5 Matrices and Matrix Operations

5．1 Matrix Operations（行列演算）

Definition 5．1 A matrix（行列）is an $m \times n$ rectangular array of numbers．The numbers in the array are called the entries（成分）in the matrix．

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& \cdots & \cdots & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

It is called an $m \times n$ matrix，a matrix with m rows and n columns，it is also denoted by $A=\left[a_{i j}\right]$ ．Two matrices are defined to be equal if they have the same size and their corresponding entries are equal．The entry $a_{i, j}$ in the i－th row j－th column of a matrix A is denoted by $(A)_{i, j}$ ．

An $n \times n$ matrix is called a square matrix（正方行列）。
Definition 5.2 ［page 111］Let A and B be matrices of the same size and c a scalar． Then the sum（和）$A+B$ is the matrix obtained by adding the entries of B to the corresponding entries of A ．The the product $c A$ is the matrix obtained by multiplying each entry of the matrix A by c ．The matrix $c A$ is said to be a scalar multiple（スカラー倍）of A ．

$$
A+B=\left[\right], c A=\left[\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 n} \\
c a_{21} & c a_{22} & \cdots & c a_{2 n} \\
& \cdots \cdots & \cdots & \\
c a_{m 1} & c a_{m 2} & \cdots & c a_{m n}
\end{array}\right]
$$

Let A be an $m \times n$ matrix，and $B=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{p}\right]$ an $n \times p$ matrix．If $\boldsymbol{x} \in \mathbb{R}^{p}$ ，then $B \boldsymbol{x} \in \mathbb{R}^{n}$ and hence $A(B \boldsymbol{x}) \in \mathbb{R}^{m}$ ．Then the composition（合成）of $T_{1}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}(\boldsymbol{x} \rightarrow$ $B \boldsymbol{x})$ and $T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(\boldsymbol{y} \rightarrow A \boldsymbol{y})$ is denoted by $T=T_{2} \circ T_{1}$ and

$$
T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}\left(\boldsymbol{x} \mapsto\left(T_{2} \circ T_{1}\right)(\boldsymbol{x})=T_{2}\left(T_{1}(\boldsymbol{x})\right)=A(B \boldsymbol{x})\right)
$$

is linear．The standard matrix（標準行列）C is

$$
\begin{aligned}
C & =\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), \ldots, T\left(\boldsymbol{e}_{p}\right)\right]=\left[T_{2}\left(T_{1}\left(\boldsymbol{e}_{1}\right)\right), T_{2}\left(T_{1}\left(\boldsymbol{e}_{2}\right)\right), \ldots, T_{2}\left(T_{1}\left(\boldsymbol{e}_{p}\right)\right)\right] \\
& =\left[A\left(B \boldsymbol{e}_{1}\right), A\left(B \boldsymbol{e}_{2}\right), \ldots, A\left(B \boldsymbol{e}_{p}\right)\right]=\left[A \boldsymbol{b}_{1}, A \boldsymbol{b}_{2}, \ldots, A \boldsymbol{b}_{n}\right] .
\end{aligned}
$$

Definition 5.3 ［page 113］Let A be an $m \times r$ matrix and $B=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right]$ be an $r \times n$ matrix whose j－th column is \boldsymbol{b}_{j} ．Then

$$
A B=A\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right]=\left[A \boldsymbol{b}_{1}, A \boldsymbol{b}_{2}, \ldots, A \boldsymbol{b}_{n}\right] .
$$

If $A=\left(a_{i, j}\right)$ is an $m \times r$ matrix and $B=\left(b_{k, l}\right)$ is an $r \times n$ matrix，then the product（積） $C=A B$ is the $m \times n$ matrix whose (s, t) entry $c_{s, t}$ is defined as follows．

$$
c_{s, t}=\left(A \boldsymbol{b}_{t}\right)_{s}=(s \text { th row of } A) \boldsymbol{b}_{t}=a_{s, 1} b_{1, t}+a_{s, 2} b_{2, t}+\cdots+a_{s, r} b_{r, t}=\sum_{u=1}^{r} a_{s, u} b_{u, t} .
$$

