
6 Characterization of Inverse Matrices

6.1 Inverse of a Matrix

1. The identity matrix I of size n satisfies AI = A = IA for all n× n matrix A.

2. Let A be a square matrix. The inverse of A is a matrix B such that AB = I = BA.
The inverse is unique and we write B = A−1. If there is an inverse A−1, A is said
to be invertible.

3. If A and B are invertible matrices of size n, then so is AB and (AB)−1 = B−1A−1.
Moreover, if A1, A2, . . . , Am are invertible matrices of size n, then their product
A1A2 · · ·Am is also invertible and

(A1A2 · · ·Am)
−1 = A−1

m · · ·A−1
2 A−1

1 .

4. For each elementary operation [i; c], [i, j], [i, j; c], there is a corresponding elementary
matrix E, denoted by E(i; c), E(i, j), E(i, j; c) such that EA is exactly the one
obtained by performing the corresponding elementary row operation to A. Moreover
E is obtained from I by performing the corresponding elementary row operation.

[i; c] ⇔ E(i; c), [i, j] ⇔ E(i, j), [i.j; c] ⇔ E(i.j; c).

5. Elementary matrices are invertible:

E(i; c)−1 = E(i;
1

c
), E(i, j)−1 = E(i, j), E(i, j; c)−1 = E(i, j;−c).

6. Suppose [A, I] −→ [I, B] by performing elementary row operations. LetE1, E2, . . . , Em

be corresponding elementary matrices. Then B = A−1 and B and A can be ex-
pressed as a product of elementary matrices.

[A, I] → [I, B] ⇒ EmEm−1 · · ·E2E1[A, I] = [I, B]

⇒ [EmEm−1 · · ·E2E1A,EmEm−1 · · ·E2E1I] = [I, B]

⇒ B = EmEm−1 · · ·E1, BA = I and B is invertible.

⇒ A = B−1 = E−1
1 E−1

2 · · ·E−1
m and B = A−1

7. If the reduced echelon form of [A, I] is not of the form [I, B], say [D,B], then the
last row of D is zero. Since BA = D and D is not invertible, A is not invertible.
Note that D is not invertible because the fact that the last row of D is zero implies
the last row of DF is zero, and DF cannot be equal to I.

6.2 The Invertible Matrix Theorem

Theorem 6.1 (The Invertible Matrix Theorem (Theorem 8 in page 130)) Let A
be an n× n matrix. Then the following are equivalent.
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(a) A is an invertible matrix.

(b) A is row equivalent to the n× n identity matrix.

(c) A has n pivot positions, i.e., A has pivot positions in each column (or row).

(d) The equation Ax = 0 has only the trivial solution.

(e) The columns of A form a linearly independent set.

(f) The linear transformation T : Rn → Rn (x &→ Ax) is one-to-one.

(g) The equation Ax = b has at least one solution for each b ∈ Rn.

(h) The columns of A span Rn.

(i) The linear transformation T : Rn → Rn (x &→ Ax) is onto.

(j) There is an n× n matrix C such that CA = I.

(k) There is an n× n matrix D such that AD = I.

(l) A⊤ is an invertible matrix.

Corollary 6.2 (page 130) Let A and B be square matrices of size n.

(a) Suppose AB = I. Then BA = I. In particular, both A and B are invertible and
B = A−1, A = B−1.

(b) AB is invertible if and only if both A and B are invertible.

Note. If AB = Im for an m × n matrix A and an n ×m matrix B. Then m ≤ n. In
particular, if AB = Im and BA = In, then m = n.

Theorem 6.3 (Thoerem 9 in page 132) Let T : Rn → Rn be a linear transformation
and let A be the standard matrix for T . Then there is a function S : Rn → Rn satisfying
S(T (x)) = x and T (S(x)) = x for all x ∈ Rn if and only if A is invertible. In this case
A−1 is the standard matrix of S.

6.3 Partitioned Matrices
[
A B
C D

] [
W X
Y Z

]
=

[
AW +BY AX +BZ
CW +DY CX +DZ

]
.

Theorem 6.4 (Theorem 10 (Column-Row Expansion of AB, page 137)) If A is
m× n and B is n× p, then

AB = [col1(A), col2(A), · · · , coln(A)]

⎡

⎢⎢⎢⎣

row1(B)
row2(B)

...
rown(B)

⎤

⎥⎥⎥⎦

= col1(A)row1(B) + col2(A)row2(B) + · · ·+ coln(A)rown(B).
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