3 Vectors

3．1 Vectors in \mathbb{R}^{n}

Definition 3.1 （page 20）If m and n are positive integers（正の整数），an $m \times n$ matrix （行列）is a rectangular array（長方形に並んだ）of numbers with m rows（行）and n columns（列）．If n is a positive integer，an $n \times 1$ matrix is often called an n－dimensional column vector and a $1 \times n$ matrix an n－dimensional row vector．The collection of all n－dimensional column（or row）vectors is denoted by \mathbb{R}^{n} ．

The vector whose entries（成分）are all zero is called the zero vector and is denoted by $\mathbf{0}$ ．The number of entries in $\mathbf{0}$ will be clear from the context．

Equality of（column or row）vectors in \mathbb{R}^{n} and the operations of scalar multiplication （スカラー倍）and vector addition（ベクトルの和）in \mathbb{R}^{n} are defined entry by entry．Thus for $c \in \mathbb{R}$ and

$$
\boldsymbol{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \in \mathbb{R}^{n}, c \boldsymbol{u}=c\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1} \\
c u_{2} \\
\vdots \\
c u_{n}
\end{array}\right], \boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right] .
$$

Example 3．1 A is a 3×4 matrix， $\boldsymbol{u}, \boldsymbol{u}, \boldsymbol{u}^{\prime \prime}, \boldsymbol{u}^{\prime \prime \prime}$ are（3－dimensional）column vectors in \mathbb{R}^{3} ， $\boldsymbol{v}, \boldsymbol{v}^{\prime}, \boldsymbol{v}^{\prime \prime}$ are（4－dimensional）row vectors，and \boldsymbol{w} is a（3－dimensional）row vector．

$$
\begin{gathered}
A=\left[\begin{array}{rrrr}
3 & 1 & 2 & 4 \\
1 & 1 & 1 & 1 \\
11 & -1 & 5 & 17
\end{array}\right], \boldsymbol{u}=\left[\begin{array}{r}
3 \\
1 \\
11
\end{array}\right], \boldsymbol{u}^{\prime}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], \boldsymbol{u}^{\prime \prime}=\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right], \boldsymbol{u}^{\prime \prime \prime}=\left[\begin{array}{r}
4 \\
1 \\
17
\end{array}\right], \\
\boldsymbol{v}=[3,1,2,4], \boldsymbol{v}^{\prime}=[1,1,1,1], \boldsymbol{v}^{\prime \prime}=[11,-1,5,17], \boldsymbol{w}=[3,1,11] .
\end{gathered}
$$

In order to save space，a column vector such as \boldsymbol{u} above is written in the following way as well．

$$
\begin{gathered}
\boldsymbol{u}=[3,1,11]^{\top}=\boldsymbol{w}^{\top} \text { the transpose of } \boldsymbol{w} . \\
\left(\boldsymbol{u}+(-1) \boldsymbol{u}^{\prime}\right)+\boldsymbol{u}^{\prime \prime}=\left(\left[\begin{array}{r}
3 \\
1 \\
11
\end{array}\right]+\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]\right)+\left[\begin{array}{r}
2 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{r}
4 \\
1 \\
17
\end{array}\right]=\boldsymbol{u}^{\prime \prime \prime}, \\
\boldsymbol{v}+(-3) \boldsymbol{v}^{\prime}=[3,1,2,4]+(-3)[1,1,1,1]=[3,1,2,4]+[-3,-3,-3,-3]=[0,-2,-1,1] .
\end{gathered}
$$

Algebraic Properties of $\mathbb{R}^{n} \quad$（page 43）For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ and all scalars c and d ：
（i） $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$
（v）$c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$
（ii）$(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$
（vi）$(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$
（iii） $\boldsymbol{u}+\mathbf{0}=\boldsymbol{u}=\mathbf{0}+\boldsymbol{u}$
（vii）$c(d \boldsymbol{u})=(c d) \boldsymbol{u}$
（iv） $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}=(-\boldsymbol{u})+\boldsymbol{u}$
（viii） $1 \boldsymbol{u}=\boldsymbol{u}$
where $-\boldsymbol{u}$ denotes $(-1) \boldsymbol{u}$

For simplicity of notation，a vector such as $\boldsymbol{u}+(-1) \boldsymbol{v}$ is often written as $\boldsymbol{u}-\boldsymbol{v}$ ．These properties are satisfied by row vectors as well．

