2 Solution Sets of Linear Equations

We look at a system of linear equations in two different ways，i．e．，a vector equation and a matrix equation．

2．1 Vector Equations

Vectors：Recall that if m and n are positive integers（正の整数），an $m \times n$ matrix （行列）is a rectangular array（長方形に並んだ）of numbers with m rows（行）and n columns（列）。An $n \times 1$ matrix is often called an n－dimensional column vector（ n－次元列ベクトル），and a $1 \times n$ matrix an n－dimensional row vector（ n－次元行ベクトル）。 The collection of all n－dimensional column（or row）vectors is denoted by \mathbb{R}^{n} ．

Scalar Multiple and Sum of Vectors：For $c \in \mathbb{R}$（ c を実数とし）and

$$
\boldsymbol{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \boldsymbol{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] \in \mathbb{R}^{n}, c \boldsymbol{u}=c\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
c u_{1} \\
c u_{2} \\
\vdots \\
c u_{n}
\end{array}\right], \boldsymbol{u}+\boldsymbol{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right]
$$

Example 2.1

$$
\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-2
\end{array}\right]+3\left[\begin{array}{c}
0 \\
0 \\
1 \\
-2
\end{array}\right]+(-2)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-4
\end{array}\right]
$$

Example 2.2

$$
\begin{aligned}
& \left\{\begin{array}{clc}
x_{1}+0 x_{2}+x_{3}+0 x_{4}+x_{5}+3 x_{6} & = & -1 \\
-x_{1}+0 x_{2}-x_{3}+0 x_{4}+0 x_{5}-4 x_{6} & = & -1 \\
0 x_{1}+x_{2}-2 x_{3}+3 x_{4}+0 x_{5}-x_{6} & = & 3 \\
-2 x_{1}-2 x_{2}+2 x_{3}-6 x_{4}-2 x_{5}-4 x_{6} & = & -4
\end{array} \quad\left[\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 1 & 3 & -1 \\
-1 & 0 & -1 & 0 & 0 & -4 & -1 \\
0 & 1 & -2 & 3 & 0 & -1 & 3 \\
-2 & -2 & 2 & -6 & -2 & -4 & -4
\end{array}\right]\right. \\
& {\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-2
\end{array}\right]+3\left[\begin{array}{c}
0 \\
0 \\
1 \\
-2
\end{array}\right]+0\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
2
\end{array}\right]+0\left[\begin{array}{c}
0 \\
0 \\
3 \\
-6
\end{array}\right]+(-2)\left[\begin{array}{c}
1 \\
0 \\
0 \\
-2
\end{array}\right]+0\left[\begin{array}{c}
3 \\
-4 \\
-1 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-4
\end{array}\right]=\boldsymbol{b}} \\
& x_{1}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-2
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
0 \\
1 \\
-2
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
2
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
0 \\
3 \\
-6
\end{array}\right]+x_{5}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-2
\end{array}\right]+x_{6}\left[\begin{array}{c}
3 \\
-4 \\
-1 \\
-4
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}+0 x_{2}+x_{3}+0 x_{4}+x_{5}+3 x_{6} \\
-x_{1}+0 x_{2}-x_{3}+0 x_{4}+0 x_{5}-4 x_{6} \\
0 x_{1}+x_{2}-2 x_{3}+3 x_{4}+0 x_{5}-x_{6} \\
-2 x_{1}-2 x_{2}+2 x_{3}-6 x_{4}-2 x_{5}-4 x_{6}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
3 \\
-4
\end{array}\right] .
\end{aligned}
$$

Let
$\boldsymbol{a}_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0 \\ -2\end{array}\right], \boldsymbol{a}_{2}=\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -2\end{array}\right], \boldsymbol{a}_{3}=\left[\begin{array}{c}1 \\ -1 \\ -2 \\ 2\end{array}\right], \boldsymbol{a}_{4}=\left[\begin{array}{c}0 \\ 0 \\ 3 \\ -6\end{array}\right], \boldsymbol{a}_{5}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -2\end{array}\right], \boldsymbol{a}_{6}=\left[\begin{array}{c}3 \\ -4 \\ -1 \\ -4\end{array}\right]$.
Then

$$
\boldsymbol{a}_{1}+3 \boldsymbol{a}_{2}+0 \boldsymbol{a}_{3}+0 \boldsymbol{a}_{4}+(-2) \boldsymbol{a}_{5}+0 \boldsymbol{a}_{6}=\boldsymbol{b}
$$

Hence $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(1,3,0,0,-2,0)$ is a solution to a vector equation

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3}+x_{4} \boldsymbol{a}_{4}+x_{5} \boldsymbol{a}_{5}+x_{6} \boldsymbol{a}_{6}=\boldsymbol{b} .
$$

Please check algebraic properties of \mathbb{R}^{n} in page 43.

