9 Eigenvalues and Eigenvectors

9．1 Eigenvalues and Characteristic Polynomials

Definition 9.1 ［page 285］An eigenvector（固有ベクトル）of an $n \times n$ matrix A is a nonzero vector $\boldsymbol{x} \in \mathbb{R}^{n}$ such that

$$
A \boldsymbol{x}=\lambda \boldsymbol{x}
$$

for some scalar λ ．A scalar λ is called an eigenvalue（固有値）of A ，if there is a nontrivial solution \boldsymbol{x} of $A \boldsymbol{x}=\lambda \boldsymbol{x}$ ；such an \boldsymbol{x} is called an eigenvector corresponding to λ ．

$$
\exists \boldsymbol{x} \neq \mathbf{0}, A \boldsymbol{x}=\lambda \boldsymbol{x} \Leftrightarrow \exists \boldsymbol{x} \neq \mathbf{0},(A-\lambda I) \boldsymbol{x}=\mathbf{0} \Leftrightarrow \operatorname{det}(A-\lambda I)=0 .
$$

Definition 9.2 ［page 294］The determinant $\operatorname{det}(A-x I)$ is a polynomial of degree n in x ． It is called the characteristic polynomial（固有（特性）多項式）of A ，and $\operatorname{det}(A-x I)=0$ the characteristic equation（固有方程式）of A ．The（algebraic）multiplicity（重複度）of an eigenvalue λ is its multiplicity as a root of the characteristic equation．

Theorem 9.1 （Theorem 2 in page 288）If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots \boldsymbol{v}_{r}$ are eigenvectors that corre－ spond to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of an $n \times n$ matrix A ．Then the set $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\}$ is linearly independent．

9．2 Diagonalization

Definition 9.3 ［page 300］If A and B are $n \times n$ matrices，then A is similar（相似）to B if there is an invertible matrix P such that $P^{-1} A P=B$ ，or equivalently $A=P B P^{-1}$ ．

Theorem 9.2 （Theorem 4 in page 295）If $n \times n$ matrices A and B are similar，then they have the same characteristic polynomial and hence the same eigenvalues with the same multiplicities．

Definition 9.4 ［page 295］A square matrix A is said to be diagonalizable（対角化可能） if A is similar to a diagonal matrix，i．e．，there is an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$ ．

Theorem 9.3 （Theorem 5 in page 300）An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors．In fact $A=P D P^{-1}$ ，with D a diagonal matrix，if and only if the columns of P are n linearly independent eigenvectors of A ．In this case，the diagonal eintries of D are eigenvalues of A that correspond，respectively，to the eigenvectors in P ．

In particular，an $n \times n$ matrix with n distinct eigenvalues is diagonalizable．
Proof．Suppose A is diagonalizable．Then there is an invertible matrix $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ and a diagonal matrix D such that $A=P D P^{-1}$ ．Let $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ ，where λ_{i}
is the i th diagonal entry. Then

$$
\begin{aligned}
{\left[A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}\right] } & =A\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \\
& =A P \\
& =P D \\
& =\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \\
& =\left[\lambda_{1} \boldsymbol{v}_{1}, \lambda_{2} \boldsymbol{v}_{2}, \ldots, \lambda_{n} \boldsymbol{v}_{n}\right] .
\end{aligned}
$$

Hence $A \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=\lambda_{2} \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}=\lambda_{n} \boldsymbol{v}_{n}$.
Suppose there are n linearly independent eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n} \in \mathbb{R}^{n}$. Then $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ is invertible by Theorem 8 in Chapter 2. Let $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Then

$$
\begin{aligned}
A P & =A\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \\
& =\left[A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, \ldots, A \boldsymbol{v}_{n}\right] \\
& =\left[\lambda_{1} \boldsymbol{v}_{1}, \lambda_{2} \boldsymbol{v}_{2}, \ldots, \lambda_{n} \boldsymbol{v}_{n}\right] \\
& =\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \\
& =P D .
\end{aligned}
$$

Since P is invertible, $A=P D P^{-1}$.

