Linear Algebra I Review

Final 2002-2: Consider a system of linear equations with augmented matrix C.

$$
C=\left[\begin{array}{ccccccc}
1 & 0 & 6 & 0 & 0 & 3 & 7 \\
0 & 1 & 2 & -3 & 0 & 1 & 3 \\
0 & 2 & 4 & -6 & 2 & 4 & 2 \\
0 & 0 & 0 & 1 & 0 & -1 & -1
\end{array}\right], \quad G=\left[\begin{array}{ccccccc}
1 & 0 & 6 & 0 & 0 & 3 & 7 \\
0 & 1 & 2 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & -2
\end{array}\right] .
$$

Let $E(i ; c), E(i, j)$, and $E(i, j ; c)$ be elementary matrices of size 4 corresponding to elementary operations $[i ; c],[i, j]$ and $[i, j ; c]$.

1. We obtained the reduced echelon form G after applying a sequence of elementary row operations to the matrix C. Describe each step of a sequence of elementary row operations.
2. Find all solutions of the system of linear equations.
3. Find an invertible matrix P of size 4 such that $G=P C$ and express P as a product of elementary matrices.
4. Show that there is only one P satisfying the previous problem.
5. Find P^{-1} and express P^{-1} as a product of elementary matrices.
6. Find four columns of C that are linearly dependent (resp. independent).

Final 2002-5: Let H be the coefficient matrix of the system of linear equations given below.

$$
\left\{\begin{array}{c}
x+y+\lambda z=a \\
\lambda x+y+z=b \\
x+\lambda y+z=c
\end{array}, \quad H=\left[\begin{array}{ccc}
1 & 1 & \lambda \\
\lambda & 1 & 1 \\
1 & \lambda & 1
\end{array}\right] .\right.
$$

1. Find the condition for λ and a, b, c that the system of linear equations above has infinitely many solutions.
2. Find the condition of λ to satisfy when H is invertible. Find H^{-1} for such λ.

Quiz 2007-6-1: Consider the equation $A \boldsymbol{x}=\boldsymbol{b}$, where $A, \boldsymbol{x}, \boldsymbol{b}$ are as follows.

$$
A=\left[\begin{array}{cccc}
2 & -2 & -4 & 0 \\
-3 & 5 & 4 & 5 \\
4 & 2 & -5 & 3 \\
5 & -7 & -3 & 0
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
3 \\
-2 \\
1 \\
0
\end{array}\right] .
$$

1. Evaluate $\operatorname{det}(A)$, and determine whether there is no solution, exactly one solution or infinitely many solutions.
2. By Cramer's rule express $x_{3}=\frac{\operatorname{det}(B)}{\operatorname{det}(A)}$ as a fraction of two determinants. Write down the matrix B in the numerator.
3. Evaluate $\operatorname{det}(B)$ in the previous problem and find x_{3}.

Special Determinant:

$$
\left|\begin{array}{cccccc}
\lambda & 0 & 0 & \cdots & 0 & c_{0} \\
-1 & \lambda & 0 & \cdots & 0 & c_{1} \\
0 & -1 & \lambda & \cdots & 0 & c_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & \lambda+c_{n-1}
\end{array}\right|=c_{0}+c_{1} \lambda+\cdots+c_{n-1} \lambda^{n-1}+\lambda^{n} .
$$

Review Special Determinants Discussed at a Lecture:

$$
\left|\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
b & b & a & \cdots & b \\
& \cdots & \cdots & \cdots & \\
b & b & b & \cdots & a
\end{array}\right|=(a+(n-1) b)(a-b)^{n-1},\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
& & \cdots & \cdots & \cdots \\
\\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right|=\prod_{i>j}\left(x_{i}-x_{j}\right) .
$$

Cf. Quiz 2010-6-1, 2: Let $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ be as follows.

$$
\boldsymbol{u}=[5,-2,1]^{\top}, \boldsymbol{v}=[4,-1,1]^{\top}, \boldsymbol{w}=[1,-1,0]^{\top} .
$$

1. Let θ be the angle between \boldsymbol{u} and \boldsymbol{v}. Find both $\cos \theta$ and $\sin \theta$.
2. Compute $\boldsymbol{u} \times \boldsymbol{v}$ and find a vector of length 1 that is a positive scalar multiple of $\boldsymbol{u} \times \boldsymbol{v}$.
3. Find the volume of the parallelopiped (heiko- 6 -mentai) in 3 -space determined by the vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$.
4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}(\boldsymbol{x} \mapsto \boldsymbol{u} \times \boldsymbol{x})$. Then T is a linear transformation. Find the standard matrix of T.
5. Let $U: \mathbb{R}^{3} \rightarrow \mathbb{R}(\boldsymbol{x} \mapsto \boldsymbol{u} \cdot \boldsymbol{x})$. Then U is a linear transformation. Find the standard matrix of U.

Linear Reflection: For $\boldsymbol{u}=\left[u_{1}, u_{2}, u_{3}, u_{4}\right]^{\top}$ be a nonzero vector in \mathbb{R}^{4}, Let

$$
\tau \boldsymbol{u}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}\left(\boldsymbol{x} \mapsto \boldsymbol{x}-\frac{2 \boldsymbol{x} \cdot \boldsymbol{u}}{\|\boldsymbol{u}\|^{2}} \boldsymbol{u}\right)
$$

1. Show that $\tau \boldsymbol{u}$ is a linear transformation.
2. Let $\boldsymbol{v}=[1,-1,0,0]^{\top}$. Find the standard matrix of $\tau \boldsymbol{v}$.

Diagonalization: Let A be given below.

$$
A=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

1. Find the characteristic polynomial and the eigenvalues of A.
2. Find A^{100} and A^{25}.
3. Find an invertible matrix P and its inverse P^{-1} such that $P^{-1} A P$ is a diagonal matrix.

To be discussed on November 9, 2017.
Visit ICU OCW (http://ocw.icu.ac.jp/majors/mth103_2012a/), and check Lecture 10 video (After $56^{\prime} 00^{\prime \prime}$), and Lecture 11 video. There is a link from Moodle.) For references, see 'Linear Algebra and Its Applications, Fifth Edition' by David C. Lay

