Solutions to Take-Home Quiz 1 (September 10, 2010)

$\left\{\begin{array}{rl}-2 x_{1}+2 x_{2}+5 x_{3}+4 x_{4}-9 x_{5}-10 x_{6} & =-13 \\ -x_{1}+x_{2}+3 x_{3}+3 x_{4}-8 x_{5}-7 x_{6} & = \\ -6 \\ 2 x_{1}-2 x_{2}-4 x_{3}-x_{4}-3 x_{5}+4 x_{6} & = \\ x_{1}-x_{2}-2 x_{3}-x_{4}+x_{5}+3 x_{6} & = \\ \hline\end{array} \quad 7 \quad B=\left[\begin{array}{rrrrrrr}1 & -1 & -2 & -1 & 1 & 3 & 7 \\ 0 & 0 & 1 & 2 & -7 & -4 & 1 \\ 2 & -2 & -4 & -1 & -3 & 4 & 14 \\ -2 & 2 & 5 & 4 & -9 & -10 & -13\end{array}\right]\right.$

1. Find the augmented matrix A of the system of linear equations above.

Sol.

$$
A=\left[\begin{array}{rrrrrrr}
-2 & 2 & 5 & 4 & -9 & -10 & -13 \\
-1 & 1 & 3 & 3 & -8 & -7 & -6 \\
2 & -2 & -4 & -1 & -3 & 4 & 14 \\
1 & -1 & -2 & -1 & 1 & 3 & 7
\end{array}\right]
$$

2. The matrix B is obtained by applying elementary row operations twice to the augmented matrix A. Write the elementary row operation using the notation $[i ; c],[i, j]$, or $[i, j ; c]$.
Sol. First apply $[1,4]$ and then $[2,1 ; 1]$.
3. Find the reduced row echelon form of the augmented matrix A. (Solution only.)

Sol. Apply the following consecutively in this order:

$$
[3,1 ;-2],[4,1 ; 2],[4,2 ;-1],[2,3 ;-2],[1,3 ; 1],[1,2 ; 2] .
$$

Then we have

$$
\left[\begin{array}{rrrrrrr}
1 & -1 & 0 & 0 & 2 & 1 & 9 \\
0 & 0 & 1 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & -5 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

- There are many ways to obtain the reduced echelon form but the final matrix should be the same. When can we change the order of operations and when cannot?
- Starting from the reduced row echelon form above, is it possible to obtain the matrix A back again by applying elementary row operations? Can you find the sequence of such elementary row operations from the one we obtained the reduced echelon form from A with a slight modification?

4. Find the solution of the system of linear equations. Use parameters if necessary.

Sol.

$$
\left\{\begin{array}{l}
x_{1}=9+s-2 t-u \\
x_{2}=s \\
x_{3}=1-3 t \\
x_{4}=5 t+2 u \\
x_{5}=t \\
x_{6}=u
\end{array} \quad, \text { or }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{l}
9 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
-3 \\
5 \\
1 \\
0
\end{array}\right]+u\left[\begin{array}{c}
-1 \\
0 \\
0 \\
2 \\
0 \\
1
\end{array}\right] .\right.
$$

s, t and u are parameters.

