3 Vectors

3.1 Vectors in \mathbb{R}^n

Definition 3.1 (page 20) If m and n are positive integers (正の整数), an $m \times n$ matrix (行列) is a rectangular array (長方形に並んだ) of numbers with m rows (行) and n columns (列). If n is a positive integer, an $n \times 1$ matrix is often called an n-dimensional column vector and a $1 \times n$ matrix an n-dimensional row vector. The collection of all n-dimensional column (or row) vectors is denoted by \mathbb{R}^n .

The vector whose entries (成分) are all zero is called the *zero vector* and is denoted by $\mathbf{0}$. The number of entries in $\mathbf{0}$ will be clear from the context.

Equality of (column or row) vectors in \mathbb{R}^n and the operations of scalar multiplication (スカラー倍) and vector addition (ベクトルの和) in \mathbb{R}^n are defined entry by entry. Thus for $c \in \mathbb{R}$ and

$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \ \boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n, \ c\boldsymbol{u} = c \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}, \ \boldsymbol{u} + \boldsymbol{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}.$$

Example 3.1 A is a 3×4 matrix, $\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{u}'', \boldsymbol{u}'''$ are (3-dimensional) column vectors in \mathbb{R}^3 , $\boldsymbol{v}, \boldsymbol{v}', \boldsymbol{v}''$ are (4-dimensional) row vectors, and \boldsymbol{w} is a (3-dimensional) row vector.

$$A = \begin{bmatrix} 3 & 1 & 2 & 4 \\ 1 & 1 & 1 & 1 \\ 11 & -1 & 5 & 17 \end{bmatrix}, \ \boldsymbol{u} = \begin{bmatrix} 3 \\ 1 \\ 11 \end{bmatrix}, \ \boldsymbol{u}' = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \ \boldsymbol{u}'' = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}, \ \boldsymbol{u}''' = \begin{bmatrix} 4 \\ 1 \\ 17 \end{bmatrix}, \ \boldsymbol{v} = \begin{bmatrix} 3, 1, 2, 4 \end{bmatrix}, \ \boldsymbol{v}' = \begin{bmatrix} 1, 1, 1, 1 \end{bmatrix}, \ \boldsymbol{v}'' = \begin{bmatrix} 11, -1, 5, 17 \end{bmatrix}, \ \boldsymbol{w} = \begin{bmatrix} 3, 1, 11 \end{bmatrix}.$$

In order to save space, a column vector such as \boldsymbol{u} above is written in the following way as well.

$$\boldsymbol{u} = [3, 1, 11]^{\top} = \boldsymbol{w}^{\top} \text{ the transpose of } \boldsymbol{w}.$$
$$(\boldsymbol{u} + (-1)\boldsymbol{u}') + \boldsymbol{u}'' = \left(\begin{bmatrix} 3\\1\\11 \end{bmatrix} + \begin{bmatrix} -1\\-1\\1 \end{bmatrix} \right) + \begin{bmatrix} 2\\1\\5 \end{bmatrix} = \begin{bmatrix} 4\\1\\17 \end{bmatrix} = \boldsymbol{u}''',$$
$$\boldsymbol{v} + (-3)\boldsymbol{v}' = [3, 1, 2, 4] + (-3)[1, 1, 1, 1] = [3, 1, 2, 4] + [-3, -3, -3, -3] = [0, -2, -1, 1].$$

Algebraic Properties of \mathbb{R}^n (page 43) For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^n$ and all scalars c and d:

(i)
$$\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$$

(ii) $(\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w})$
(iii) $\boldsymbol{u} + \boldsymbol{0} = \boldsymbol{u} = \boldsymbol{0} + \boldsymbol{u}$
(iv) $\boldsymbol{u} + (-\boldsymbol{u}) = \boldsymbol{0} = (-\boldsymbol{u}) + \boldsymbol{u}$
where $-\boldsymbol{u}$ denotes $(-1)\boldsymbol{u}$
(v) $c(\boldsymbol{u} + \boldsymbol{v}) = c\boldsymbol{u} + c\boldsymbol{v}$
(vi) $(c + d)\boldsymbol{u} = c\boldsymbol{u} + d\boldsymbol{u}$
(vii) $c(d\boldsymbol{u}) = (cd)\boldsymbol{u}$
(viii) $1\boldsymbol{u} = \boldsymbol{u}$

For simplicity of notation, a vector such as $\boldsymbol{u} + (-1)\boldsymbol{v}$ is often written as $\boldsymbol{u} - \boldsymbol{v}$. These properties are satisfied by row vectors as well.

