INTRODUCTION TO LINEAR ALGEBRA

Hiroshi SUZUKI*
Division of Natural Sciences
International Christian University

October 21, 2010

11 Eigenvalues and Eigenvectors

Definition 11.1 Let A be an $n \times n$ matrix.

1. A nonzero vector $\boldsymbol{x} \in \boldsymbol{R}^{n}$ is called an eigenvector of A if $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}, that is if

$$
A \boldsymbol{x}=\lambda \boldsymbol{x}
$$

for some scalar λ. The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is said to be an eigenvector of A corresponding to it.
2. $p(x)=\operatorname{det}(x I-A)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+$ $\cdots+c_{n-1} x+c_{n}$ is called the characteristic polynomial of A, and $\operatorname{det}(x I-A)=0$ is called the characteristic equation of A.

Example 11.1

$$
\begin{gathered}
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right], \\
\boldsymbol{u}=\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right], \quad \boldsymbol{w}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
\end{gathered}
$$

Then

$$
\begin{aligned}
& A \boldsymbol{u}=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right]=\left[\begin{array}{c}
6 \\
36 \\
48
\end{array}\right]=6 \cdot\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right] \\
& \begin{aligned}
& \operatorname{det}(x I-A) \\
&=\left|\begin{array}{ccc}
x & -1 & 0 \\
-6 & x-1 & -3 \\
0 & -4 & x-3
\end{array}\right| \\
&=x((x-1)(x-3)-12)-(-1)(-6)(x-3) \\
&=x^{3}-4 x^{2}-15 x+18 \\
&=(x-6)(x+3)(x-1)
\end{aligned}
\end{aligned}
$$

Theorem 11.1 (Theorem 7.1.2) If A is an $n \times n$ matrix and λ is a real number, then the following are equivalent.

[^0](a) λ is an eigenvalue of A.
(b) The system of equations $(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ has nontrivial solution.
(c) There is a nonzero vector $\boldsymbol{x} \in \boldsymbol{R}^{n}$ such that $A \boldsymbol{x}=\lambda \boldsymbol{x}$.
(d) λ is a solution of the characteristic equation $\operatorname{det}(x I-A)=0$.

Example 11.2 Find nontrivial solutions of (6I$A) \boldsymbol{x}=\mathbf{0},((-3) I-A) \boldsymbol{x}=\mathbf{0}$ and $(I-A) \boldsymbol{x}=\mathbf{0}$.

12 Applications of Eigenvalues and Diagonalization

Review Let A be an $n \times n$ matrix.

1. A nonzero vector $\boldsymbol{x} \in \boldsymbol{R}^{n}$ is called an eigenvector of A if $A \boldsymbol{x}$ is a scalar multiple of \boldsymbol{x}, that is if

$$
A \boldsymbol{x}=\lambda \boldsymbol{x}
$$

for some scalar λ. The scalar λ is called an eigenvalue of A, and \boldsymbol{x} is said to be an eigenvector of A corresponding to it.
2. $p(x)=\operatorname{det}(x I-A)=x^{n}+c_{1} x^{n-1}+c_{2} x^{n-2}+$ $\cdots+c_{n-1} x+c_{n}$ is called the characteristic polynomial of A, and $\operatorname{det}(x I-A)=0$ is called the characteristic equation of A.
3. Let λ be a real number. Then the following are equivalent.
(a) λ is an eigenvalue of A.
(b) The system of equations $(\lambda I-A) \boldsymbol{v}=\mathbf{0}$ has nontrivial solution.
(c) There is a nonzero vector $\boldsymbol{v} \in \boldsymbol{R}^{n}$ such that $A \boldsymbol{v}=\lambda \boldsymbol{v}$.
(d) λ is a solution of the characteristic equation $\operatorname{det}(x I-A)=0$.

Example 12.1 [Theorem 7.1.1] If A is an $n \times n$ triangular matrix, then the egenvalues of A are the entries on the main diagonal of A.

Definition 12.1 A square matrix A is called diagonalizable if there is an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix; the matrix P is said to diagonalize A.

Example 12.2

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right], \\
& \boldsymbol{u}=\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right], \quad \boldsymbol{w}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right] \\
& \operatorname{det}(x I-A)=(x-6)(x+3)(x-1), \\
& A \boldsymbol{u}=6 \boldsymbol{u}, A \boldsymbol{v}=-3 \boldsymbol{v}, A \boldsymbol{w}=\boldsymbol{w} . \\
& A T=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
6 & -3 & 1 \\
8 & 2 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 & -3 & 1 \\
36 & 9 & 1 \\
48 & -6 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
6 & -3 & 1 \\
8 & 2 & -2
\end{array}\right]\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =T D \\
& T^{-1} A T=D=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right], \text { and } A=T D T^{-1} .
\end{aligned}
$$

Proposition 12.1 (Theorems 7.1.3, 7.1.4) Let A be an $n \times n$ matrix and P an invertible matrix. Suppose $A \boldsymbol{v}=\lambda \boldsymbol{v}$ for some nonzero \boldsymbol{v}. Then the following hold.
(i) $A^{k} \boldsymbol{v}=\lambda^{k} \boldsymbol{v}$ for any positive integer k and \boldsymbol{v} is a eivenvector of A^{k} corresponding to an eigenvalue λ^{k}.
(ii) A is invertible if and only if 0 is an eigenvalue.
(iii) $\operatorname{det}(x I-A)=\operatorname{det}\left(x I-P^{-1} A P\right)$.

