Take－Home Quiz 3
（Due at 7：00 p．m．on Fri．October 1，2010）
Division：
ID\＃：
Name：
Let $A, \boldsymbol{x}, \boldsymbol{b}, \boldsymbol{c}$ be as follows．

$$
A=\left[\begin{array}{cccc}
-2 & 1 & 4 & 0 \\
1 & 0 & -2 & 0 \\
0 & -3 & 1 & -1 \\
1 & 3 & -2 & 1
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right], \quad \text { and } \quad \boldsymbol{c}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
3
\end{array}\right] .
$$

1．Find a sequence of elementary row operations that transform $[A \mid I]$ to a reduced row echelon form．（Use $[i ; c],[i, j]$ and $[i, j ; c]$ notation．）（Show work！）

2．Write A as a product of elementary matrices $P(i ; c), P(i, j), P(i, j ; c)$ ．

3．Show that for a given $\boldsymbol{b}, A \boldsymbol{x}=\boldsymbol{b}$ always has a unique solution．

4．Find the solution \boldsymbol{x} of an equation $A \boldsymbol{x}=\boldsymbol{c}$ ．

Message 欄：将来の夢，目標， 25 年後の自分について，世界について。［HP 掲載不可 は明記のこと］

