
9 Eigenvalues and Eigenvectors

9.1 Eigenvalues and Characteristic Polynomials

Definition 9.1 [page 285] An eigenvector（固有ベクトル） of an n × n matrix A is a
nonzero vector x ∈ Rn such that

Ax = λx

for some scalar λ. A scalar λ is called an eigenvalue（固有値） of A, if there is a nontrivial
solution x of Ax = λx; such an x is called an eigenvector corresponding to λ.

∃x ̸= 0, Ax = λx ⇔ ∃x ̸= 0, (A− λI)x = 0 ⇔ det(A− λI) = 0.

Definition 9.2 [page 294] The determinant det(A−xI) is a polynomial of degree n in x.
It is called the characteristic polynomial（固有（特性）多項式）of A, and det(A−xI) = 0
the characteristic equation（固有方程式） of A. The (algebraic) multiplicity（重複度） of
an eigenvalue λ is its multiplicity as a root of the characteristic equation.

Theorem 9.1 (Theorem 2 in page 288) If v1,v2, . . .vr are eigenvectors that corre-
spond to distinct eigenvalues λ1,λ2, . . . ,λr of an n×n matrix A. Then the set {v1,v2, . . . ,vr}
is linearly independent.

9.2 Diagonalization

Definition 9.3 [page 300] If A and B are n × n matrices, then A is similar（相似） to
B if there is an invertible matrix P such that P−1AP = B, or equivalently A = PBP−1.

Theorem 9.2 (Theorem 4 in page 295) If n×n matrices A and B are similar, then
they have the same characteristic polynomial and hence the same eigenvalues with the
same multiplicities.

Definition 9.4 [page 295] A square matrix A is said to be diagonalizable（対角化可能）
if A is similar to a diagonal matrix, i.e., there is an invertible matrix P and a diagonal
matrix D such that A = PDP−1.

Theorem 9.3 (Theorem 5 in page 300) An n × n matrix A is diagonalizable if and
only if A has n linearly independent eigenvectors. In fact A = PDP−1, with D a diagonal
matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In
this case, the diagonal eintries of D are eigenvalues of A that correspond, respectively, to
the eigenvectors in P .

In particular, an n× n matrix with n distinct eigenvalues is diagonalizable.

Proof. SupposeA is diagonalizable. Then there is an invertible matrix P = [v1,v2, . . . ,vn]
and a diagonal matrix D such that A = PDP−1. Let D = diag(λ1,λ2, . . . ,λn), where λi
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is the ith diagonal entry. Then

[Av1, Av2, . . . , Avn] = A[v1,v2, . . . ,vn]

= AP

= PD

= [v1,v2, . . . ,vn]diag(λ1,λ2, . . . ,λn)

= [λ1v1,λ2v2, . . . ,λnvn].

Hence Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn.

Suppose there are n linearly independent eigenvectors v1,v2, . . . ,vn ∈ Rn. Then
P = [v1,v2, . . . ,vn] is invertible by Theorem 8 in Chapter 2. LetD = diag(λ1,λ2, . . . ,λn).
Then

AP = A[v1,v2, . . . ,vn]

= [Av1, Av2, . . . , Avn]

= [λ1v1,λ2v2, . . . ,λnvn]

= [v1,v2, . . . ,vn]diag(λ1,λ2, . . . ,λn)

= PD.

Since P is invertible, A = PDP−1.

Example 9.1

A =

⎡

⎣
0 1 0
6 1 3
0 4 3

⎤

⎦ , u =

⎡

⎣
1
6
8

⎤

⎦ , v =

⎡

⎣
1
−3
2

⎤

⎦ , w =

⎡

⎣
1
1
−2

⎤

⎦ .

Then

Au =

⎡

⎣
0 1 0
6 1 3
0 4 3

⎤

⎦

⎡

⎣
1
6
8

⎤

⎦ =

⎡

⎣
6
36
48

⎤

⎦ = 6 ·

⎡

⎣
1
6
8

⎤

⎦ .

det(A− xI) =

∣∣∣∣∣∣

−x 1 0
6 1− x 3
0 4 3− x

∣∣∣∣∣∣

= −x(((x− 1)(x− 3)− 12)− (−1)(−6)(x− 3)) = −(x3 − 4x2 − 15x+ 18)

= −(x− 6)(x+ 3)(x− 1).

Find nontrivial solutions of (A − 6I)x = 0, (A − (−3)I)x = 0 and (A − I)x = 0.
They are u,v,w. Let T = [u,v,w]. Then

AT =

⎡

⎣
0 1 0
6 1 3
0 4 3

⎤

⎦

⎡

⎣
1 1 1
6 −3 1
8 2 −2

⎤

⎦ =

⎡

⎣
6 −3 1
36 9 1
48 −6 −2

⎤

⎦

=

⎡

⎣
1 1 1
6 −3 1
8 2 −2

⎤

⎦

⎡

⎣
6 0 0
0 −3 0
0 0 1

⎤

⎦ = TD.
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T−1AT = D =

⎡

⎣
6 0 0
0 −3 0
0 0 1

⎤

⎦ , and A = TDT−1.

Example 9.2 [Theorem 1 in page 291 (269)] If A is an n×n triangular matrix, then the
egenvalues of A are the entries on the main diagonal of A.

Example 9.3 Let

A =

⎡

⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎥⎦ . Then det(A− xI) =

∣∣∣∣∣∣∣∣

−x 1 0 1
1 −x 1 0
0 1 −x 1
1 0 1 −x

∣∣∣∣∣∣∣∣
= x2(x− 2)(x+ 2).

v1 =

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦ ,v2 =

⎡

⎢⎢⎣

1
1
−1
−1

⎤

⎥⎥⎦ ,v3 =

⎡

⎢⎢⎣

1
−1
−1
1

⎤

⎥⎥⎦ ,v4 =

⎡

⎢⎢⎣

1
−1
1
−1

⎤

⎥⎥⎦ , P =

⎡

⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤

⎥⎥⎦ .

AP =

⎡

⎢⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎤

⎥⎥⎦

⎡

⎢⎢⎣

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⎤

⎥⎥⎦ = PD.

9.3 Extra Results without a Proof (Not to be included in Final)

Theorem 9.4 (Cayley-Hamilton (See page 344 Exercise 7)) Let A be an n × n
matrix and p(x) = det(A− xI) is the characteristic polynomial of A. Then p(A) = O.

Proof. The proof is complicated. So we prove only when A is diagonalizable. If A = D
is a diagonal matrix, this is obvious. For the general case, suppose P−1AP = D. Then
A = PDP−1 and p(A) = Pp(D)P−1. By Theorem 9.2, the characteristic polynomial of
D is equal to p(x). Now clearly p(D) = O.

Theorem 9.5 (Theorems 2, 3 in Section 7.1) Let A be an n × n matrix. Then the
following are equivalent.

(i) There is a matrix P such that P−1 = P⊤ 9 and P⊤AP is diagonal.

(ii) There are n eigenvectors v1,v2, . . . ,vn such that vi · vj = δi,j. 10

(iii) A = A⊤.

Theorem 9.6 (Triangulation（三角化可能）) (1) If A is a square matrix such that all
eigenvalues are real. Then there is an invertible matrix P such that P−1AP is an upper
triangular matrix.
(2) If A is a square matrix such that all entries are complex numbers. Then there is an
invertible matrix P such that P−1AP is an upper triangular matrix.

9A square matrix with the property P−1 = P⊤ is called an orthogonal matrix（直交行列）.
10The set of vectors {v1,v2, . . . ,vn} with the property vi ·vj = δi,j is called orthonormal（正規直交）.
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