Definition 3．2 For（column（or row））vectors

$$
\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]^{\top}, \boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]^{\top} \in \mathbb{R}^{n}
$$

the inner product（内積）of \boldsymbol{u} and \boldsymbol{v} is defined by：

$$
\boldsymbol{u} \cdot \boldsymbol{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

When $\boldsymbol{u} \cdot \boldsymbol{v}=0, \boldsymbol{u}, \boldsymbol{v}$ are called orthogonal（or perpendicular 直交する）．The norm（ノル ム）of \boldsymbol{u} is $\|\boldsymbol{u}\|=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}$ ．

For $\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{n}\right]^{\top}, \boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]^{\top}, \boldsymbol{w}=\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{\top} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$,

$$
\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u},(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{w}=\boldsymbol{u} \cdot \boldsymbol{w}+\boldsymbol{v} \cdot \boldsymbol{w},(c \boldsymbol{u}) \cdot \boldsymbol{v}=c(\boldsymbol{u} \cdot \boldsymbol{v})=\boldsymbol{u} \cdot(c \boldsymbol{v})
$$

Moreover，$\|\boldsymbol{u}\| \geq 0$ and $\|\boldsymbol{u}\|=0$ if and only if $\boldsymbol{u}=\mathbf{0}$ ．

$$
\begin{aligned}
(\boldsymbol{u}+\boldsymbol{v}) \cdot \boldsymbol{w} & =\left(\left[u_{1}, u_{2}, \ldots, u_{n}\right]^{\top}+\left[v_{1}, v_{2}, \ldots, v_{n}\right]^{\top}\right) \cdot\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{\top} \\
& =\left[u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{n}+v_{n}\right]^{\top} \cdot\left[w_{1}, w_{2}, \ldots, w_{n}\right]^{\top} \\
& =\left(u_{1}+v_{1}\right) w_{1}+\left(u_{2}+v_{2}\right) w_{2}+\cdots+\left(u_{n}+v_{n}\right) w_{n} \\
& =u_{1} w_{1}+u_{2} w_{2}+\cdots+u_{n} w_{n}+v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n} \\
& =\boldsymbol{u} \cdot \boldsymbol{w}+\boldsymbol{v} \cdot \boldsymbol{w} .
\end{aligned}
$$

Theorem 3.1 （Cauchy－Schwarz Inequality in pages 377－8）For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$

$$
-\|\boldsymbol{u}\|\|\boldsymbol{v}\| \leq \boldsymbol{u} \cdot \boldsymbol{v} \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|
$$

Equality holds if and only if one of \boldsymbol{u} and \boldsymbol{v} is a scalar multiple of the other．
Proof．We may assume that $\boldsymbol{u} \neq \mathbf{0}$ is a non－zero vector in \mathbb{R}^{n} ．Then for any real number λ ，

$$
0 \leq\|\lambda \boldsymbol{u}+\boldsymbol{v}\|^{2}=(\lambda \boldsymbol{u}+\boldsymbol{v}) \cdot(\lambda \boldsymbol{u}+\boldsymbol{v})=\lambda^{2}\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v}) \lambda+\|\boldsymbol{v}\|^{2} .
$$

It follows from a property of quadratic equations（2 次方程式），（ $\boldsymbol{u} \cdot \boldsymbol{v})^{2}-\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2} \leq 0$ ． Since $\|\boldsymbol{u}\| \geq 0$ and $\|\boldsymbol{v}\| \geq 0,|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|\boldsymbol{u}\|\|\boldsymbol{v}\|$ and the inequalities hold．

Definition 3．3 Suppose $\boldsymbol{u} \neq \mathbf{0}$ and $\boldsymbol{v} \neq \mathbf{0}$ ．Then the angle between \boldsymbol{u} and \boldsymbol{v} are a real number θ such that $0 \leq \theta \leq \pi$ satisfying

$$
\cos \theta=\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\|\|\boldsymbol{v}\|} .
$$

Definition 3．4 Let $\boldsymbol{u}=\left[u_{1}, u_{2}, u_{3}\right]^{\top}, \boldsymbol{v}=\left[v_{1}, v_{2}, v_{3}\right]^{\top}$ be vectors in \mathbb{R}^{3} ．Then the vector product（or exterior product ベクトル積，外積）of \boldsymbol{u} and \boldsymbol{v} is：

$$
\begin{aligned}
\boldsymbol{u} \times \boldsymbol{v} & =\left[u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right]^{\top} \\
& =\left[\left|\begin{array}{ll}
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right|,\left|\begin{array}{ll}
u_{3} & v_{3} \\
u_{1} & v_{1}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right|\right]^{\top}, \text { where }\left|\begin{array}{cc}
a & c \\
b & d
\end{array}\right|=a d-b c .
\end{aligned}
$$

