9 Eigenvalues and Eigenvectors

9.1 Eigenvalues and Characteristic Polynomials

Definition 9.1 [page 285] An *eigenvector* (固有ベクトル) of an $n \times n$ matrix A is a nonzero vector $\boldsymbol{x} \in \mathbb{R}^n$ such that

 $A\boldsymbol{x} = \lambda \boldsymbol{x}$

for some scalar λ . A scalar λ is called an *eigenvalue* (固有値) of A, if there is a nontrivial solution \boldsymbol{x} of $A\boldsymbol{x} = \lambda\boldsymbol{x}$; such an \boldsymbol{x} is called an *eigenvector corresponding to* λ .

$$\exists \boldsymbol{x} \neq \boldsymbol{0}, A\boldsymbol{x} = \lambda \boldsymbol{x} \Leftrightarrow \exists \boldsymbol{x} \neq \boldsymbol{0}, (A - \lambda I)\boldsymbol{x} = \boldsymbol{0} \Leftrightarrow \det(A - \lambda I) = 0.$$

Definition 9.2 [page 294] The determinant det(A - xI) is a polynomial of degree *n* in *x*. It is called the *characteristic polynomial* (固有(特性)多項式) of *A*, and det(A - xI) = 0 the *characteristic equation* (固有方程式) of *A*. The (algebraic) *multiplicity* (重複度) of an eigenvalue λ is its multiplicity as a root of the characteristic equation.

Theorem 9.1 (Theorem 2 in page 288) If $v_1, v_2, \ldots v_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$ of an $n \times n$ matrix A. Then the set $\{v_1, v_2, \ldots, v_r\}$ is linearly independent.

9.2 Diagonalization

Definition 9.3 [page 300] If A and B are $n \times n$ matrices, then A is *similar* (相似) to B if there is an invertible matrix P such that $P^{-1}AP = B$, or equivalently $A = PBP^{-1}$.

Theorem 9.2 (Theorem 4 in page 295) If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues with the same multiplicities.

Definition 9.4 [page 295] A square matrix A is said to be *diagonalizable* (対角化可能) if A is similar to a diagonal matrix, i.e., there is an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

Theorem 9.3 (Theorem 5 in page 300) An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. In fact $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal eintries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

In particular, an $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Proof. Suppose A is diagonalizable. Then there is an invertible matrix $P = [v_1, v_2, \ldots, v_n]$ and a diagonal matrix D such that $A = PDP^{-1}$. Let $D = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$, where λ_i

is the ith diagonal entry. Then

$$[A\boldsymbol{v}_1, A\boldsymbol{v}_2, \dots, A\boldsymbol{v}_n] = A[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n]$$

= AP
= PD
= $[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n] \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$
= $[\lambda_1 \boldsymbol{v}_1, \lambda_2 \boldsymbol{v}_2, \dots, \lambda_n \boldsymbol{v}_n].$

Hence $A\boldsymbol{v}_1 = \lambda_1 \boldsymbol{v}_1, A\boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_2, \dots, A\boldsymbol{v}_n = \lambda_n \boldsymbol{v}_n.$

Suppose there are *n* linearly independent eigenvectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n \in \mathbb{R}^n$. Then $P = [\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n]$ is invertible by Theorem 8 in Chapter 2. Let $D = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. Then

$$\begin{aligned} AP &= A[\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n] \\ &= [A\boldsymbol{v}_1, A\boldsymbol{v}_2, \dots, A\boldsymbol{v}_n] \\ &= [\lambda_1 \boldsymbol{v}_1, \lambda_2 \boldsymbol{v}_2, \dots, \lambda_n \boldsymbol{v}_n] \\ &= [\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n] \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \\ &= PD. \end{aligned}$$

Since P is invertible, $A = PDP^{-1}$.

Example 9.1

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix}, \quad \boldsymbol{u} = \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix}, \quad \boldsymbol{v} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}.$$

Then

$$A\boldsymbol{u} = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix} = \begin{bmatrix} 0 \\ 36 \\ 48 \end{bmatrix} = 6 \cdot \begin{bmatrix} 1 \\ 6 \\ 8 \end{bmatrix}.$$
$$\det(A - xI) = \begin{bmatrix} -x & 1 & 0 \\ 6 & 1 - x & 3 \\ 0 & 4 & 3 - x \end{bmatrix}$$
$$= -x(((x - 1)(x - 3) - 12) - (-1)(-6)(x - 3)) = -(x^3 - 4x^2 - 15x + 18)$$
$$= -(x - 6)(x + 3)(x - 1).$$

Find nontrivial solutions of $(A - 6I)\mathbf{x} = \mathbf{0}$, $(A - (-3)I)\mathbf{x} = \mathbf{0}$ and $(A - I)\mathbf{x} = \mathbf{0}$. They are $\mathbf{u}, \mathbf{v}, \mathbf{w}$. Let $T = [\mathbf{u}, \mathbf{v}, \mathbf{w}]$. Then

$$AT = \begin{bmatrix} 0 & 1 & 0 \\ 6 & 1 & 3 \\ 0 & 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 6 & -3 & 1 \\ 8 & 2 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -3 & 1 \\ 36 & 9 & 1 \\ 48 & -6 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 \\ 6 & -3 & 1 \\ 8 & 2 & -2 \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} = TD.$$

$$T^{-1}AT = D = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, and $A = TDT^{-1}$.

Example 9.2 [Theorem 1 in page 291 (269)] If A is an $n \times n$ triangular matrix, then the egenvalues of A are the entries on the main diagonal of A.

Example 9.3 Let

9.3 Extra Results without a Proof (Not to be included in Final)

Theorem 9.4 (Cayley-Hamilton (See page 344 Exercise 7)) Let A be an $n \times n$ matrix and p(x) = det(A - xI) is the characteristic polynomial of A. Then p(A) = O.

Proof. The proof is complicated. So we prove only when A is diagonalizable. If A = D is a diagonal matrix, this is obvious. For the general case, suppose $P^{-1}AP = D$. Then $A = PDP^{-1}$ and $p(A) = Pp(D)P^{-1}$. By Theorem 9.2, the characteristic polynomial of D is equal to p(x). Now clearly p(D) = O.

Theorem 9.5 (Theorems 2, 3 in Section 7.1) Let A be an $n \times n$ matrix. Then the following are equivalent.

- (i) There is a matrix P such that $P^{-1} = P^{\top 9}$ and $P^{\top}AP$ is diagonal.
- (ii) There are *n* eigenvectors $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n$ such that $\boldsymbol{v}_i \cdot \boldsymbol{v}_j = \delta_{i,j}$.¹⁰

(iii)
$$A = A^{\top}$$

Theorem 9.6 (Triangulation (三角化可能)) (1) If A is a square matrix such that all eigenvalues are real. Then there is an invertible matrix P such that $P^{-1}AP$ is an upper triangular matrix.

(2) If A is a square matrix such that all entries are complex numbers. Then there is an invertible matrix P such that $P^{-1}AP$ is an upper triangular matrix.

⁹A square matrix with the property $P^{-1} = P^{\top}$ is called an orthogonal matrix (直交行列).

¹⁰The set of vectors $\{v_1, v_2, \dots, v_n\}$ with the property $v_i \cdot v_j = \delta_{i,j}$ is called orthonormal (正規直交).