
5 Matrices and Matrix Operations

5.1 Matrix Operations（行列演算）
Definition 5.1 A matrix（行列） is an m×n rectangular array of numbers. The numbers
in the array are called the entries（成分） in the matrix.

A =

⎡

⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

· · · · · · · · ·
am1 am2 · · · amn

⎤

⎥⎥⎦ .

It is called an m × n matrix, a matrix with m rows and n columns, it is also denoted
by A = [aij]. Two matrices are defined to be equal if they have the same size and their
corresponding entries are equal. The entry ai,j in the i-th row j-th column of a matrix A
is denoted by (A)i,j.

An n× n matrix is called a square matrix（正方行列）.

Definition 5.2 [page 111] Let A and B be matrices of the same size and c a scalar.
Then the sum（和） A + B is the matrix obtained by adding the entries of B to the
corresponding entries of A. The the product cA is the matrix obtained by multiplying
each entry of the matrix A by c. The matrix cA is said to be a scalar multiple（スカラー
倍） of A.

A+B =

⎡

⎢⎢⎣

a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

· · · · · · · · ·
am1 + bm1 am2 + bm2 · · · amn + bmn

⎤

⎥⎥⎦ , cA =

⎡

⎢⎢⎣

ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n

· · · · · · · · ·
cam1 cam2 · · · camn

⎤

⎥⎥⎦

Let A be an m× n matrix, and B = [b1, b2, . . . , bp] an n× p matrix. If x ∈ Rp, then
Bx ∈ Rn and hence A(Bx) ∈ Rm. Then the composition（合成）of T1 : Rp → Rn (x →
Bx) and T2 : Rn → Rm (y → Ay) is denoted by T = T2 ◦ T1 and

T : Rp → Rm (x %→ (T2 ◦ T1)(x) = T2(T1(x)) = A(Bx))

is linear. The standard matrix（標準行列）C is

C = [T (e1), T (e2), . . . , T (ep)] = [T2(T1(e1)), T2(T1(e2)), . . . , T2(T1(ep))]

= [A(Be1), A(Be2), . . . , A(Bep)] = [Ab1, Ab2, . . . , Abn].

Definition 5.3 [page 113] Let A be an m× r matrix and B = [b1, b2, . . . , bn] be an r×n
matrix whose j-th column is bj. Then

AB = A[b1, b2, . . . , bn] = [Ab1, Ab2, . . . , Abn].

If A = (ai,j) is an m× r matrix and B = (bk,l) is an r × n matrix, then the product（積）
C = AB is the m× n matrix whose (s, t) entry cs,t is defined as follows.

cs,t = (Abt)s = (sth row of A) bt = as,1b1,t + as,2b2,t + · · ·+ as,rbr,t =
r∑

u=1

as,ubu,t.
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C = AB =

⎡

⎢⎢⎣

∑r
u=1 a1,ubu,1

∑r
u=1 a1,ubu,2 · · ·

∑r
u=1 a1,ubu,n∑r

u=1 a2,ubu,1
∑r

u=1 a2,ubu,2 · · ·
∑r

u=1 a2,ubu,n
· · · · · · · · ·∑r

u=1 am,ubu,1
∑r

u=1 am,ubu,2 · · ·
∑r

u=1 am,ubu,n

⎤

⎥⎥⎦ .

Definition 5.4 [page 117] If A is an m × n matrix, then the transpose（転置） of A,
denoted by A⊤, is defined to be the n × m matrix that results from interchanging the
rows and columns of A, that is (A⊤)i,j = Aj,i (1 ≤ i ≤ n, 1 ≤ j ≤ m).

Theorem 5.1 (Theorem 2 and 3 (page 115, 117)) Assuming that the sizes of the
matrices are such that the indicated operations can be performed, the following rules of
matrix arithmetic are valid.

(a) A+B = B + A, A+ (B + C) = (A+B) + C.

(b) A(BC) = (AB)C.