Example 9.1

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right], \quad \boldsymbol{u}=\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right], \quad \boldsymbol{v}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right], \quad \boldsymbol{w}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Then

$$
\begin{aligned}
& A \boldsymbol{u}=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right]=\left[\begin{array}{c}
6 \\
36 \\
48
\end{array}\right]=6 \cdot\left[\begin{array}{l}
1 \\
6 \\
8
\end{array}\right] . \\
& \operatorname{det}(A-x I)=\left|\begin{array}{ccc}
-x & 1 & 0 \\
6 & 1-x & 3 \\
0 & 4 & 3-x
\end{array}\right| \\
& =
\end{aligned}
$$

Find nontrivial solutions of $(A-6 I) \boldsymbol{x}=\mathbf{0},(A-(-3) I) \boldsymbol{x}=\mathbf{0}$ and $(A-I) \boldsymbol{x}=\mathbf{0}$. They are $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Let $T=[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]$. Then

$$
\begin{aligned}
A T & =\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
6 & -3 & 1 \\
8 & 2 & -2
\end{array}\right]=\left[\begin{array}{ccc}
6 & -3 & 1 \\
36 & 9 & 1 \\
48 & -6 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
6 & -3 & 1 \\
8 & 2 & -2
\end{array}\right]\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right]=T D .
\end{aligned}
$$

$$
T^{-1} A T=D=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right], \text { and } A=T D T^{-1}
$$

Example 9.2 ［Theorem 1 in page 291 （269）］If A is an $n \times n$ triangular matrix，then the egenvalues of A are the entries on the main diagonal of A ．

Example 9．3 Let

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \text {. Then } \operatorname{det}(A-x I)=\left|\begin{array}{cccc}
-x & 1 & 0 & 1 \\
1 & -x & 1 & 0 \\
0 & 1 & -x & 1 \\
1 & 0 & 1 & -x
\end{array}\right|=x^{2}(x-2)(x+2) . \\
& \boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right], \boldsymbol{v}_{4}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], P=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right] . \\
& A P=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2
\end{array}\right]=P D .
\end{aligned}
$$

9．3 Extra Results without a Proof（Not to be included in Final）

Theorem 9.4 （Cayley－Hamilton（See page 344 Exercise 7））Let A be an $n \times n$ matrix and $p(x)=\operatorname{det}(A-x I)$ is the characteristic polynomial of A ．Then $p(A)=O$ ．

Proof．The proof is complicated．So we prove only when A is diagonalizable．If $A=D$ is a diagonal matrix，this is obvious．For the general case，suppose $P^{-1} A P=D$ ．Then $A=P D P^{-1}$ and $p(A)=P p(D) P^{-1}$ ．By Theorem 9．2，the characteristic polynomial of D is equal to $p(x)$ ．Now clearly $p(D)=O$ ．

Theorem 9.5 （Theorems 2， 3 in Section 7．1）Let A be an $n \times n$ matrix．Then the following are equivalent．
（i）There is a matrix P such that $P^{-1}=P^{\top} 9$ and $P^{\top} A P$ is diagonal．
（ii）There are n eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ such that $\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=\delta_{i, j}$ ．${ }^{10}$
（iii）$A=A^{\top}$ ．
Theorem 9.6 （Triangulation（三角化可能））（1）If A is a square matrix such that all eigenvalues are real．Then there is an invertible matrix P such that $P^{-1} A P$ is an upper triangular matrix．
（2）If A is a square matrix such that all entries are complex numbers．Then there is an invertible matrix P such that $P^{-1} A P$ is an upper triangular matrix．

[^0]
[^0]: ${ }^{9}$ A square matrix with the property $P^{-1}=P^{\top}$ is called an orthogonal matrix（直交行列）．
 ${ }^{10}$ The set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ with the property $\boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=\delta_{i, j}$ is called orthonormal（正規直交）．

