Review: Solution Sets of Linear System

Example 2.2
1+ 0xo + 23 + 0xy4 + 5 + 326 = -1 1 0 1 0 1 3 -1
—x1 4+ 029 — 23 + 024 + 025 —4z¢ = -1 -1 0 -1 0 0 -4 -1
Ox1 + 22 — 223 + 324 + Ox5 — Xg = 3 o 1 -2 3 0 -1 3
—2x1 — 2x9 + 223 — 624 — 225 —4wg = —4 -2 -2 2 -6 -2 —4 —4
10 1 01 3 -1 1 0 1 00 4 1
NN 01 -2 30 -1 3 01 -23 0 -1 3
00 0 01 -1 =2 00 0 O 1 -1 =2
00 0 00 0 O 00 0 00 0 O
echelon form reduced echelon form
€1 “+x3 +4xg = 1 o = 3+ 2x3— 314+ x4,
o —2x3 +314 —xg = 3 . T3 ?s free,
rs —x5 = —2 Ty is free,
0 = 0 r5 = -2+ xg,
T is free.
Vector Equation, Matrix Equation
1 0 1 0 1 3 —1
Az =ay| | O e D e 0 (e O wae] T = h
L = T 0 i) 1 I3 _9 T4 3 xT5 0 Te 1 = 3 , where
-2 -2 2 —6 -2 —4 —4
F ey T
1 0o 1 0o 1 3 Zo -1
(-1 0 -1 0 0 -4 I ] -1 . _
A= 0 1 -2 3 0 -1|°%= o , and b= 3 . We write Az = b.
-2 -2 2 -6 -2 -4 T5 —4
L T6 |
[z ] [ 1] [ —1 7 [0 [ —4 [ 1] [ —17 0 ] [ —4
To 3 2 -3 1 3 2 -3 1
zz3 | | O i 1 i 0 S 0 1 o0 o s 1 i 0 tu 0
2| |0 0 1 o " Pl o """ o 1 0
x5 -2 0 0 1 -2 0 0 1
| T6 | | 0 | | 0 | L 0 | | 1 ] | 0 | | 0 | L 0 | |1
s = x3, t = x4 and u = xg are free parameters.
{v]| Av =0}
(-1 [0 [ =47 (=17 [ 07 [—4]
2 -3 1 2 -3 1
1 0 0 1 0 0
= s| o +t 1 +u 0 s,t,u € R 3 = Span o111 o
0 0 1 0 0 1
| 0 | L 0 | | 1 ] L 0] L0 ] [ 1]




4 Linear Transformations

4.1 Linear independence

Definition 4.1 [page 73] An indexed set of vectors {vy,vs,...,v,} in R is said to be
linearly independent (—JIMSL,FEIZIAL)  if the vector equation

I1U1+ZE2172+"'+CCP'UPZO

has only the trivial solution. The set {vy, v, ..., v,} is said to be linearly dependent (—
KAEIE, FIGHEIE)  if there exist weights ci, ¢y, ..., ¢, not all zero, such that

C1V1 + Uy + - - + CpUp = 0.
(This is called a linear dependence relation among vy, vs, ..., v,

The columns of a matrix A are linearly independent if and only if the equation Ax = 0
has only the trivial solution.

Example 4.1
1 0 1 0 1 3 0
Ax = ! + ; + -1 + v + U +x I here
St I N et O ] I et N S ) OO e I O B AV R
—2 —2 2 —6 —2 —4 0
s
1 0 1 0 1 3 T 0
-1 0 -1 0 0 -4 BE 1o
A= 0 1 -2 3 0 117 [a1, a9, a3,ay,as,a¢], T = s and 0 = 0
9 -2 2 6 —2 —4 5 0
{v| Az =0}
(=17 [o07] [-4] ) (T-17 T 07 [-47)
2 -3 1 2 -3 1
1 0 0 1 0 0
= S| g +1 1 +u 0 s,t,u € R p = Span ol 111 o
0 0 1 0 0 1
. | 0 | | 0] 1] ) (L0 ] LO | |1 ]}
[ —1] [0 ] [ —4 ]
2 -3 1
1 0 0
= {svy +tvy +uvs | s,t,u € R}, where v; = o 2= and vs = 0
0 0 1
0] 0] 1]

Then {vy, v, v3} is linearly independent and {a1, as, as, a4, as, ag} is linearly dependent.

