Solutions to Take-Home Quiz 3

Let A, \boldsymbol{x} , \boldsymbol{b} , \boldsymbol{c} be as follows.

$$A = \begin{bmatrix} -2 & 1 & 4 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & -3 & 1 & -1 \\ 1 & 3 & -2 & 1 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}, \quad \text{and} \quad \boldsymbol{c} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}$$

- 1. Find a sequence of elementary row operations that transform $[A \mid I]$ to a reduced row echelon form. (Use [i; c], [i, j] and [i, j; c] notation.) (Show work!)
 - Sol. $[A \mid I]$

$\stackrel{[1,2]}{\rightarrow}$	$\begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ -2 & 1 & 4 & 0 & 1 & 0 & 0 & 0 \\ 0 & -3 & 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 3 & -2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$	$ \begin{bmatrix} 2,1;2 \\ \rightarrow \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & -3 & 1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 3 & -2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} $
$\stackrel{[4,1;-1]}{\rightarrow}$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\stackrel{[4,2;-3]}{\rightarrow}$	$\begin{bmatrix} 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -7 & 0 & 1 \end{bmatrix}$	$\stackrel{[1,3;2]}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 2 & 2 \\ 0 & 1 & 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 & -3 & -7 & 0 & 1 \end{bmatrix}$

2. Write A as a product of elementary matrices P(i;c), P(i,j), P(i,j;c). Sol. Since $A^{-1} = P(1,3;2)P(4,2;-3)P(3,4;1)P(4,1;-1)P(2,1;2)P(1,2)$,

$$A = P(1,2)^{-1}P(2,1;2)^{-1}P(4,1;-1)^{-1}P(3,4;1)^{-1}P(4,2;-3)^{-1}P(1,3;2)^{-1}$$

= $P(1,2)P(2,1;-2)P(4,1;1)P(3,4;-1)P(4,2;3)P(1,3;-2).$

Show that for a given b, Ax = b always has a unique solution.
Sol. Since A is invertible, A⁻¹ exists and if we set x = A⁻¹b, then

$$A\boldsymbol{x} = AA^{-1}\boldsymbol{b} = I\boldsymbol{b} = \boldsymbol{b}.$$

Hence $A^{-1}\boldsymbol{b}$ is a solution. Moreover, if $A\boldsymbol{x} = \boldsymbol{b}$, then $\boldsymbol{x} = A^{-1}A\boldsymbol{x} = A^{-1}\boldsymbol{b}$ and \boldsymbol{x} is uniquely determined. Thus $A\boldsymbol{x} = \boldsymbol{b}$ has a unique solution $A^{-1}\boldsymbol{b}$.

4. Find the solution \boldsymbol{x} of an equation $A\boldsymbol{x} = \boldsymbol{c}$. Sol. As above,

$$\boldsymbol{x} = A^{-1}\boldsymbol{c} = \begin{bmatrix} 0 & -1 & 2 & 2 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ -3 & -7 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ 4 \\ -3 \end{bmatrix}.$$