Theorem 12.2 (Theorem 7.2.1) If A is an $n \times n$ matrix, then the following are equivalent.
(a) A is diagonalizable.
(b) There are n eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in \boldsymbol{R}^{n}$ such that $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ is invertible.

Proof. $\quad(\mathrm{a}) \Rightarrow(\mathrm{b})$: Suppose A is diagonalizable. Then there is an invertible matrix $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ such that $D=P^{-1} A P$ is a diagonal matrix, where \boldsymbol{v}_{i} is
the i th column of P. Let $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, where λ_{i} is the i th diagonal entry. Then

$$
\begin{aligned}
& {\left[A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}\right]} \\
& \quad=A\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \\
& \quad=A P \\
& \quad=P D \\
& \quad=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \\
& \quad=\left[\lambda_{1} \boldsymbol{v}_{1}, \lambda_{2} \boldsymbol{v}_{2}, \ldots, \lambda_{n} \boldsymbol{v}_{n}\right]
\end{aligned}
$$

Hence $A \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=\lambda_{2} \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}=\lambda_{n} \boldsymbol{v}_{n}$.
(b) \Rightarrow (a): Suppose there are n eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in \boldsymbol{R}^{n}$ such that $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ is invertible. Let $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Then

$$
\begin{aligned}
A P & =A\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \\
& =\left[A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}\right] \\
& =\left[\lambda_{1} \boldsymbol{v}_{1}, \lambda_{2} \boldsymbol{v}_{2}, \ldots, \lambda_{n} \boldsymbol{v}_{n}\right] \\
& =\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \\
& =P D
\end{aligned}
$$

Since P is invertible, $P^{-1} A P=D$.
Theorem 12.3 If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof. Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be n distinct eigenvalues of A. By Theorem 11.1 (7.1.2), there exist nonzero vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ such that $A \boldsymbol{v}_{1}=$ $\lambda_{1} \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=\lambda_{2} \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}=\lambda_{n} \boldsymbol{v}_{n}$. Let $P=$ $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Then $A P=P D$ by the proof of Theorem 12.2. It remains to show that P is invertible.

Suppose $P \boldsymbol{x}=\mathbf{0}$. We show that $\boldsymbol{x}=\mathbf{0}$. Since $A P=P D, A^{i} P=P D^{i}$. Hence

$$
\begin{aligned}
O & =\left[P \boldsymbol{x}, A P \boldsymbol{x}, \ldots, A^{n-1} P \boldsymbol{x}\right] \\
& =\left[P \boldsymbol{x}, P D \boldsymbol{x}, \ldots, P D^{n-1} \boldsymbol{x}\right] \\
& =P\left[\boldsymbol{x}, D \boldsymbol{x}, \ldots, D^{n-1} \boldsymbol{x}\right]=P X V \\
& =\left[x_{1} \boldsymbol{v}_{1}, x_{2} \boldsymbol{v}_{2}, \ldots, x_{n} \boldsymbol{v}_{n}\right] V
\end{aligned}
$$

Therefore $x_{i} \boldsymbol{v}_{i}=\mathbf{0}$ for all i and $\boldsymbol{x}=\mathbf{0}$.
Example 12.3 Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

Then
$\operatorname{det}(x I-A)=\left|\begin{array}{cccc}x & -1 & 0 & -1 \\ -1 & x & -1 & 0 \\ 0 & -1 & x & -1 \\ -1 & 0 & -1 & x\end{array}\right|=x^{2}(x-2)(x+2)$ $\boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right], \boldsymbol{v}_{4}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right]$,

$$
\begin{aligned}
& P=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right] \\
A P & =\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right] \\
= & {\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] } \\
= & P D
\end{aligned}
$$

Extra Results without a Proof

Theorem 12.4 (Hamilton-Cayley) Let A be an $n \times n$ matrix and $p(x)=\operatorname{det}(x I-A)$ is the characteristic polynomial of A. Then $p(A)=O$.

Proof. The proof is complicated. So we prove only when A is diagonalizable. If $A=D$ is a diagonal matrix, this is obvious. For the general case, suppose $P^{-1} A P=D$. Then $A=P D P^{-1}$ and $p(A)=P p(D) P^{-1}$. By Proposition 12.1, the characteristic of D is equal to $p(x)$. Now clearly $p(D)=O$.

Theorem 12.5 (Theorem 7.3.1) Let A be an $n \times$ n matrix. Then the following are equivalent.
(i) There is a matrix P such that $P^{-1}=P^{T}$ (orthogonal) and $P^{T} A P$ is diagonal.
(ii) There are n eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ such that $\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=\delta_{i, j} \cdot$ (orthonormal)
(iii) $A=A^{T}$.

Proof. (ii) \Rightarrow (i) and (i) \Rightarrow (iii) are easy.

[^0]: *E-mail:hsuzuki@icu.ac.jp