$$
C=A B=\left[\begin{array}{cccc}
\sum_{u=1}^{r} a_{1, u} b_{u, 1} & \sum_{u=1}^{r} a_{1, u} b_{u, 2} & \cdots & \sum_{u=1}^{r} a_{1, u} b_{u, n} \\
\sum_{u=1}^{r} a_{2, u} b_{u, 1} & \sum_{u=1}^{r} a_{2, u} b_{u, 2} & \cdots & \sum_{u=1}^{r} a_{2, u} b_{u, n} \\
\sum_{u=1}^{r} a_{m, u} b_{u, 1} & \sum_{u=1}^{r} a_{m, u} b_{u, 2} & \cdots & \sum_{u=1}^{r} a_{m, u} b_{u, n}
\end{array}\right] .
$$

Definition 5.4 ［page 117］If A is an $m \times n$ matrix，then the transpose（転置）of A ， denoted by A^{\top} ，is defined to be the $n \times m$ matrix that results from interchanging the rows and columns of A ，that is $\left(A^{\top}\right)_{i, j}=A_{j, i}(1 \leq i \leq n, 1 \leq j \leq m)$ ．

Theorem 5.1 （Theorem 2 and 3 （page 115，117））Assuming that the sizes of the matrices are such that the indicated operations can be performed，the following rules of matrix arithmetic are valid．
（a）$A+B=B+A, A+(B+C)=(A+B)+C$ ．
（b）$A(B C)=(A B) C$ ．
（c）$A(B+C)=A B+A C,(B+C) A=B A+C A$ ．
（d）$a(B+C)=a B+a C,(a+b) C=a C+b C, a(b C)=(a b) C, a(B C)=(a B) C=B(a C)$ ．
（e）$\left(A^{\top}\right)^{\top}=A$ ．
（f）$(A+B)^{\top}=A^{\top}+B^{\top}$ ．
（g）$(c A)^{\top}=c A^{\top}$ ，where c is any scalar．

5．2 Inverse of Matrices（逆行列）

Definition 5.5 ［page 121］A square matrix with 1＇s on the main diagonal and 0＇s off the main diagonal is called an identity matrix（単位行列）and is denoted by I ，or I_{n} when it is of size $n \times n$ ．

An $n \times n$ matrix A is is said to be invertible（可逆）（or nonsingular（正則）），if there is an $n \times n$ matrix C such that

$$
C A=I \text { and } A C=I,
$$

where I is the $n \times n$ identity matrix．In this case，C is called the inverse（逆行列）of A ． If no such matrix C can be found，then A is said to be singular（非正則）．

When A is invertible，the inverse is unique．In fact，if

$$
C A=I=A C, \text { and } B A=I=A B, B=B I=B(A C)=(B A) C=I C=C .
$$

Theorem 5.2 （Theorem 4 （page 121））Let
$A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ ．Then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\left[\begin{array}{cc}a d-b c & 0 \\ 0 & a d-b c\end{array}\right]=(a d-b c)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ ．
Hence A is invertible if and only if $a d-b c \neq 0$ and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

Theorem 5.3 (Theorem 7 (page 125)) Let A be an $n \times n$ square matrix, and $I=I_{n}$ the identity matrix of size n. Set $C=[A, I]$. If the reduced row echelon form of C is of form $[I, B]$, then $B=A^{-1}$, otherwise the inverse of A does not exist. Thus a square matrix A is invertible if and only if the reduced row echelon form of A is I.

Example 5.1 For a matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 2 & 2 \\
3 & 2 & 1
\end{array}\right], \quad \text { set } C=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right]
$$

We perform a sequence of elementary row operations to obtain the reduced row echelon form of C.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \stackrel{[1,2]}{=}\left[\begin{array}{llllll}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right] \stackrel{[3,1 ;-3]}{=}\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & -4 & -5 & 0 & -3 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 2 & 2 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & -4 & -5 & 0 & -3 & 1
\end{array}\right] \stackrel{[1,2 ;-2]}{=}\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & -4 & -5 & 0 & -3 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & -4 & -5 & 0 & -3 & 1
\end{array}\right] \stackrel{[3,2 ; 4]}{=}\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 4 & -3 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 4 & -3 & 1
\end{array}\right] \stackrel{[3 ;-1]}{=}\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -4 & 3 & -1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & -4 & 3 & -1
\end{array}\right] \stackrel{[2,3 ;-1]}{=}\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 0 & 5 & -3 & 1 \\
0 & 0 & 1 & -4 & 3 & -1
\end{array}\right] .}
\end{aligned}
$$