Recall that the homogeneous equation Az = 0 has a nontrivial solution if and only if
the equation has at least one free variable. (Proposition 2.5 (page 60))
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Linear Independence: Let A = [v1,v9,...,v,] be an m x n matrix. Then the
following are equivalent.

(i) The columns of A, vy, vy, ..., v,, are linearly independent.

(i) z1v1 + 220y + -+ - + 2,0, = 0 has only the trivial solution.

)
)
(iii) Az = 0 has only the trivial solution.
(iv) The equation has no free variable.

)

(v) A has a pivot position in every column.

Example 4.2 (i) If aset S = {vy,vq,...,v,} contains the zero vector, then the set is
linearly dependent.

(ii) If vy = cvy, then S = {vy, vy,...,v,} is linearly dependent.

(iii) A set of two vectors {vy, va} is linearly dependent if at least one of the vectors is a
multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

Theorem 4.1 (Theorem 7 in page 75) An indezed set S = {vy,vs,...,v,} of two or
more vectors is linearly dependent if and only if at least one of the vector in S is a linear
combination of the others. (In fact, if S is linearly dependent and vy # 0, then some v;
(with j > 1) is a linear combination of the preceding vectors vy, v, ..., v;_1,)

Theorem 4.2 (Theorem 8 in page 76) If a set contains more vectors than there are
entries in each vector, then the set is linearly dependent. That is, any set {vy,vs,...,v,}
in R™ is linearly dependent if p > n.

4.2 Introduction to Linear Transformations

Let A be an m x n matrix, * € R”. Then Ax € R™. Hence, each vector & in R"
corresponds to a vector y in R™. We write the correspondence T as follows.

T:R" - R™ (x— Ax).

Definition 4.2 A transformation (Z#%) (or function (B4%0) or mapping (B4%) ) T
from R™ to R™ is a rule that assigns to each vector & € R™ a vector T'(x) in R™. The set
R" is called the domain (EFH) of T and R™ is called the codomain (#38%) of T. For
x € R, the vector T'(x) is called the image (f®) of x (under the action of T'). The set
of all images T'(x) is called the range (fE}%) of T.

Definition 4.3 [page 82] A transformation (or mapping) T is linear (§J%8) if

(i) T(u+wv) =T(u) + T(v) for all u,v in the domain of 7.
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(ii) T(cu) = ¢T'(u) for all scalars ¢ and all w in the domain of T
Example 4.3 [Matrix Linear Transformation] If A is an m xn matrix, the transformation
Ty:R" = R™ (x — Ax)
is a linear transformation.
Let T be a linear transformation. Then
e 7(0) =0.
e T(cu+ dv) =cT(u)+ dT(v).

o T(c1v1 + cava+ -+ ¢v,) = 1T (v1) + 2T (v2) + -+ - + ¢, T(v,).

4.3 Matrix of Linear Transformation

Theorem 4.3 (Theorem 10 in page 88) LetT : R" — R™ is a linear transformation.
Then there exists a unique matriz A such that

T(x) = Ax for all x € R™.

In fact
A=[T(e)),T(e2),...,T(e,)].

Definition 4.4 Let T : R® — R™ be a mapping.
1. Tis onto (E~DB « 25f) if each b € R™ is the image of at least one € R™.

2. T is one-to-one (1 X} 1 B4R - Hi&f) if each b in R™ is the image of at most one
x € R™.

Theorem 4.4 (Theorem 11 and Theorem 12 in pages 93, 94) Let T : R" — R™
is a linear transformation and let A be the standard matriz for T.

(i) The following are equivalent.
(a) T is one-to-one.
(b
(

) The equation T'(x) = 0 has only the trivial solution.
(¢) Az = 0 has only the trivial solution.
)

)

d

(e) A has a pivot position in every column.

The columns of A are linearly independent.

(ii) The following are equivalent.

(a) T maps R™ onto R™.
(b) The columns of A span R™, i.e., each vector in R™ is a linear combination of
columns of A.

(c¢) A has a pivot position in every row.

Geometric Linear Transformation of R?:  Rotations, Reflections, Contractions and
Expansions, Shears, Projections
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