The following hold： $\boldsymbol{u} \times \boldsymbol{v}=-\boldsymbol{v} \times \boldsymbol{u}, \boldsymbol{u} \cdot(\boldsymbol{u} \times \boldsymbol{v})=\boldsymbol{v} \cdot(\boldsymbol{u} \times \boldsymbol{v})=0$ ．

3.2 Exercises

1. For (i) and (ii), compute each of (a) - (e) below.
(a) $\boldsymbol{u} \cdot \boldsymbol{v}$
(b) $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})$
(c) $\|\boldsymbol{u}\|,\|\boldsymbol{v}\|,\|\boldsymbol{w}\|$
(d) angle between \boldsymbol{v} and \boldsymbol{w}
(e) a nonzero \boldsymbol{x} such that $\boldsymbol{x} \cdot \boldsymbol{u}=\boldsymbol{x} \cdot \boldsymbol{v}=\boldsymbol{x} \cdot \boldsymbol{w}=0$
(i) $\boldsymbol{u}=[3,1,11]^{\top}, \boldsymbol{v}=[1,1,-1]^{\top}$, and $\boldsymbol{w}=[2,1,5]^{\top}$.
(ii) $\boldsymbol{u}=[1,1,1,1]^{\top}, \boldsymbol{v}=[1,1,-1,-1]^{\top}$, and $\boldsymbol{w}=[1,-1,1,-1]^{\top}$.
2. For all vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$, show the following.
(a) $\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+2(\boldsymbol{u} \cdot \boldsymbol{v})+\|\boldsymbol{v}\|^{2}$.
(b) (The Triangular Inequlity) $\|\boldsymbol{u}+\boldsymbol{v}\| \leq\|\boldsymbol{u}\|+\|\boldsymbol{v}\|$.
(c) $\|\boldsymbol{u}+\boldsymbol{v}\|=\|\boldsymbol{u}\|+\|\boldsymbol{v}\|$ if and only if one of the vectors is a positive scalar multiple of the other.
(d) (Pythagoras' Theorem) $\|\boldsymbol{u}+\boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}+\|\boldsymbol{v}\|^{2}$ if and only if \boldsymbol{u} and \boldsymbol{v} are orthogonal.
3. Let $\boldsymbol{u}=[3,2,-1]^{\top}, \boldsymbol{v}=[0,2,-3]^{\top}$, and $\boldsymbol{w}=[2,6,7]^{\top}$. Compute
(a) $\boldsymbol{v} \times \boldsymbol{w}$
(b) $\boldsymbol{u} \times(\boldsymbol{v} \times \boldsymbol{w})$
(c) $(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w}$
(d) $(\boldsymbol{u} \times \boldsymbol{v}) \times(\boldsymbol{v} \times \boldsymbol{w})$
(e) $\boldsymbol{u} \times(\boldsymbol{v}-2 \boldsymbol{w})$
(f) $(\boldsymbol{u} \times \boldsymbol{v})-2 \boldsymbol{w}$
4. Let $\boldsymbol{u}=\left[u_{1}, u_{2}, u_{3}\right]^{\top}, \boldsymbol{v}=\left[v_{1}, v_{2}, v_{3}\right]^{\top}$ be vectors in \mathbb{R}^{3}. Show
(a) $\boldsymbol{u} \times \boldsymbol{v}=-\boldsymbol{v} \times \boldsymbol{u}$.
(b) $\boldsymbol{u} \cdot(\boldsymbol{u} \times \boldsymbol{v})=\boldsymbol{v} \cdot(\boldsymbol{u} \times \boldsymbol{v})=0$.
5. Find a vector that is orthogonal to both \boldsymbol{u} and \boldsymbol{v}.
(a) $\boldsymbol{u}=[-6,4,2]^{\top}, \boldsymbol{v}=[3,1,5]^{\top}$
(b) $\boldsymbol{u}=[-2,1,5]^{\top}, \boldsymbol{v}=[3,0,-3]^{\top}$
6. Find the scalar triple product $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})$.
(a) $\boldsymbol{u}=[-1,2,4]^{\top}, \boldsymbol{v}=[3,4,-2]^{\top}, \boldsymbol{w}=[-1,2,5]^{\top}$.
(b) $\boldsymbol{u}=[3,-1,6]^{\top}, \boldsymbol{v}=[2,4,3]^{\top}, \boldsymbol{w}=[5,-1,2]^{\top}$.
7. Suppose that $\boldsymbol{u} \cdot(\boldsymbol{v} \times \boldsymbol{w})=3$. Find
(a) $\boldsymbol{u} \cdot(\boldsymbol{w} \times \boldsymbol{v})$
(b) $(\boldsymbol{v} \times \boldsymbol{w}) \cdot \boldsymbol{u}$
(c) $\boldsymbol{w} \cdot(\boldsymbol{u} \times \boldsymbol{v})$
(d) $\boldsymbol{v} \cdot(\boldsymbol{u} \times \boldsymbol{w})$
(e) $(\boldsymbol{u} \times \boldsymbol{w}) \cdot \boldsymbol{v}$
(f) $\boldsymbol{v} \cdot(\boldsymbol{w} \times \boldsymbol{w})$
8. Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ be vectors in \mathbb{R}^{3}. Show the following.
(a) $\|\boldsymbol{u} \times \boldsymbol{v}\|^{2}=\|\boldsymbol{u}\|^{2}\|\boldsymbol{v}\|^{2}-(\boldsymbol{u} \cdot \boldsymbol{v})^{2}$.
(b) $\boldsymbol{u} \times(\boldsymbol{v} \times \boldsymbol{w})=(\boldsymbol{u} \cdot \boldsymbol{w}) \boldsymbol{v}-(\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{w}$, and $(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w}=(\boldsymbol{u} \cdot \boldsymbol{w}) \boldsymbol{v}-(\boldsymbol{v} \cdot \boldsymbol{w}) \boldsymbol{u}$.

