INTRODUCTION TO LINEAR ALGEBRA

Hiroshi SUZUKI* Division of Natural Sciences International Christian University

October 21, 2010

11 Eigenvalues and Eigenvectors

Definition 11.1 Let A be an $n \times n$ matrix.

1. A nonzero vector $x \in \mathbb{R}^n$ is called an *eigenvector* of A if Ax is a scalar multiple of x, that is if

 $A\boldsymbol{x} = \lambda \boldsymbol{x}$

for some scalar λ . The scalar λ is called an *eigenvalue* of A, and x is said to be an eigenvector of A corresponding to it.

2. $p(x) = \det(xI - A) = x^n + c_1 x^{n-1} + c_2 x^{n-2} + \cdots + c_{n-1} x + c_n$ is called the *characteristic polynomial* of A, and $\det(xI - A) = 0$ is called the *characteristic equation* of A.

Example 11.1

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix},$$
$$\boldsymbol{u} = \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix}, \quad \boldsymbol{v} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

Then

$$A\boldsymbol{u} = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 6 \\ 36 \\ 48 \end{bmatrix} = 6 \cdot \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix}$$

$$det(xI - A)$$

$$= \begin{vmatrix} x & -1 & 0 \\ -6 & x - 1 & -3 \\ 0 & -4 & x - 3 \end{vmatrix}$$

$$= x((x - 1)(x - 3) - 12) - (-1)(-6)(x - 3)$$

$$= x^3 - 4x^2 - 15x + 18$$

$$= (x - 6)(x + 3)(x - 1).$$

Theorem 11.1 (Theorem 7.1.2) If A is an $n \times n$ matrix and λ is a real number, then the following are equivalent.

- (a) λ is an eigenvalue of A.
- (b) The system of equations $(\lambda I A)\mathbf{x} = \mathbf{0}$ has nontrivial solution.
- (c) There is a nonzero vector $\boldsymbol{x} \in \boldsymbol{R}^n$ such that $A\boldsymbol{x} = \lambda \boldsymbol{x}$.
- (d) λ is a solution of the characteristic equation det(xI A) = 0.

Example 11.2 Find nontrivial solutions of $(6I - A)\mathbf{x} = \mathbf{0}$, $((-3)I - A)\mathbf{x} = \mathbf{0}$ and $(I - A)\mathbf{x} = \mathbf{0}$.

12 Applications of Eigenvalues and Diagonalization

Review Let A be an $n \times n$ matrix.

1. A nonzero vector $x \in \mathbf{R}^n$ is called an *eigenvector* of A if Ax is a scalar multiple of x, that is if

$$A\boldsymbol{x} = \lambda \boldsymbol{x}$$

for some scalar λ . The scalar λ is called an *eigenvalue* of A, and \boldsymbol{x} is said to be an eigenvector of A corresponding to it.

- 2. $p(x) = \det(xI A) = x^n + c_1 x^{n-1} + c_2 x^{n-2} + \cdots + c_{n-1}x + c_n$ is called the *characteristic polynomial* of A, and $\det(xI A) = 0$ is called the *characteristic equation* of A.
- **3.** Let λ be a real number. Then the following are equivalent.
 - (a) λ is an eigenvalue of A.
 - (b) The system of equations $(\lambda I A)\boldsymbol{v} = \boldsymbol{0}$ has nontrivial solution.
 - (c) There is a nonzero vector $\boldsymbol{v} \in \boldsymbol{R}^n$ such that $A\boldsymbol{v} = \lambda \boldsymbol{v}$.
 - (d) λ is a solution of the characteristic equation det(xI - A) = 0.

Example 12.1 [Theorem 7.1.1] If A is an $n \times n$ triangular matrix, then the egenvalues of A are the entries on the main diagonal of A.

^{*}E-mail:hsuzuki@icu.ac.jp

Definition 12.1 A square matrix A is called *diago-nalizable* if there is an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix; the matrix P is said to diagonalize A.

Example 12.2

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix},$$
$$u = \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix}, \quad v = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad w = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$
$$\det(xI - A) = (x - 6)(x + 3)(x - 1),$$
$$Au = 6u, Av = -3v, Aw = w.$$
$$AT = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 6 & -3 & 1 \\ 8 & 2 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -3 & 1 \\ 36 & 9 & 1 \\ 48 & -6 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \\ 6 & -3 & 1 \\ 8 & 2 & -2 \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$T^{-1}AT = D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, and $A = TDT^{-1}$.

TD

=

Proposition 12.1 (Theorems 7.1.3, 7.1.4) Let A be an $n \times n$ matrix and P an invertible matrix. Suppose $Av = \lambda v$ for some nonzero v. Then the following hold.

- (i) A^kv = λ^kv for any positive integer k and v is a eivenvector of A^k corresponding to an eigenvalue λ^k.
- (ii) A is invertible if and only if 0 is an eigenvalue.
- (iii) $\det(xI A) = \det(xI P^{-1}AP).$

Theorem 12.2 (Theorem 7.2.1) If A is an $n \times n$ matrix, then the following are equivalent.

