## 6 Characterization of Inverse Matrices

### 6.1 Inverse of a Matrix

1. The identity matrix $I$ of size $n$ satisfies $A I=A=I A$ for all $n \times n$ matrix $A$.
2. Let $A$ be a square matrix. The inverse of $A$ is a matrix $B$ such that $A B=I=B A$. The inverse is unique and we write $B=A^{-1}$. If there is an inverse $A^{-1}, A$ is said to be invertible.
3. If $A$ and $B$ are invertible matrices of size $n$, then so is $A B$ and $(A B)^{-1}=B^{-1} A^{-1}$. Moreover, if $A_{1}, A_{2}, \ldots, A_{m}$ are invertible matrices of size $n$, then their product $A_{1} A_{2} \cdots A_{m}$ is also invertible and

$$
\left(A_{1} A_{2} \cdots A_{m}\right)^{-1}=A_{m}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}
$$

4. For each elementary operation $[i ; c],[i, j],[i, j ; c]$, there is a corresponding elementary matrix $E$, denoted by $E(i ; c), E(i, j), E(i, j ; c)$ such that $E A$ is exactly the one obtained by performing the corresponding elementary row operation to $A$. Moreover $E$ is obtained from $I$ by performing the corresponding elementary row operation.

$$
[i ; c] \Leftrightarrow E(i ; c),[i, j] \Leftrightarrow E(i, j),[i . j ; c] \Leftrightarrow E(i . j ; c) .
$$

5. Elementary matrices are invertible:

$$
E(i ; c)^{-1}=E\left(i ; \frac{1}{c}\right), E(i, j)^{-1}=E(i, j), E(i, j ; c)^{-1}=E(i, j ;-c)
$$

6. Suppose $[A, I] \longrightarrow[I, B]$ by performing elementary row operations. Let $E_{1}, E_{2}, \ldots, E_{m}$ be corresponding elementary matrices. Then $B=A^{-1}$ and $B$ and $A$ can be expressed as a product of elementary matrices.

$$
\begin{aligned}
{[A, I] \rightarrow[I, B] } & \Rightarrow E_{m} E_{m-1} \cdots E_{2} E_{1}[A, I]=[I, B] \\
& \Rightarrow\left[E_{m} E_{m-1} \cdots E_{2} E_{1} A, E_{m} E_{m-1} \cdots E_{2} E_{1} I\right]=[I, B] \\
& \Rightarrow B=E_{m} E_{m-1} \cdots E_{1}, B A=I \text { and } B \text { is invertible. } \\
& \Rightarrow A=B^{-1}=E_{1}^{-1} E_{2}^{-1} \cdots E_{m}^{-1} \text { and } B=A^{-1}
\end{aligned}
$$

7. If the reduced echelon form of $[A, I]$ is not of the form $[I, B]$, say $[D, B]$, then the last row of $D$ is zero. Since $B A=D$ and $D$ is not invertible, $A$ is not invertible. Note that $D$ is not invertible because the fact that the last row of $D$ is zero implies the last row of $D F$ is zero, and $D F$ cannot be equal to $I$.

### 6.2 The Invertible Matrix Theorem

Theorem 6.1 (The Invertible Matrix Theorem (Theorem 8 in page 130)) Let $A$ be an $n \times n$ matrix. Then the following are equivalent.
(a) $A$ is an invertible matrix.
(b) $A$ is row equivalent to the $n \times n$ identity matrix.
(c) A has $n$ pivot positions, i.e., $A$ has pivot positions in each column (or row).
(d) The equation $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of $A$ form a linearly independent set.
(f) The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(\boldsymbol{x} \mapsto A \boldsymbol{x})$ is one-to-one.
(g) The equation $A \boldsymbol{x}=\boldsymbol{b}$ has at least one solution for each $\boldsymbol{b} \in \mathbb{R}^{n}$.
(h) The columns of $A$ span $\mathbb{R}^{n}$.
(i) The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}(\boldsymbol{x} \mapsto A \boldsymbol{x})$ is onto.
(j) There is an $n \times n$ matrix $C$ such that $C A=I$.
(k) There is an $n \times n$ matrix $D$ such that $A D=I$.
(l) $A^{\top}$ is an invertible matrix.

Corollary 6.2 (page 130) Let $A$ and $B$ be square matrices of size $n$.
(a) Suppose $A B=I$. Then $B A=I$. In particular, both $A$ and $B$ are invertible and $B=A^{-1}, A=B^{-1}$.
(b) $A B$ is invertible if and only if both $A$ and $B$ are invertible.

Note. If $A B=I_{m}$ for an $m \times n$ matrix $A$ and an $n \times m$ matrix $B$. Then $m \leq n$. In particular, if $A B=I_{m}$ and $B A=I_{n}$, then $m=n$.
Theorem 6.3 (Thoerem 9 in page 132) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let $A$ be the standard matrix for $T$. Then there is a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $S(T(\boldsymbol{x}))=\boldsymbol{x}$ and $T(S(\boldsymbol{x}))=\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if $A$ is invertible. In this case $A^{-1}$ is the standard matrix of $S$.

### 6.3 Partitioned Matrices

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right]=\left[\begin{array}{ll}
A W+B Y & A X+B Z \\
C W+D Y & C X+D Z
\end{array}\right] .
$$

Theorem 6.4 (Theorem 10 (Column-Row Expansion of $A B$, page 137)) If $A$ is $m \times n$ and $B$ is $n \times p$, then

$$
\begin{aligned}
A B & =\left[\operatorname{col}_{1}(A), \operatorname{col}_{2}(A), \cdots, \operatorname{col}_{n}(A)\right]\left[\begin{array}{c}
\operatorname{row}_{1}(B) \\
\operatorname{row}_{2}(B) \\
\vdots \\
\operatorname{row}_{n}(B)
\end{array}\right] \\
& =\operatorname{col}_{1}(A) \operatorname{row}_{1}(B)+\operatorname{col}_{2}(A) \operatorname{row}_{2}(B)+\cdots+\operatorname{col}_{n}(A) \operatorname{row}_{n}(B)
\end{aligned}
$$