First try Exercises 1 (i), (ii) and 3 (a), (b).

3．3 Related Problems in Final Exams

Final 2012 1（b）Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$ ，where $\boldsymbol{v}_{1}=[3,2,-3]^{\top}$ and $\boldsymbol{v}_{2}=[1,2,1]^{\top}$ ．

$$
\left[\text { Soln. } \boldsymbol{v}_{1} \times \boldsymbol{v}_{2}=[8,-6,4]^{\top}\right]
$$

Final 2013 1（c）Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$ ，where $\boldsymbol{v}_{1}=[3,1,-2]^{\top}$ and $\boldsymbol{v}_{2}=[1,2,4]^{\top}$ ．
$\left[\right.$ Soln． $\left.\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}=[8,-14,5]^{\top}\right]$
Final 20141 Let $\boldsymbol{u}=[2,1,-3]^{\top}, \boldsymbol{v}=[0,1,2]^{\top}, \boldsymbol{w}=[1,3,1]^{\top}$ ．
（a）Find $\boldsymbol{u} \times \boldsymbol{v}$ ．
$\left[\right.$ Soln．$\left.[5,-4,2]^{\top}\right]$
（b）Find $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$ ．Note that $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$ is the volume of a parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ ．
［Soln．－5．］
Final 20151 Let $\boldsymbol{u}=[1,4,9]^{\top}, \boldsymbol{v}=[1,8,27]^{\top}, \boldsymbol{w}=[1,2,3]^{\top}$ ．
（a）Find $\boldsymbol{u} \times \boldsymbol{v}$ ．
$\left[\right.$ Soln．$\left.[36,-18,4]^{\top}\right]$
（b）Find $(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}$ ．Note that $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$ is the volume of a parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ ．
［Soln．12．］
Final 2010 1（a）Let u, v, w be as follows．

$$
\boldsymbol{u}=[4,-8,1]^{t} o p, \boldsymbol{v}=[2,1,-2]^{\top}, \boldsymbol{w}=[3,-4,12]^{\top} .
$$

The vector $\boldsymbol{p}=\operatorname{proj} \boldsymbol{v} \boldsymbol{u}$ is a scalar multiple of \boldsymbol{v} such that $\boldsymbol{u}-\boldsymbol{p}$ is orthogonal to \boldsymbol{v} ． Find \boldsymbol{p} ．
$\left[\right.$ Soln．$\left.[-4 / 9,-2 / 9,4 / 9]^{\top}\right]$
Proposition．Let $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} be vectors in \mathbb{R}^{3} ．Then $\|\boldsymbol{u} \times \boldsymbol{v}\|$ is the area of the parallelogram（平行四辺形）determined by \boldsymbol{u} and \boldsymbol{v} and $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$ is the volume of the parallelepiped（平行六面体）determined by $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} ．

