Review: Solution Sets of Linear System

Example 2.2

$$
\left\{\begin{array}{cc}
x_{1}+0 x_{2}+x_{3}+0 x_{4}+x_{5}+3 x_{6} & = \\
-1 \\
-x_{1}+0 x_{2}-x_{3}+0 x_{4}+0 x_{5}-4 x_{6} & = \\
0 x_{1}+x_{2}-2 x_{3}+3 x_{4}+0 x_{5}-x_{6} & = \\
-2 x_{1}-2 x_{2}+2 x_{3}-6 x_{4}-2 x_{5}-4 x_{6} & = \\
-4
\end{array}\right]\left[\begin{array}{cccccccccc}
1 & 0 & 1 & 0 & 1 & 3 & -1 \\
-1 & 0 & -1 & 0 & 0 & -4 & -1 \\
0 & 1 & -2 & 3 & 0 & -1 & 3 \\
-2 & -2 & 2 & -6 & -2 & -4 & -4
\end{array}\right]
$$

Vector Equation, Matrix Equation

$$
\begin{aligned}
& A \boldsymbol{x}=x_{1}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-2
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
0 \\
1 \\
-2
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
2
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
3 \\
-6
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-2
\end{array}\right]+x_{6}\left[\begin{array}{c}
3 \\
-4 \\
-1 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-4
\end{array}\right] \text {, where } \\
& A=\left[\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 3 \\
-1 & 0 & -1 & 0 & 0 & -4 \\
0 & 1 & -2 & 3 & 0 & -1 \\
-2 & -2 & 2 & -6 & -2 & -4
\end{array}\right] . \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right] \text {, and } \boldsymbol{b}=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-4
\end{array}\right] . \text { We write } A \boldsymbol{x}=\boldsymbol{b} \text {. } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
0 \\
0 \\
-2 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right] . \boldsymbol{p}=\left[\begin{array}{c}
1 \\
3 \\
0 \\
0 \\
-2 \\
0
\end{array}\right], \boldsymbol{v}=s\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right] .} \\
& s=x_{3}, t=x_{4} \text { and } u=x_{6} \text { are free parameters. }
\end{aligned}
$$

$$
\begin{aligned}
& \{\boldsymbol{v} \mid A \boldsymbol{v}=\mathbf{0}\} \\
& \left.\left.\quad=\left\{\begin{array}{l}
-1 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right] \right\rvert\, s, t, u \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
2 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

4 Linear Transformations

4．1 Linear independence

Definition 4.1 ［page 73］An indexed set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent（一次独立／線形独立）if the vector equation

$$
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{p} \boldsymbol{v}_{p}=\mathbf{0}
$$

has only the trivial solution．The set $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ is said to be linearly dependent（一次従属／線形従属）if there exist weights $c_{1}, c_{2}, \ldots, c_{p}$ not all zero，such that

$$
c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{p} \boldsymbol{v}_{p}=\mathbf{0} .
$$

（This is called a linear dependence relation among $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}$
The columns of a matrix A are linearly independent if and only if the equation $A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution．

Example 4.1

$A \boldsymbol{x}=x_{1}\left[\begin{array}{c}1 \\ -1 \\ 0 \\ -2\end{array}\right]+x_{2}\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -2\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ -1 \\ -2 \\ 2\end{array}\right]+x_{4}\left[\begin{array}{c}0 \\ 0 \\ 3 \\ -6\end{array}\right]+x_{5}\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -2\end{array}\right]+x_{6}\left[\begin{array}{c}3 \\ -4 \\ -1 \\ -4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ ，where
$A=\left[\begin{array}{cccccc}1 & 0 & 1 & 0 & 1 & 3 \\ -1 & 0 & -1 & 0 & 0 & -4 \\ 0 & 1 & -2 & 3 & 0 & -1 \\ -2 & -2 & 2 & -6 & -2 & -4\end{array}\right]=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}, \boldsymbol{a}_{6}\right], \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]$ and $\mathbf{0}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$ ．
$\{\boldsymbol{v} \mid A \boldsymbol{x}=\mathbf{0}\}$
$=\left\{\left.s\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]+u\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right] \right\rvert\, s, t, u \in \mathbb{R}\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$
$=\left\{s \boldsymbol{v}_{1}+t \boldsymbol{v}_{2}+u \boldsymbol{v}_{3} \mid s, t, u \in \mathbb{R}\right\}$ ，where $\boldsymbol{v}_{1}=\left[\begin{array}{c}-1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]$ and $\boldsymbol{v}_{3}=\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]$ ．
Then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent and $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}, \boldsymbol{a}_{6}\right\}$ is linearly dependent．
Recall that the homogeneous equation $A \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable．（Proposition 2.5 （page 60））

