2 \boldsymbol{v}_{3}$. To give your answer, show work and give your reason.
(a) Show that $S=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.
(10 pts)
(b) Using the basis S, find an orthonormal basis $S^{\prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ of \boldsymbol{R}^{3} with respect to the usual Euclidean inner product by the Gram-Schmidt process. Note that $\boldsymbol{u}_{1}=\boldsymbol{a}_{1}=\boldsymbol{e}_{2}$.
(c) Express each of \boldsymbol{e}_{1} and \boldsymbol{e}_{3} as a linear combination of the orthonormal basis S^{\prime}. (5 pts)
(d) Find $[I]_{S^{\prime}, B}$ and $[I]_{B, S^{\prime}}$, where $I: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}(\boldsymbol{x} \mapsto \boldsymbol{x})$ is the identity operator on \boldsymbol{R}^{3}.
(e) Express $[T]_{S^{\prime}}$ using $A,[I]_{S^{\prime}, B}$ and $[I]_{B, S^{\prime}}$.
(f) Find the matrix $[T]_{B^{\prime}}$ for T with respect to the basis $B^{\prime}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$. pts)

Linear Algebra II

Solutions to Final Exam 2006/7

In the following if you use a theorem, state it. As for the following theorem, state which item (a) - (d) is applied.

Theorem 1 Let V be an n-dimensional vector space, and S a set of vectors in V.
(a) Suppose S has exactly n vectors. Then S is linearly independent if and only if S spans V.
(b) If S spans V but not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
(c) If S is linearly independent that is not already a basis for V, then S can be enlarged to a basis of V by inserting appropriate vectors into S.
(d) If W is a subspace of V, then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.

1. Let V be an inner product space. Suppose $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a set of nonzero orthogonal vectors in V.
(a) Show that S is a linearly independent set.

Sol. Suppose

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}=\mathbf{0}
$$

For each $i=1,2, \ldots, n$,

$$
\begin{aligned}
0 & =\left\langle\mathbf{0}, \boldsymbol{v}_{i}\right\rangle \\
& =\left\langle k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{n} \boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \quad \text { (by the equation above) } \\
& =k_{1}\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{i}\right\rangle+k_{2}\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{i}\right\rangle+\cdots+k_{n}\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{i}\right\rangle \quad \text { (by linearlity) } \\
& =k_{i}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle . \quad \text { (S is a set of orthogonal vectors) }
\end{aligned}
$$

Since $\boldsymbol{v}_{i} \neq \mathbf{0}$ by definition, $\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle>0$ (by the definition of inner product). Hence $k_{i}\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle=0$ implies that $k_{i}=0$.
Therefore $k_{1}=k_{2}=\cdots=k_{n}=0$ and S is linearly independent.
(b) In addition assume that $\left\|\boldsymbol{v}_{1}\right\|=\left\|\boldsymbol{v}_{2}\right\|=\left\|\boldsymbol{v}_{3}\right\|=\left\|\boldsymbol{v}_{4}\right\|=\sqrt{2}$. Evaluate (5 pts)

$$
\left\|\frac{1}{2}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)\right\| .
$$

Sol.

$$
\begin{gathered}
\left\|\frac{1}{2}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)\right\|^{2}=\left\langle\frac{1}{2}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right), \frac{1}{2}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)\right\rangle \\
=\frac{1}{4}\left(\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle+\left\langle\boldsymbol{v}_{2}, \boldsymbol{v}_{2}\right\rangle+\left\langle\boldsymbol{v}_{3}, \boldsymbol{v}_{3}\right\rangle+\left\langle\boldsymbol{v}_{4}, \boldsymbol{v}_{4}\right\rangle\right)(S \text { is an orthogonal set }) \\
=\frac{1}{4}(2+2+2+2)=2 . \quad\left(\left\langle\boldsymbol{v}_{i}, \boldsymbol{v}_{i}\right\rangle=\left\|\boldsymbol{v}_{i}\right\|^{2}=2 \text { for } i=1,2,3,4\right)
\end{gathered}
$$

Hence $\left\|\frac{1}{2}\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}+\boldsymbol{v}_{3}+\boldsymbol{v}_{4}\right)\right\|=\sqrt{2}$.
(c) Find the rank of the following matrix

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \tag{5pts}\\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Sol. Let $\boldsymbol{j}=[1,1,1,1]^{T}$. Then $\boldsymbol{A} \boldsymbol{j}=\mathbf{0}$. Hence \boldsymbol{j} is in the nullspace and $\operatorname{nullity}(A) \geq 1$, and $\operatorname{rank}(A)=4-\operatorname{nullity}(A) \leq 3$. Since