Definition 3.2 For (column (or row)) vectors

$$\boldsymbol{u} = [u_1, u_2, \dots, u_n]^{\top}, \ \boldsymbol{v} = [v_1, v_2, \dots, v_n]^{\top} \in \mathbb{R}^n,$$

the *inner product* (内積) of u and v is defined by:

$$\boldsymbol{u}\cdot\boldsymbol{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

When $\boldsymbol{u} \cdot \boldsymbol{v} = 0$, $\boldsymbol{u}, \boldsymbol{v}$ are called *orthogonal* (or *perpendicular* 直交する). The norm (ノル ム) of \boldsymbol{u} is $\|\boldsymbol{u}\| = \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$.

For
$$\boldsymbol{u} = [u_1, u_2, \dots, u_n]^\top, \boldsymbol{v} = [v_1, v_2, \dots, v_n]^\top, \boldsymbol{w} = [w_1, w_2, \dots, w_n]^\top \in \mathbb{R}^n$$
 and $c \in \mathbb{R}$,

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}, \ (\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w}, \ (c\boldsymbol{u}) \cdot \boldsymbol{v} = c(\boldsymbol{u} \cdot \boldsymbol{v}) = \boldsymbol{u} \cdot (c\boldsymbol{v})$$

Moreover, $\|\boldsymbol{u}\| \ge 0$ and $\|\boldsymbol{u}\| = 0$ if and only if $\boldsymbol{u} = \boldsymbol{0}$.

$$(\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = ([u_1, u_2, \dots, u_n]^\top + [v_1, v_2, \dots, v_n]^\top) \cdot [w_1, w_2, \dots, w_n]^\top = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]^\top \cdot [w_1, w_2, \dots, w_n]^\top = (u_1 + v_1)w_1 + (u_2 + v_2)w_2 + \dots + (u_n + v_n)w_n = u_1w_1 + u_2w_2 + \dots + u_nw_n + v_1w_1 + v_2w_2 + \dots + v_nw_n = \boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w}.$$

Theorem 3.1 (Cauchy-Schwarz Inequality in pages 377-8) For $u, v \in \mathbb{R}^n$

$$-\|oldsymbol{u}\|\|oldsymbol{v}\|\leqoldsymbol{u}\cdotoldsymbol{v}\leq\|oldsymbol{u}\|\|oldsymbol{v}\|$$

Equality holds if and only if one of u and v is a scalar multiple of the other.

Proof. We may assume that $\boldsymbol{u} \neq \boldsymbol{0}$ is a non-zero vector in \mathbb{R}^n . Then for any real number λ ,

$$0 \leq \|\lambda \boldsymbol{u} + \boldsymbol{v}\|^2 = (\lambda \boldsymbol{u} + \boldsymbol{v}) \cdot (\lambda \boldsymbol{u} + \boldsymbol{v}) = \lambda^2 \|\boldsymbol{u}\|^2 + 2(\boldsymbol{u} \cdot \boldsymbol{v})\lambda + \|\boldsymbol{v}\|^2.$$

It follows from a property of quadratic equations (2次方程式), $(\boldsymbol{u} \cdot \boldsymbol{v})^2 - \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 \leq 0$. Since $\|\boldsymbol{u}\| \geq 0$ and $\|\boldsymbol{v}\| \geq 0$, $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq \|\boldsymbol{u}\| \|\boldsymbol{v}\|$ and the inequalities hold.

Definition 3.3 Suppose $u \neq 0$ and $v \neq 0$. Then the angle between u and v are a real number θ such that $0 \leq \theta \leq \pi$ satisfying

$$\cos \theta = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|}.$$

Definition 3.4 Let $\boldsymbol{u} = [u_1, u_2, u_3]^{\top}, \boldsymbol{v} = [v_1, v_2, v_3]^{\top}$ be vectors in \mathbb{R}^3 . Then the vector product (or exterior product ベクトル積、外積) of \boldsymbol{u} and \boldsymbol{v} is:

$$\begin{aligned} \boldsymbol{u} \times \boldsymbol{v} &= \begin{bmatrix} u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \end{bmatrix}^\top \\ &= \begin{bmatrix} u_2 v_2 \\ u_3 v_3 \end{bmatrix}, \begin{vmatrix} u_3 v_3 \\ u_1 v_1 \end{vmatrix}, \begin{vmatrix} u_1 v_1 \\ u_2 v_2 \end{vmatrix} \end{bmatrix}^\top, \text{ where } \begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc. \end{aligned}$$