Hence we can tell that the matrix A is invertible and its inverse matrix is

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
5 & -3 & 1 \\
-4 & 3 & -1
\end{array}\right]
$$

Proposition 5.4 (Theorem 6 (page 123)) (a) If both A and B are invertible matrices. Then $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
(b) If A is an $m \times r$ matrix and B is an $r \times n$ matrix, then $(A B)^{\top}=B^{\top} A^{\top}$.
(c) If A is an invertible matrix, then A^{\top} is invertible and $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$.

Proof．（a）Since $(A B)\left(B^{-1} A^{-1}\right)=I=\left(B^{-1} A^{-1}\right)(A B),(A B)^{-1}=B^{-1} A^{-1}$ ．
（b）For a matrix $C,(i, j)$－entry of C is denoted by $C_{i, j}$ ．Then

$$
(A B)_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i n} B_{n j}=\sum_{k=1}^{n} A_{i k} B_{k j} .
$$

Using this notation let us show $(A B)^{\top}=B^{\top} A^{\top}$（Theorem 3 in page 99）．

$$
\left((A B)^{\top}\right)_{i j}=(A B)_{j i}=\sum_{h=1}^{n} A_{j h} B_{h i}=\sum_{h=1}^{n} B_{h i} A_{j h}=\sum_{h=1}^{n}\left(B^{\top}\right)_{i h}\left(A^{\top}\right)_{h j}=\left(B^{\top} A^{\top}\right)_{i j}
$$

Thus $(A B)^{\top}=B^{\top} A^{\top}$ ．
（c）If $A B=I=B A$ ，then $B^{\top} A^{\top}=(A B)^{\top}=I^{\top}=(B A)^{\top}=A^{\top} B^{\top}$ ．Since $I^{\top}=I$ ，we have the assertion．
Definition 5．6 An $n \times n$ matrix is called an elementary matrix（基本行列）if it can be obtained from the $n \times n$ identity matrix I_{n} by performing a single elementary row operation．

1．$E(i ; c)$ ：the matrix obtained from I_{n} by performing $[i ; c](c \neq 0)$ ．
2．$E(i, j)$ ：the matrix obtained from I_{n} by performing $[i, j]$ ．
3．$E(i, j ; c)$ ：the matrix obtained from I_{n} by performing $[i, j ; c]$ ．
Proposition 5.5 （page 125）If the elementary matrix E results from performing a cer－ tain row operation on I_{m} and A is an $m \times n$ matrix，then the product $E A$ is the matrix that results when this same row operation is performed on A ．

Examples of Elementary Matrices

$$
\begin{gathered}
E(3 ; c)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & c
\end{array}\right], E(1,2)=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], E(3,1 ; c)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
c & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
c z
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
y \\
x \\
z
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
c & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
c x+z
\end{array}\right] .}
\end{gathered}
$$

Proposition 5．6 Every elementary matrix is invertible，and the inverse is also an ele－ mentary matrix．

$$
E(i ; c)^{-1}=E(i ; 1 / c), E(i, j)^{-1}=E(i, j), \text { and } E(i, j ; c)^{-1}=E(i, j ;-c)
$$

Sketch of a Proof of Theorem 4.3 using Example 4．1．Let $C=[A, I]$ ．Then

$$
[I, B]=E(2,3 ;-1) E(3 ;-1) E(3,2 ; 4) E(1,2 ;-2) E(3,1 ;-3) E(1,2)[A, I]=[P A, P]
$$

where $P=E(2,3 ;-1) E(3 ;-1) E(3,2 ; 4) E(1,2 ;-2) E(3,1 ;-3)$ ．Hence $P A=I$ and $P=$ B ．So $B A=I$ ．Since $B=P$ is a product of invertible matrix，B is also invertible and

$$
B^{-1}=E(2,1) E(3,1 ; 3) E(1,2 ; 2) E(3,2 ;-4) E(3,-1) E(2,3 ; 1)
$$

We have $B^{-1}=B^{-1} I=B^{-1}(B A)=\left(B^{-1} B\right) A=I A=A$ ．