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)=1 \neq 0,\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

and hence

$$
\left\{\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right]\right\}
$$

is a linearly independent set. Therefore $\operatorname{rank}(A) \geq 3$ and $\operatorname{rank}(A)=3$.
(d) Determine whether the following set of vectors is linearly independent. (5 pts)

$$
\left\{\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, \boldsymbol{v}_{2}-\boldsymbol{v}_{3}, \boldsymbol{v}_{3}-\boldsymbol{v}_{4}, \boldsymbol{v}_{4}-\boldsymbol{v}_{1}\right\} .
$$

Sol. Since

$$
\left(\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right)+\left(\boldsymbol{v}_{2}-\boldsymbol{v}_{3}\right)+\left(\boldsymbol{v}_{3}-\boldsymbol{v}_{4}\right)+\left(\boldsymbol{v}_{4}-\boldsymbol{v}_{1}\right)=\mathbf{0}
$$

it is linearly dependent.
Note that if $W=\operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right), B=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right\}$ and $T: W \rightarrow W$ is a linear transformation such that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{v}_{1}-\boldsymbol{v}_{2}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{v}_{2}-\boldsymbol{v}_{3}, T\left(\boldsymbol{v}_{3}\right)=$ $\boldsymbol{v}_{3}-\boldsymbol{v}_{4}$ and $T\left(\boldsymbol{v}_{4}\right)=\boldsymbol{v}_{4}-\boldsymbol{v}_{1}$, then $A=[T]_{B}$, i.e., A is the matrix for T with respect to the basis B. Hence $\operatorname{rank}(T)=\operatorname{rank}(A)=3<4$ and the set is linearly dependent. Check the detail.
2. Let $T: V \rightarrow W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right\}$ be a linearly independent set of vectors in V and $\boldsymbol{w}_{1}=T\left(\boldsymbol{v}_{1}\right), \boldsymbol{w}_{2}=T\left(\boldsymbol{v}_{2}\right), \ldots, \boldsymbol{w}_{s}=T\left(\boldsymbol{v}_{s}\right)$. Let

$$
U=\operatorname{Ker}(T)=\{\boldsymbol{v} \in V \mid T(\boldsymbol{v})=\mathbf{0}\} .
$$

(a) Show that U is a subspace of V.

Sol. Let $\boldsymbol{u}_{1}, \boldsymbol{u}_{2} \in U$. Then by the definition of $U, T\left(\boldsymbol{u}_{1}\right)=T\left(\boldsymbol{u}_{2}\right)=\mathbf{0}$. Since T is a linear transformation,

$$
T\left(\boldsymbol{u}_{1}+\boldsymbol{u}_{2}\right)=T\left(\boldsymbol{u}_{1}\right)+T\left(\boldsymbol{u}_{2}\right)=\mathbf{0}+\mathbf{0}=\mathbf{0}, T\left(k \boldsymbol{u}_{1}\right)=k T\left(\boldsymbol{u}_{1}\right)=k \mathbf{0}=\mathbf{0} .
$$

Hence $\boldsymbol{u}_{1}+\boldsymbol{u}_{2} \in U$ and $k \boldsymbol{u}_{1} \in U$ as these vectors satisfy the condition defining U. Therefore U is a subspace (by Theorem 3.2 (5.2.1)).
(b) Suppose that $\boldsymbol{v} \in V$ satisties that $\boldsymbol{v} \notin \operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right)$. Show that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}, \boldsymbol{v}\right\}$ is linearly independent.

Sol. Suppose

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{s} \boldsymbol{v}_{s}+k \boldsymbol{v}=\mathbf{0} .
$$

We need to show that $k=k_{1}=k_{2}=\cdots=k_{s}=0$. If $k \neq 0$, then

$$
\boldsymbol{v}=\left(-k_{1} / k\right) \boldsymbol{v}_{1}+\left(-k_{2} / k\right) \boldsymbol{v}_{2}+\cdots+\left(-k_{s} / k\right) \boldsymbol{v}_{s} \in \operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right) .
$$

This is against our hypothesis. Hence $k=0$, and

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{s} \boldsymbol{v}_{s}=\mathbf{0}
$$

Since $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right\}$ is linearly independent, $k_{1}=k_{2}=\cdots=k_{s}=0$. Therefore $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}, \boldsymbol{v}\right\}$ is linearly independent.
(c) Suppose that $\operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right) \cap U=\{\mathbf{0}\}$. Show that $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ is linearly independent.
(10 pts)
Sol. Suppose

$$
k_{1} \boldsymbol{w}_{1}+k_{2} \boldsymbol{w}_{2}+\cdots+k_{\boldsymbol{s}} \boldsymbol{w}_{s}=\mathbf{0}
$$