(c) A(B + C) = AB + AC, (B + C)A = BA+ CA.

(d) a(B+C) = aB+aC, (a+b)C = aC+bC, a(bC) = (ab)C, a(BC) = (aB)C = B(aC).

(e) (A⊤)⊤ = A.

(f) (A+B)⊤ = A⊤ +B⊤.

(g) (cA)⊤ = cA⊤, where c is any scalar.

5.2 Inverse of Matrices（逆行列）
Definition 5.5 [page 121] A square matrix with 1’s on the main diagonal and 0’s off the
main diagonal is called an identity matrix（単位行列） and is denoted by I, or In when
it is of size n× n.

An n×n matrix A is is said to be invertible（可逆） (or nonsingular（正則）), if there
is an n× n matrix C such that

CA = I and AC = I,

where I is the n×n identity matrix. In this case, C is called the inverse（逆行列） of A.
If no such matrix C can be found, then A is said to be singular（非正則）.

When A is invertible, the inverse is unique. In fact, if

CA = I = AC, and BA = I = AB,B = BI = B(AC) = (BA)C = IC = C.

Theorem 5.2 (Theorem 4 (page 121)) Let

A =

[
a b
c d

]
. Then

[
a b
c d

] [
d −b
−c a

]
=

[
ad− bc 0

0 ad− bc

]
= (ad− bc)

[
1 0
0 1

]
.

Hence A is invertible if and only if ad− bc ̸= 0 and

A−1 =
1

ad− bc

[
d −b
−c a

]
.
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Theorem 5.3 (Theorem 7 (page 125)) Let A be an n× n square matrix, and I = In
the identity matrix of size n. Set C = [ A, I ]. If the reduced row echelon form of C is
of form [ I, B ], then B = A−1, otherwise the inverse of A does not exist. Thus a square
matrix A is invertible if and only if the reduced row echelon form of A is I.

Example 5.1 For a matrix

A =

⎡

⎣
0 1 1
1 2 2
3 2 1

⎤

⎦ , set C =

⎡

⎣
0 1 1 1 0 0
1 2 2 0 1 0
3 2 1 0 0 1

⎤

⎦ .

We perform a sequence of elementary row operations to obtain the reduced row echelon
form of C.

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
0 1 1 1 0 0
1 2 2 0 1 0
3 2 1 0 0 1

⎤

⎦ [1,2]
=

⎡

⎣
1 2 2 0 1 0
0 1 1 1 0 0
3 2 1 0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
−3 0 1

⎤

⎦

⎡

⎣
1 2 2 0 1 0
0 1 1 1 0 0
3 2 1 0 0 1

⎤

⎦ [3,1;−3]
=

⎡

⎣
1 2 2 0 1 0
0 1 1 1 0 0
0 −4 −5 0 −3 1

⎤

⎦

⎡

⎣
1 −2 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 2 2 0 1 0
0 1 1 1 0 0
0 −4 −5 0 −3 1

⎤

⎦ [1,2;−2]
=

⎡

⎣
1 0 0 −2 1 0
0 1 1 1 0 0
0 −4 −5 0 −3 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 4 1

⎤

⎦

⎡

⎣
1 0 0 −2 1 0
0 1 1 1 0 0
0 −4 −5 0 −3 1

⎤

⎦ [3,2;4]
=

⎡

⎣
1 0 0 −2 1 0
0 1 1 1 0 0
0 0 −1 4 −3 1

⎤

⎦

⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦

⎡

⎣
1 0 0 −2 1 0
0 1 1 1 0 0
0 0 −1 4 −3 1

⎤

⎦ [3;−1]
=

⎡

⎣
1 0 0 −2 1 0
0 1 1 1 0 0
0 0 1 −4 3 −1

⎤

⎦

⎡

⎣
1 0 0
0 1 −1
0 0 1

⎤

⎦

⎡

⎣
1 0 0 −2 1 0
0 1 1 1 0 0
0 0 1 −4 3 −1

⎤

⎦ [2,3;−1]
=

⎡

⎣
1 0 0 −2 1 0
0 1 0 5 −3 1
0 0 1 −4 3 −1

⎤

⎦ .