Algebraic Properties of $\mathbb{R}^{n} \quad\left[\right.$ page 43］For all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ and all scalars c and d ：
（i） $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$ ．
（ii）$(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$ ．
（iii） $\boldsymbol{u}+\mathbf{0}=\mathbf{0}+\boldsymbol{u}=\boldsymbol{u}$ ．
（iv） $\boldsymbol{u}+(-\boldsymbol{u})=(-\boldsymbol{u})+\boldsymbol{u}=\mathbf{0}$ ，where $-\boldsymbol{u}$ denotes $(-1) \boldsymbol{u}$ ．
（v）$c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$ ．
$(\mathrm{vi})(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{v}$ ．
$($ vii）$c(d \boldsymbol{u})=(c d) \boldsymbol{v}$.
（viii） $1 \boldsymbol{u}=\boldsymbol{u}$ ．
Definition 2.1 ［page 44］Given vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ in \mathbb{R}^{m} ，and given scalars $c_{1}, c_{2}, \ldots, c_{n}$ ， the vector \boldsymbol{y} defined by

$$
\boldsymbol{y}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}
$$

is called a linear combination（一次（線形）結合）of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ with weights $c_{1}, c_{2}, \ldots, c_{n}$ ．
Consider

$$
\left\{\begin{array}{rlr}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\cdots \cdots \cdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{array}\right.
$$

Let

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right], \boldsymbol{a}_{1}=\left[\begin{array}{c}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{m, 1}
\end{array}\right], \ldots, \boldsymbol{a}_{n}=\left[\begin{array}{c}
a_{1, n} \\
a_{2, n} \\
\vdots \\
a_{m, n}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n} \\
& =x_{1}\left[\begin{array}{c}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{m, 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{1,2} \\
a_{2,2} \\
\vdots \\
a_{m, 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1, n} \\
a_{2, n} \\
\vdots \\
a_{m, n}
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right]
\end{aligned}
$$

Definition 2.2 [page 46] If $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}$ are in \mathbb{R}^{n}, the set of all linear combinations of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}$ is denoted by $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$. That is, $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{p} \boldsymbol{v}_{p}
$$

with $c_{1}, c_{2}, \ldots, c_{p}$ scalars.
Proposition 2.1 (page 46) A vector equation

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\boldsymbol{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}, \boldsymbol{b}\right]
$$

The system is consistent if and only if the vector \boldsymbol{b} is a linear combination of vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$, if and only if \boldsymbol{b} is in $\operatorname{Span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\}$.

2.2 Matrix Equation $A \boldsymbol{x}=\boldsymbol{b}$

Definition 2.3 [page 51] If A is an $m \times n$ matrix with columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$, and if $\boldsymbol{x} \in \mathbb{R}^{n}$, then the product of A and \boldsymbol{x}, denoted by $A \boldsymbol{x}$ is the linear combination of the columns of A using the corresponding entries in \boldsymbol{x} as weights, that is

$$
A \boldsymbol{x}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}
$$

Proposition 2.2 (Theorem 5 in page 55) If A is an $m \times n$ matrix, $\boldsymbol{u}, \boldsymbol{v}$ are vectors in \mathbb{R}^{n}, and c is a scalar, then:
(a) $A(\boldsymbol{u}+\boldsymbol{v})=A \boldsymbol{v}+A \boldsymbol{v}$.
(b) $A(c \boldsymbol{u})=c A \boldsymbol{u}$.

Row－Vector Rule for Computing $A \boldsymbol{x}$（page 54）If the product $A \boldsymbol{x}$ is defined，then the i th entry in $A \boldsymbol{x}$ is the sume of the products of corresponding entries from row i of A and from the vector \boldsymbol{x} ．

Proposition 2.3 （Theorem 3 in page 52）If A is an $m \times n$ matrix，with columns $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ ，and if $\boldsymbol{v} \in \mathbb{R}^{m}$ ，the matrix equation

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

has the same solution set as the vector equation

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+\cdots+x_{n} \boldsymbol{a}_{n}=\boldsymbol{b}
$$

which in tern，has the same solution set as the system of linear equations whose augmented matrix is

$$
\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}, \boldsymbol{b}\right]
$$

Theorem 2.4 （Theorem 4 in page 53）Let A be an $m \times n$ matrix．Then the following statements are logically equivalent．That is，for a particular A ，either they are all true statements or they are all false．
（a）For each \boldsymbol{b} in \mathbb{R}^{m} ，the equation $A \boldsymbol{x}=\boldsymbol{b}$ has a solution．
（b）Each \boldsymbol{b} in \mathbb{R}^{m} is a linear combination of the columns of A ．
（c）The columns of A span \mathbb{R}^{m} ．
（d）A has a pivot position in every row．

2．3 Solution Sets of Linear System

Homogeneous Linear System（page 59）A linear system is said to be homogeneous （斉次）if it can be written in the form $A \boldsymbol{x}=\mathbf{0}$ ．Such a system always has at least one solution，namely $\boldsymbol{x}=\mathbf{0}$ ．The zero solution is usually called the trivial solution（自明な解），and a nonzero solution is called a nontrivial solution（非自明な解）。

Proposition 2.5 （page 60）The homogeneous equation $A \boldsymbol{x}=\mathbf{0}$ has a nontrivial solu－ tion if and only if the equation has at least one free variable．

Theorem 2．6 A homogeneous system of linear equations with more unknowns than equa－ tions has infinitely many solutions．In particular，if A is an $m \times n$ matrix with $m<n$ ， then a matrix equation $A \boldsymbol{x}=\mathbf{0}$ has a nonzero solution．

Theorem 2.7 （Theorem 6 in page 63）Suppose the equation $A \boldsymbol{x}=\boldsymbol{b}$ is consistent for some given \boldsymbol{b} ，and let \boldsymbol{p} be a solution．Then the solution set of $A \boldsymbol{x}=\boldsymbol{b}$ is the set of all vectors of the form $\boldsymbol{w}=\boldsymbol{p}+\boldsymbol{v}_{h}$ ，where \boldsymbol{v}_{h} is any solution of the homogeneous equation $A \boldsymbol{x}=\mathbf{0}$ ．