Since $\boldsymbol{w}_{1}=T\left(\boldsymbol{v}_{1}\right), \boldsymbol{w}_{2}=T\left(\boldsymbol{v}_{2}\right), \ldots, \boldsymbol{w}_{s}=T\left(\boldsymbol{v}_{s}\right)$,

$$
\begin{aligned}
\mathbf{0} & =k_{1} T\left(\boldsymbol{v}_{1}\right)+k_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+k_{s} T\left(\boldsymbol{v}_{s}\right) \\
& =T\left(k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{s} \boldsymbol{v}_{s}\right) .
\end{aligned}
$$

Hence

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{s} \boldsymbol{v}_{s} \in \operatorname{Span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right) \cap U=\{\mathbf{0}\} .
$$

This implies that

$$
k_{1} \boldsymbol{v}_{1}+k_{2} \boldsymbol{v}_{2}+\cdots+k_{s} \boldsymbol{v}_{s}=\mathbf{0}
$$

Since $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right\}$ is a linearly independent set, $k_{1}=k_{2}=\cdots=k_{s}=0$. Therefore $\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{s}\right\}$ is linearly independent.
3. Let $T: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}$ be a linear transformation, $A=[T]$ the standard matrix of T given below, and $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{2}$ the column vectors of A.

$$
A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]=\left[\begin{array}{lll}
0 & 6 & 0 \\
1 & 2 & 3 \\
0 & 2 & 4
\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
9 \\
-3 \\
1
\end{array}\right] .
$$

We consider four sets of vectors: $B=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$, the standard basis of $\boldsymbol{R}^{3}, B^{\prime}=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$, where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ are given above, $S=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\}$, the set of column vectors of A, and $S^{\prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$, the orthonormal basis of \boldsymbol{R}^{3} to be constructed in (b). You may use the fact that B is actually a basis of \boldsymbol{R}^{3} and $A \boldsymbol{v}_{1}=6 \boldsymbol{v}_{1}$, $A \boldsymbol{v}_{2}=2 \boldsymbol{v}_{2}$ and $A \boldsymbol{v}_{3}=-2 \boldsymbol{v}_{3}$. To give your answer, show work and give your reason.
(a) Show that $S=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right\}$ is a basis of \boldsymbol{R}^{3}.

Sol. Since B is a basis of $\boldsymbol{R}^{3}, \operatorname{dim}\left(\boldsymbol{R}^{3}\right)=3$.

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
0 & 6 & 0 \\
1 & 2 & 3 \\
0 & 2 & 4
\end{array}\right|=-\left|\begin{array}{ll}
6 & 0 \\
2 & 4
\end{array}\right|=-24 \neq 0
$$

Hence A is invertible. If $k_{1} \boldsymbol{a}_{1}+k_{2} \boldsymbol{a}_{2}+k_{3} \boldsymbol{a}_{3}=\mathbf{0}$, then $A\left[k_{1}, k_{2}, k_{3}\right]^{T}=\mathbf{0}$ and $\left[k_{1}, k_{2}, k_{3}\right]^{T}=A^{-1} \mathbf{0}=\mathbf{0}$. Therefore $k_{1}=k_{2}=k_{3}=0$ and S is linearly independent. By Theorem 1 (a), $\operatorname{Span}(S)=\boldsymbol{R}^{3}$ as $\operatorname{dim}\left(\boldsymbol{R}^{3}\right)=3$. Therefore S is a basis of \boldsymbol{R}^{3}.
One can show the linear independence of S just by solving a system of linear equations. It is not difficult either.
(b) Using the basis S, find an orthonormal basis $S^{\prime}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ of \boldsymbol{R}^{3} with respect to the usual Euclidean inner product by the Gram-Schmidt process. Note that $\boldsymbol{u}_{1}=\boldsymbol{a}_{1}=\boldsymbol{e}_{2}$.
Sol. $\quad \boldsymbol{u}_{1}=\boldsymbol{e}_{2}$. Since $\left\langle\boldsymbol{a}_{2}, \boldsymbol{u}_{1}\right\rangle=2$,

$$
\boldsymbol{u}_{2}^{\prime}=\boldsymbol{a}_{2}-\left\langle\boldsymbol{a}_{2}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}=\boldsymbol{a}_{2}-2 \boldsymbol{u}_{1}=\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right] .
$$

Since $\left\|\boldsymbol{u}_{2}^{\prime}\right\|^{2}=40$,

$$
\boldsymbol{u}_{2}=\frac{1}{\left\|\boldsymbol{u}_{2}\right\|} \boldsymbol{u}_{2}^{\prime}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right] .
$$