The following hold: $\boldsymbol{u} \times \boldsymbol{v} = -\boldsymbol{v} \times \boldsymbol{u}, \ \boldsymbol{u} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = 0.$

3.2 Exercises

- 1. For (i) and (ii), compute each of (a) (e) below.
 - (a) $\boldsymbol{u} \cdot \boldsymbol{v}$ (b) $\boldsymbol{u} \cdot (\boldsymbol{v} + \boldsymbol{w})$ (c) $\|\boldsymbol{u}\|, \|\boldsymbol{v}\|, \|\boldsymbol{w}\|$
 - (d) angle between \boldsymbol{v} and \boldsymbol{w} (e) a nonzero \boldsymbol{x} such that $\boldsymbol{x} \cdot \boldsymbol{u} = \boldsymbol{x} \cdot \boldsymbol{v} = \boldsymbol{x} \cdot \boldsymbol{w} = 0$

(i)
$$\boldsymbol{u} = [3, 1, 11]^{\top}, \boldsymbol{v} = [1, 1, -1]^{\top}, \text{ and } \boldsymbol{w} = [2, 1, 5]^{\top}.$$

(ii)
$$\boldsymbol{u} = [1, 1, 1, 1]^{\top}, \boldsymbol{v} = [1, 1, -1, -1]^{\top}, \text{ and } \boldsymbol{w} = [1, -1, 1, -1]^{\top}.$$

- 2. For all vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, show the following.
 - (a) $\|\boldsymbol{u} + \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + 2(\boldsymbol{u} \cdot \boldsymbol{v}) + \|\boldsymbol{v}\|^2$.
 - (b) (The Triangular Inequality) $\|\boldsymbol{u} + \boldsymbol{v}\| \leq \|\boldsymbol{u}\| + \|\boldsymbol{v}\|$.
 - (c) $\|\boldsymbol{u} + \boldsymbol{v}\| = \|\boldsymbol{u}\| + \|\boldsymbol{v}\|$ if and only if one of the vectors is a positive scalar multiple of the other.
 - (d) (Pythagoras' Theorem) $\|\boldsymbol{u} + \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2$ if and only if \boldsymbol{u} and \boldsymbol{v} are orthogonal.

3. Let
$$\boldsymbol{u} = [3, 2, -1]^{\top}, \boldsymbol{v} = [0, 2, -3]^{\top}$$
, and $\boldsymbol{w} = [2, 6, 7]^{\top}$. Compute

(a) $\boldsymbol{v} \times \boldsymbol{w}$ (b) $\boldsymbol{u} \times (\boldsymbol{v} \times \boldsymbol{w})$ (c) $(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w}$

(d)
$$(\boldsymbol{u} \times \boldsymbol{v}) \times (\boldsymbol{v} \times \boldsymbol{w})$$
 (e) $\boldsymbol{u} \times (\boldsymbol{v} - 2\boldsymbol{w})$ (f) $(\boldsymbol{u} \times \boldsymbol{v}) - 2\boldsymbol{w}$

4. Let $\boldsymbol{u} = [u_1, u_2, u_3]^{\top}, \boldsymbol{v} = [v_1, v_2, v_3]^{\top}$ be vectors in \mathbb{R}^3 . Show

(a) $\boldsymbol{u} \times \boldsymbol{v} = -\boldsymbol{v} \times \boldsymbol{u}$.

(b)
$$\boldsymbol{u} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = \boldsymbol{v} \cdot (\boldsymbol{u} \times \boldsymbol{v}) = 0.$$

5. Find a vector that is orthogonal to both \boldsymbol{u} and \boldsymbol{v} .

(a)
$$\boldsymbol{u} = [-6, 4, 2]^{\top}, \ \boldsymbol{v} = [3, 1, 5]^{\top}$$
 (b) $\boldsymbol{u} = [-2, 1, 5]^{\top}, \ \boldsymbol{v} = [3, 0, -3]^{\top}$