Linear Independence：Let $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$ be an $m \times n$ matrix．Then the following are equivalent．
（i）The columns of $A, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ ，are linearly independent．
（ii）$x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=\mathbf{0}$ has only the trivial solution．
（iii） $\boldsymbol{A x}=\mathbf{0}$ has only the trivial solution．
（iv）The equation has no free variable．
（v）A has a pivot position in every column．
Example 4.2 （i）If a set $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ contains the zero vector，then the set is linearly dependent．
（ii）If $\boldsymbol{v}_{2}=c \boldsymbol{v}_{1}$ ，then $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ is linearly dependent．
（iii）A set of two vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ is linearly dependent if at least one of the vectors is a multiple of the other．The set is linearly independent if and only if neither of the vectors is a multiple of the other．

Theorem 4.1 （Theorem 7 in page 75）An indexed set $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ of two or more vectors is linearly dependent if and only if at least one of the vector in S is a linear combination of the others．（In fact，if S is linearly dependent and $\boldsymbol{v}_{1} \neq \mathbf{0}$ ，then some \boldsymbol{v}_{j} （with $j>1$ ）is a linear combination of the preceding vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{j-1}$ ，）

Theorem 4.2 （Theorem 8 in page 76）If a set contains more vectors than there are entries in each vector，then the set is linearly dependent．That is，any set $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$ ．

4．2 Introduction to Linear Transformations

Let A be an $m \times n$ matrix， $\boldsymbol{x} \in \mathbb{R}^{n}$ ．Then $A \boldsymbol{x} \in \mathbb{R}^{m}$ ．Hence，each vector \boldsymbol{x} in \mathbb{R}^{n} corresponds to a vector \boldsymbol{y} in \mathbb{R}^{m} ．We write the correspondence T as follows．

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(\boldsymbol{x} \mapsto A \boldsymbol{x}) .
$$

Definition 4．2 A transformation（変換）（or function（関数）or mapping（写像））T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector $\boldsymbol{x} \in \mathbb{R}^{n}$ a vector $T(\boldsymbol{x})$ in \mathbb{R}^{m} ．The set \mathbb{R}^{n} is called the domain（定義域）of T and \mathbb{R}^{m} is called the codomain（余域）of T ．For $\boldsymbol{x} \in \mathbb{R}^{n}$ ，the vector $T(\boldsymbol{x})$ is called the image（像）of x（under the action of T ）．The set of all images $T(\boldsymbol{x})$ is called the range（値域）of T ．

Definition 4.3 ［page 82］A transformation（or mapping）T is linear（線形 ${ }^{8}$ ）if
（i）$T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v})$ for all $\boldsymbol{u}, \boldsymbol{v}$ in the domain of T ．

[^0]（ii）$T(c \boldsymbol{u})=c T(\boldsymbol{u})$ for all scalars c and all \boldsymbol{u} in the domain of T ．
Example 4.3 ［Matrix Linear Transformation］If A is an $m \times n$ matrix，the transformation
$$
T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(\boldsymbol{x} \mapsto A \boldsymbol{x})
$$
is a linear transformation．
Let T be a linear transformation．Then
－$T(\mathbf{0})=\mathbf{0}$ ．
－$T(c \boldsymbol{u}+d \boldsymbol{v})=c T(\boldsymbol{u})+d T(\boldsymbol{v})$ ．
－$T\left(c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{p} \boldsymbol{v}_{p}\right)=c_{1} T\left(\boldsymbol{v}_{1}\right)+c_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+c_{p} T\left(\boldsymbol{v}_{p}\right)$.

4．3 Matrix of Linear Transformation

Theorem 4.3 （Theorem 10 in page 88）Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation． Then there exists a unique matrix A such that

$$
T(\boldsymbol{x})=A \boldsymbol{x} \text { for all } \boldsymbol{x} \in \mathbb{R}^{n} .
$$

In fact

$$
A=\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), \ldots, T\left(\boldsymbol{e}_{n}\right)\right] .
$$

Definition 4．4 Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a mapping．
1．T is onto（上への写像•全射）if each $\boldsymbol{b} \in \mathbb{R}^{m}$ is the image of at least one $\boldsymbol{x} \in \mathbb{R}^{n}$ ．
2．T is one－to－one（ 1 対 1 写像•単射）if each \boldsymbol{b} in \mathbb{R}^{m} is the image of at most one $\boldsymbol{x} \in \mathbb{R}^{m}$ ．

Theorem 4.4 （Theorem 11 and Theorem 12 in pages 93，94）Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and let A be the standard matrix for T ．
（i）The following are equivalent．
（a）T is one－to－one．
（b）The equation $T(\boldsymbol{x})=\mathbf{0}$ has only the trivial solution．
（c）$A \boldsymbol{x}=\mathbf{0}$ has only the trivial solution．
（d）The columns of A are linearly independent．
（e）A has a pivot position in every column．
（ii）The following are equivalent．
（a）T maps \mathbb{R}^{n} onto \mathbb{R}^{m} ．
（b）The columns of A span \mathbb{R}^{m} ，i．e．，each vector in \mathbb{R}^{m} is a linear combination of columns of A ．
（c）A has a pivot position in every row．
Geometric Linear Transformation of \mathbb{R}^{2} ：Rotations，Reflections，Contractions and Expansions，Shears，Projections

[^0]: 8線形変換／一次変換と言います