Now $\left\langle\boldsymbol{a}_{3}, \boldsymbol{u}_{1}\right\rangle=3,\left\langle\boldsymbol{a}_{3}, \boldsymbol{u}_{2}\right\rangle=4 / \sqrt{10}$,

$$
\boldsymbol{u}_{3}^{\prime}=\boldsymbol{a}_{3}-3 \boldsymbol{u}_{1}-\frac{4}{\sqrt{10}} \boldsymbol{u}_{2}=\left[\begin{array}{l}
0 \\
3 \\
4
\end{array}\right]-3\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\frac{2}{5}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\frac{6}{5}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right] .
$$

Therefore $\left\|\boldsymbol{u}_{3}^{\prime}\right\|=6 \sqrt{10} / 5$ and

$$
\boldsymbol{u}_{3}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right] \text { and } S^{\prime}=\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \frac{1}{\sqrt{10}}\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right], \frac{1}{\sqrt{10}}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]\right\}
$$

(c) Express each of \boldsymbol{e}_{1} and \boldsymbol{e}_{3} as a linear combination of the orthonormal basis $S^{\prime \prime}$. (5 pts)
Sol. Since S^{\prime} is an orthonormal basis, for $\boldsymbol{v} \in V$,

$$
\boldsymbol{v}=\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle\boldsymbol{v}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2}+\left\langle\boldsymbol{v}, \boldsymbol{u}_{3}\right\rangle \boldsymbol{u}_{3} .
$$

As for \boldsymbol{e}_{1} and \boldsymbol{e}_{3}, the computation is easy and we get

$$
\boldsymbol{e}_{1}=\frac{3}{\sqrt{10}} \boldsymbol{u}_{2}-\frac{1}{\sqrt{10}} \boldsymbol{u}_{3}, \boldsymbol{e}_{3}=\frac{1}{\sqrt{10}} \boldsymbol{u}_{2}+\frac{3}{\sqrt{10}} \boldsymbol{u}_{3} .
$$

（d）Find $[I]_{S^{\prime}, B}$ and $[I]_{B, S^{\prime}}$ ，where $I: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{3}(\boldsymbol{x} \mapsto \boldsymbol{x})$ is the identity operator on \boldsymbol{R}^{3} ．

Sol．

$$
\begin{aligned}
& {[I]_{S^{\prime}, B}=\left[\left[\boldsymbol{e}_{1}\right]_{S^{\prime}},\left[\boldsymbol{e}_{2}\right]_{S^{\prime}},\left[\boldsymbol{e}_{3}\right]_{S^{\prime}}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\
-\frac{1}{\sqrt{10}} & 0 & \frac{3}{\sqrt{10}}
\end{array}\right], \text { and }} \\
& {[I]_{B, S}=\left[\left[\boldsymbol{u}_{1}\right]_{B},\left[\boldsymbol{u}_{2}\right]_{B},\left[\boldsymbol{u}_{3}\right]_{B}\right]=\left[\begin{array}{ccc}
0 & \frac{3}{\sqrt{10}} & -\frac{1}{\sqrt{10}} \\
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}}
\end{array}\right] .}
\end{aligned}
$$

（e）Express $[T]_{S^{\prime}}$ using $A,[I]_{S^{\prime}, B}$ and $[I]_{B, S^{\prime}}$ ．
Sol．

$$
[T]_{S^{\prime}}=[T]_{S^{\prime}, S^{\prime}}=[I]_{S^{\prime}, B}[T]_{B, B}[I]_{B, S^{\prime}}=[I]_{S^{\prime}, B} A[I]_{B, S^{\prime}}
$$

（f）Find the matrix $[T]_{B^{\prime}}$ for T with respect to the basis $B^{\prime}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ ． pts）
Sol．Since $A \boldsymbol{v}_{1}=6 \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=2 \boldsymbol{v}_{2}$ and $A \boldsymbol{v}_{3}=-2 \boldsymbol{v}_{3}$ ，

$$
\begin{aligned}
{[T]_{B^{\prime}} } & =\left[\left[T\left(\boldsymbol{v}_{1}\right)\right]_{B^{\prime}},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{B^{\prime}},\left[T\left(\boldsymbol{v}_{3}\right)\right]_{B^{\prime}}\right]=\left[\left[6 \boldsymbol{v}_{1}\right]_{B^{\prime}},\left[2 \boldsymbol{v}_{2}\right]_{B^{\prime}},\left[-2 \boldsymbol{v}_{3}\right]_{B^{\prime}}\right] \\
& =\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right] .
\end{aligned}
$$