6. Find the scalar triple product $\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})$.

(a)
$$\boldsymbol{u} = [-1, 2, 4]^{\top}, \, \boldsymbol{v} = [3, 4, -2]^{\top}, \, \boldsymbol{w} = [-1, 2, 5]^{\top}.$$

(b) $\boldsymbol{u} = [3, -1, 6]^{\top}, \, \boldsymbol{v} = [2, 4, 3]^{\top}, \, \boldsymbol{w} = [5, -1, 2]^{\top}.$

7. Suppose that $\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) = 3$. Find

(a)
$$\boldsymbol{u} \cdot (\boldsymbol{w} \times \boldsymbol{v})$$
 (b) $(\boldsymbol{v} \times \boldsymbol{w}) \cdot \boldsymbol{u}$ (c) $\boldsymbol{w} \cdot (\boldsymbol{u} \times \boldsymbol{v})$

(d) $\boldsymbol{v} \cdot (\boldsymbol{u} \times \boldsymbol{w})$ (e) $(\boldsymbol{u} \times \boldsymbol{w}) \cdot \boldsymbol{v}$ (f) $\boldsymbol{v} \cdot (\boldsymbol{w} \times \boldsymbol{w})$

8. Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ be vectors in \mathbb{R}^3 . Show the following.

(a) $\|\boldsymbol{u} \times \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 - (\boldsymbol{u} \cdot \boldsymbol{v})^2$. (b) $\boldsymbol{u} \times (\boldsymbol{v} \times \boldsymbol{w}) = (\boldsymbol{u} \cdot \boldsymbol{w})\boldsymbol{v} - (\boldsymbol{u} \cdot \boldsymbol{v})\boldsymbol{w}$, and $(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w} = (\boldsymbol{u} \cdot \boldsymbol{w})\boldsymbol{v} - (\boldsymbol{v} \cdot \boldsymbol{w})\boldsymbol{u}$.

First try Exercises 1 (i), (ii) and 3 (a), (b).

3.3 Related Problems in Final Exams

Final 2012 1(b) Find $v_1 \times v_2$, where $v_1 = [3, 2, -3]^{\top}$ and $v_2 = [1, 2, 1]^{\top}$.

Final 2013 1(c) Find $v_1 \times v_2$, where $v_1 = [3, 1, -2]^{\top}$ and $v_2 = [1, 2, 4]^{\top}$.

[Soln.
$$\boldsymbol{v}_1 \times \boldsymbol{v}_2 = [8, -14, 5]^\top$$
]

[Soln. $\boldsymbol{v}_1 \times \boldsymbol{v}_2 = [8, -6, 4]^\top$]

Final 2014 1 Let $\boldsymbol{u} = [2, 1, -3]^{\top}, \boldsymbol{v} = [0, 1, 2]^{\top}, \boldsymbol{w} = [1, 3, 1]^{\top}.$

- (a) Find $\boldsymbol{u} \times \boldsymbol{v}$. [Soln. $[5, -4, 2]^{\top}$]
- (b) Find $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$. Note that $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$ is the volume of a parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. [Soln. -5.]

Final 2015 1 Let $\boldsymbol{u} = [1, 4, 9]^{\top}, \boldsymbol{v} = [1, 8, 27]^{\top}, \boldsymbol{w} = [1, 2, 3]^{\top}.$

(a) Find $\boldsymbol{u} \times \boldsymbol{v}$.

[Soln. $[36, -18, 4]^{\top}$]

(b) Find $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$. Note that $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$ is the volume of a parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. [Soln. 12.]

Final 2010 1(a) Let u, v, w be as follows.

$$\boldsymbol{u} = [4, -8, 1]^t op, \ \boldsymbol{v} = [2, 1, -2]^\top, \ \boldsymbol{w} = [3, -4, 12]^\top.$$

The vector $\boldsymbol{p} = \text{proj}_{\boldsymbol{v}} \boldsymbol{u}$ is a scalar multiple of \boldsymbol{v} such that $\boldsymbol{u} - \boldsymbol{p}$ is orthogonal to \boldsymbol{v} . Find \boldsymbol{p} . [Soln. $[-4/9, -2/9, 4/9]^{\top}$]

Proposition. Let $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} be vectors in \mathbb{R}^3 . Then $\|\boldsymbol{u} \times \boldsymbol{v}\|$ is the area of the parallelogram (平行四辺形) determined by \boldsymbol{u} and \boldsymbol{v} and $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$ is the volume of the parallelepiped (平行六面体) determined by $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} .