Hence we can tell that the matrix A is invertible and its inverse matrix is

A−1 =

⎡

⎣
−2 1 0
5 −3 1
−4 3 −1

⎤

⎦ .

Proposition 5.4 (Theorem 6 (page 123)) (a) If both A and B are invertible ma-
trices. Then AB is also invertible and (AB)−1 = B−1A−1.

(b) If A is an m× r matrix and B is an r × n matrix, then (AB)⊤ = B⊤A⊤.

(c) If A is an invertible matrix, then A⊤ is invertible and (A⊤)−1 = (A−1)⊤.
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Proof. (a) Since (AB)(B−1A−1) = I = (B−1A−1)(AB), (AB)−1 = B−1A−1.
(b) For a matrix C, (i, j)-entry of C is denoted by Ci,j. Then

(AB)ij = Ai1B1j + Ai2B2j + · · ·+ AinBnj =
n∑

k=1

AikBkj .

Using this notation let us show (AB)⊤ = B⊤A⊤ (Theorem 3 in page 99).

((AB)⊤)ij = (AB)ji =
n∑

h=1

AjhBhi =
n∑

h=1

BhiAjh =
n∑

h=1

(B⊤)ih(A
⊤)hj = (B⊤A⊤)ij.

Thus (AB)⊤ = B⊤A⊤.
(c) If AB = I = BA, then B⊤A⊤ = (AB)⊤ = I⊤ = (BA)⊤ = A⊤B⊤. Since I⊤ = I, we
have the assertion.

Definition 5.6 An n × n matrix is called an elementary matrix（基本行列） if it can
be obtained from the n × n identity matrix In by performing a single elementary row
operation.

1. E(i; c): the matrix obtained from In by performing [i; c] (c ̸= 0).

2. E(i, j): the matrix obtained from In by performing [i, j].

3. E(i, j; c): the matrix obtained from In by performing [i, j; c].

Proposition 5.5 (page 125) If the elementary matrix E results from performing a cer-
tain row operation on Im and A is an m × n matrix, then the product EA is the matrix
that results when this same row operation is performed on A.

Examples of Elementary Matrices

E(3; c) =

⎡

⎣
1 0 0
0 1 0
0 0 c

⎤

⎦ , E(1, 2) =

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ , E(3, 1; c) =

⎡

⎣
1 0 0
0 1 0
c 0 1

⎤

⎦ .

⎡

⎣
1 0 0
0 1 0
0 0 c

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
x
y
cz

⎤

⎦ ,

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
y
x
z

⎤

⎦ ,

⎡

⎣
1 0 0
0 1 0
c 0 1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =

⎡

⎣
x
y

cx+ z

⎤

⎦ .

Proposition 5.6 Every elementary matrix is invertible, and the inverse is also an ele-
mentary matrix.

E(i; c)−1 = E(i; 1/c), E(i, j)−1 = E(i, j), and E(i, j; c)−1 = E(i, j;−c).

Sketch of a Proof of Theorem 4.3 using Example 4.1. Let C = [ A, I ]. Then

[ I, B ] = E(2, 3;−1)E(3;−1)E(3, 2; 4)E(1, 2;−2)E(3, 1;−3)E(1, 2)[ A, I ] = [ PA, P ],

where P = E(2, 3;−1)E(3;−1)E(3, 2; 4)E(1, 2;−2)E(3, 1;−3). Hence PA = I and P =
B. So BA = I. Since B = P is a product of invertible matrix, B is also invertible and

B−1 = E(2, 1)E(3, 1; 3)E(1, 2; 2)E(3, 2;−4)E(3,−1)E(2, 3; 1).

We have B−1 = B−1I = B−1(BA) = (B−1B)A = IA = A.
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