6 Characterization of Inverse Matrices

6.1 Inverse of a Matrix

- 1. The identity matrix I of size n satisfies AI = A = IA for all $n \times n$ matrix A.
- 2. Let A be a square matrix. The inverse of A is a matrix B such that AB = I = BA. The inverse is unique and we write $B = A^{-1}$. If there is an inverse A^{-1} , A is said to be invertible.
- 3. If A and B are invertible matrices of size n, then so is AB and $(AB)^{-1} = B^{-1}A^{-1}$. Moreover, if A_1, A_2, \ldots, A_m are invertible matrices of size n, then their product $A_1A_2 \cdots A_m$ is also invertible and

$$(A_1 A_2 \cdots A_m)^{-1} = A_m^{-1} \cdots A_2^{-1} A_1^{-1}.$$

4. For each elementary operation [i; c], [i, j], [i, j; c], there is a corresponding elementary matrix E, denoted by E(i; c), E(i, j), E(i, j; c) such that EA is exactly the one obtained by performing the corresponding elementary row operation to A. Moreover E is obtained from I by performing the corresponding elementary row operation.

$$[i;c] \Leftrightarrow E(i;c), \ [i,j] \Leftrightarrow E(i,j), \ [i.j;c] \Leftrightarrow E(i.j;c).$$

5. Elementary matrices are invertible:

$$E(i;c)^{-1} = E(i;\frac{1}{c}), \ E(i,j)^{-1} = E(i,j), \ E(i,j;c)^{-1} = E(i,j;-c).$$

6. Suppose $[A, I] \longrightarrow [I, B]$ by performing elementary row operations. Let E_1, E_2, \ldots, E_m be corresponding elementary matrices. Then $B = A^{-1}$ and B and A can be expressed as a product of elementary matrices.

$$\begin{split} [A,I] \rightarrow [I,B] &\Rightarrow E_m E_{m-1} \cdots E_2 E_1 [A,I] = [I,B] \\ &\Rightarrow [E_m E_{m-1} \cdots E_2 E_1 A, E_m E_{m-1} \cdots E_2 E_1 I] = [I,B] \\ &\Rightarrow B = E_m E_{m-1} \cdots E_1, \ BA = I \ \text{and} \ B \ \text{is invertible.} \\ &\Rightarrow A = B^{-1} = E_1^{-1} E_2^{-1} \cdots E_m^{-1} \ \text{and} \ B = A^{-1} \end{split}$$

7. If the reduced echelon form of [A, I] is not of the form [I, B], say [D, B], then the last row of D is zero. Since BA = D and D is not invertible, A is not invertible. Note that D is not invertible because the fact that the last row of D is zero implies the last row of DF is zero, and DF cannot be equal to I.

6.2 The Invertible Matrix Theorem

Theorem 6.1 (The Invertible Matrix Theorem (Theorem 8 in page 130)) Let A be an $n \times n$ matrix. Then the following are equivalent.

- (a) A is an invertible matrix.
- (b) A is row equivalent to the $n \times n$ identity matrix.
- (c) A has n pivot positions, i.e., A has pivot positions in each column (or row).
- (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A form a linearly independent set.
- (f) The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n (\mathbf{x} \mapsto A\mathbf{x})$ is one-to-one.
- (g) The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$.
- (h) The columns of A span \mathbb{R}^n .
- (i) The linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n (x \mapsto Ax)$ is onto.
- (j) There is an $n \times n$ matrix C such that CA = I.
- (k) There is an $n \times n$ matrix D such that AD = I.
- (1) A^{\top} is an invertible matrix.

Corollary 6.2 (page 130) Let A and B be square matrices of size n.

- (a) Suppose AB = I. Then BA = I. In particular, both A and B are invertible and $B = A^{-1}, A = B^{-1}.$
- (b) AB is invertible if and only if both A and B are invertible.

If $AB = I_m$ for an $m \times n$ matrix A and an $n \times m$ matrix B. Then $m \leq n$. In Note. particular, if $AB = I_m$ and $BA = I_n$, then m = n.

Theorem 6.3 (Theorem 9 in page 132) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then there is a function $S: \mathbb{R}^n \to \mathbb{R}^n$ satisfying $S(T(\boldsymbol{x})) = \boldsymbol{x}$ and $T(S(\boldsymbol{x})) = \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^n$ if and only if A is invertible. In this case A^{-1} is the standard matrix of S.

6.3 **Partitioned Matrices**

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} W & X \\ Y & Z \end{bmatrix} = \begin{bmatrix} AW + BY & AX + BZ \\ CW + DY & CX + DZ \end{bmatrix}.$$

Theorem 6.4 (Theorem 10 (Column-Row Expansion of AB, page 137)) If A is $m \times n$ and B is $n \times p$, then

г

$$AB = \left[\operatorname{col}_{1}(A), \operatorname{col}_{2}(A), \cdots, \operatorname{col}_{n}(A)\right] \begin{bmatrix} \operatorname{row}_{1}(B) \\ \operatorname{row}_{2}(B) \\ \vdots \\ \operatorname{row}_{n}(B) \end{bmatrix}$$
$$= \operatorname{col}_{1}(A)\operatorname{row}_{1}(B) + \operatorname{col}_{2}(A)\operatorname{row}_{2}(B) + \cdots + \operatorname{col}_{n}(A)\operatorname{row}_{n}(B).$$