1 System of Linear Equations

Matrices

Definition 1.1 A matrix (or an $m \times n$ matrix (行列)) is an $m \times n$ rectangular array of numbers. A matrix with only one column is called a *column vector* or simply a *vector* in \mathbb{R}^m .

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & \cdots & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Linear Systems and Augmented Matrices

Definition 1.2 A finite set of linear equations in the variables x_1, x_2, \ldots, x_n is called a *system of linear equations* (連立一次(線形) 方程式) or a *linear system*.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

where x_1, x_2, \ldots, x_n are the unknowns (未知数).

A solution (解) of the system is a list (s_1, s_2, \ldots, s_n) of numbers that makes each equation a true statement when the values s_1, s_2, \ldots, s_n are substituted (代入する) for x_1, x_2, \ldots, x_n , respectively. The set of all solutions of the system is called its *solution set* or the *general solution* (一般解) of the system. Two linear systems are *equivalent* (同値) if they have the same solution set.

A system of equations that has no solutions is said to be *inconsistent* (解なし・不能); if there is at least one solution of the system, it is called *consistent* (解が存在する).

The *augmented matrix* (拡大係数行列) A or extended coefficient matrix, and the *coefficient matrix* (係数行列) C of this system are defined as follows.

A =	$a_{11} a_{21}$		••••	$a_{1n} a_{2n}$	b_1 b_2		a_{11} a_{21}	$\begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix}$		
	÷	\vdots a_{m2}		÷	$\vdots \\ b_m$			a_{m2}	••••	

Fundamental Questions About a Linear System

- 1. Is the system consistent? Does at least one solution exist?
- 2. If a solution exists, is it the only one? Is the solution unique?
- 3. If more than one solution exist, what can we say about the solution set?

Elementary operations on equations:

- 1. (Replacement) Replace one equation by the sum of itself and a multiple of another.
- 2. (Interchange) Interchange two equations.
- 3. (Scaling) Multiply an equation through by a nonzero constant.

Elementary row operations:

- (Replacement) Replace one row by the sum of itself and a multiple of another.
 [i, j; c]: Replace row i by the sum of row i and c times row j.
 Add c times row j to row i.
- (Interchange) Interchange two rows.
 [i, j]: Interchange row i and row j.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.
 [i; c]: Multiply all entries in row i by a nonzero constant c.

Note. The notation above ([i, j; c], [i, j], [i; c]) is not in the textbook.

Two matrices are called *row equivalent* if there is a sequence of elementary row operations that transforms one matrix into the other. (page 22)

Proposition 1.1 (page 23) If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

A *leading entry* of a row refers to the leftmost nonzero entry (in a nonzero row).

Definition 1.3 An $m \times n$ matrix is in *echelon form* (or *row echelon form* (階段行列)) if it has the following properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

It is in *reduced row-echelon form*(既約ガウス行列) if it is in echelon form and it has the following properties:

- 4. The leading entry in each nonzero row is 1. We call this a *leading* 1.
- 5. Each leading 1 is the only nonzero entry in the column.

Theorem 1.2 (Theorem 1. (Gauss-Jordan Elimination, p.29)) Every matrix is row equivalent to one and only one reduced row echelon matrix. (i.e., it can be transformed into a reduced row-echelon form by applying elementary row operations successively finitely many times, and the reduced row-echelon form is uniquely determined).

Algorithm to Solve a Linear System

Step 1. Write the augmented matrix¹ of the system².

ſ	$x_1 + 0x_2 + x_3 + 0x_4 + x_5 + 3x_6$	=	-1	[1	0	1	0	1	3	-1]	
J	$-x_1 + 0x_2 - x_3 + 0x_4 + 0x_5 - 4x_6$	=	-1	-1	0	-1	0	0	-4	-1	
Ì	$0x_1 + x_2 - 2x_3 + 3x_4 + 0x_5 - x_6$	=	3	0	1	-2	3	0	-1	3	
l	$-2x_1 - 2x_2 + 2x_3 - 6x_4 - 2x_5 - 4x_6$	=	-4 [resp.4]	$\lfloor -2$	-2	2	-6	-2	-4	-4[4]	

A system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column – that is, if and only if an echelon form of the augmented matrix has no row of the form $[0, \dots, 0, b]$ with b nonzero. If a linear system is consistent, then the solution set contains either (i) a unique solution when there are no free variables, or (ii) infinitely many solutions, when there is at least one free variable. ³

Step 2. Use the row reduction algorithm⁴ to obtain an equivalent augmented matrix in echelon form⁵ by elementary operations $([i, j; c], [i, j], [i; c])^6$. Decide whether the system is consistent. If there is no solution, stop; otherwise go to the next step.

$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \stackrel{[4,1;2]}{\longrightarrow} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\stackrel{1]}{\rightarrow}$
$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \underbrace{ \stackrel{[2,3]}{\longrightarrow} }_{0 = 1} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \stackrel{[1,3;-1]}{\longrightarrow} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	

The system in [] is inconsistent as one of the rows of its echelon matrix is $[0\ 0\ 0\ 0\ 0\ 8]$.

Each matrix is row equivalent to one and only one reduced row echelon matrix.⁷ Step 3. Continue row reduction to obtain the reduced row echelon form.

Step 4. Write the system of equations corresponding to the matrix obtained in Step 3.

 $\begin{cases} x_1 + x_3 + 4x_6 = 1 \\ x_2 - 2x_3 + 3x_4 - x_6 = 3 \\ x_5 - x_6 = -2 \end{cases} \implies \begin{cases} x_1 = 1 - x_3 - 4x_6, \\ x_2 = 3 + 2x_3 - 3x_4 + x_6, \\ x_3 & \text{is free}, \\ x_4 & \text{is free}, \\ x_5 = -2 + x_6, \\ x_6 & \text{is free}. \end{cases}$

 1 page 20

 $^{^{2}}$ page 18

³Theorem 2 in page 37

 $^{^{4}}$ page 31–33

 $^{^{5}}$ page 29

⁶page 22, and class note

⁷Theorem 1 in page 29

Examples

ſ	x	_	3y	=	2	1	-3	2]	
J	x	+	$\frac{3y}{2y}$	=	12	1	$-3 \\ 2$	12	

$$\begin{cases} 3x + y + 2z = 4\\ x + y + z = 1\\ 11x - y + 5z = 17 \end{cases} \begin{bmatrix} 3 & 1 & 2 & 4\\ 1 & 1 & 1 & 1\\ 11 & -1 & 5 & 17 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 8 \\ 0 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{3}{2} \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$