- (a) A is diagonalizable.
- (b) There are *n* eigenvectors $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$ such that $P = [v_1, v_2, \ldots, v_n]$ is invertible.

Proof. (a) \Rightarrow (b): Suppose A is diagonalizable. Then there is an invertible matrix $P = [v_1, v_2, \dots, v_n]$ such that $D = P^{-1}AP$ is a diagonal matrix, where v_i is the *i*th column of *P*. Let $D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, where λ_i is the *i*th diagonal entry. Then

$$[A\boldsymbol{v}_1, A\boldsymbol{v}_2, \dots, A\boldsymbol{v}_n]$$

$$= A[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n]$$

$$= AP$$

$$= PD$$

$$= [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n] \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

$$= [\lambda_1 \boldsymbol{v}_1, \lambda_2 \boldsymbol{v}_2, \dots, \lambda_n \boldsymbol{v}_n]$$

Hence $A\boldsymbol{v}_1 = \lambda_1 \boldsymbol{v}_1, A\boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_2, \dots, A\boldsymbol{v}_n = \lambda_n \boldsymbol{v}_n$. (b) \Rightarrow (a): Suppose there are *n* eigenvectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \in \boldsymbol{R}^n$ such that $P = [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n]$ is invertible. Let $D = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. Then

$$AP = A[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n]$$

= $[A\boldsymbol{v}_1, A\boldsymbol{v}_2, \dots, A\boldsymbol{v}_n]$
= $[\lambda_1 \boldsymbol{v}_1, \lambda_2 \boldsymbol{v}_2, \dots, \lambda_n \boldsymbol{v}_n]$
= $[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n] \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$
= PD

Since P is invertible, $P^{-1}AP = D$.

Theorem 12.3 If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof. Suppose $\lambda_1, \lambda_2, \ldots, \lambda_n$ be *n* distinct eigenvalues of *A*. By Theorem 11.1 (7.1.2), there exist nonzero vectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n$ such that $A\boldsymbol{v}_1 = \lambda_1 \boldsymbol{v}_1, \ A\boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_2, \ldots, A\boldsymbol{v}_n = \lambda_n \boldsymbol{v}_n$. Let $P = [\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n]$ and $D = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. Then AP = PD by the proof of Theorem 12.2. It remains to show that *P* is invertible.

Suppose $P\boldsymbol{x} = \boldsymbol{0}$. We show that $\boldsymbol{x} = \boldsymbol{0}$. Since AP = PD, $A^iP = PD^i$. Hence

$$O = [P\mathbf{x}, AP\mathbf{x}, \dots, A^{n-1}P\mathbf{x}]$$

= $[P\mathbf{x}, PD\mathbf{x}, \dots, PD^{n-1}\mathbf{x}]$
= $P[\mathbf{x}, D\mathbf{x}, \dots, D^{n-1}\mathbf{x}] = PXV$
= $[x_1\mathbf{v}_1, x_2\mathbf{v}_2, \dots, x_n\mathbf{v}_n]V.$

Therefore $x_i v_i = \mathbf{0}$ for all i and $x = \mathbf{0}$.

Example 12.3 Let

$$A = \left[\begin{array}{rrrr} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right].$$

Then

$$\det(xI-A) = \begin{vmatrix} x & -1 & 0 & -1 \\ -1 & x & -1 & 0 \\ 0 & -1 & x & -1 \\ -1 & 0 & -1 & x \end{vmatrix} = x^2(x-2)(x+2)$$
$$\boldsymbol{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{vmatrix}, \boldsymbol{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ -1 \\ \end{bmatrix}, \boldsymbol{v}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, \boldsymbol{v}_4 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ \end{bmatrix}$$

Extra Results without a Proof

Theorem 12.4 (Hamilton-Cayley) Let A be an $n \times n$ matrix and $p(x) = \det(xI - A)$ is the characteristic polynomial of A. Then p(A) = O.

Proof. The proof is complicated. So we prove only when A is diagonalizable. If A = D is a diagonal matrix, this is obvious. For the general case, suppose $P^{-1}AP = D$. Then $A = PDP^{-1}$ and $p(A) = Pp(D)P^{-1}$. By Proposition 12.1, the characteristic of D is equal to p(x). Now clearly p(D) = O. ■

Theorem 12.5 (Theorem 7.3.1) Let A be an $n \times n$ matrix. Then the following are equivalent.

- (i) There is a matrix P such that $P^{-1} = P^T$ (orthogonal) and $P^T A P$ is diagonal.
- (ii) There are n eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ such that $\mathbf{v}_i \cdot \mathbf{v}_j = \delta_{i,j}$. (orthonormal)
- (iii) $A = A^T$.
- *Proof.* (ii) \Rightarrow (i) and (i) \Rightarrow (iii) are easy.