Take－Home Quiz 1 （Due at 7：00 p．m．on Fri．September 14，2007）
Division：
ID\＃：
Name：

Let us consider the following system of linear equations in 6 unknowns $x_{1}, x_{2}, \ldots, x_{6}$ ．

$$
\left\{\begin{array}{clc}
x_{1}+x_{3}-x_{4}+4 x_{5} & = & -3 \\
2 x_{1}+2 x_{3}-x_{4}+6 x_{5} & = & 1 \\
x_{1}+x_{3}+2 x_{5}-x_{6} & = & 5 \\
-x_{1}-2 x_{2}-7 x_{3}-4 x_{5}+x_{6} & = & -7
\end{array} \quad B=\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & -1 & 4 & 0 & -3 \\
2 & 0 & 2 & -1 & 6 & 0 & 1 \\
0 & -2 & -6 & 0 & -2 & 0 & -2 \\
-1 & -2 & -7 & 0 & -4 & 1 & -7
\end{array}\right]\right.
$$

1．Find the augmented matrix A of the system of linear equations above．

2．The matrix B is obtained by applying an elementary row operation once to the augmented matrix A ．Write the elementary row operation using the notation $[i ; c]$ ， $[i, j]$ ，or $[i, j ; c]$ ．

3．Find the reduced row echelon form of the augmented matrix A ．（Solution only．）

4．Find the solution of the system of linear equations．Use parameters if necessary．

Message：（1）この授業に期待すること（2）あなたにとって数学とは［HP 掲載不可のとき は明記のこと］

Solutions to take-Home Quiz 1 (September 14, 2007)

$$
\left\{\begin{array}{clc}
x_{1}+x_{3}-x_{4}+4 x_{5} & = & -3 \\
2 x_{1}+2 x_{3}-x_{4}+6 x_{5} & = & 1 \\
x_{1}+x_{3}+2 x_{5}-x_{6} & = & 5 \\
-x_{1}-2 x_{2}-7 x_{3}-4 x_{5}+x_{6} & = & -7
\end{array} \quad B=\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & -1 & 4 & 0 & -3 \\
2 & 0 & 2 & -1 & 6 & 0 & 1 \\
0 & -2 & -6 & 0 & -2 & 0 & -2 \\
-1 & -2 & -7 & 0 & -4 & 1 & -7
\end{array}\right]\right.
$$

1. Find the augmented matrix A of the system of linear equations above.

Sol.

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & -1 & 4 & 0 & -3 \\
2 & 0 & 2 & -1 & 6 & 0 & 1 \\
1 & 0 & 1 & 0 & 2 & -1 & 5 \\
-1 & -2 & -7 & 0 & -4 & 1 & -7
\end{array}\right]
$$

2. The matrix B is obtained by applying an elementary row operation once to the augmented matrix A. Write the elementary row operation using the notation $[i ; c]$, $[i, j]$, or $[i, j ; c]$.
Sol. $[3,4 ; 1]$.
3. Find the reduced row echelon form of the augmented matrix A. (Solution only.)

Sol. Apply the following consecutively in this order:

$$
[2,1 ;-2],[4,1 ; 1],[2,3],\left[2,-\frac{1}{2}\right],[4,2 ; 2],[4,3 ; 1],[1,3 ; 1] .
$$

Then we have

$$
\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & 0 & 2 & 0 & 4 \\
0 & 1 & 3 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] .
$$

- There are many ways to obtain the reduced echelon form but the final matrix should be the same. When can we change the order of operations and when cannot?
- Starting from the reduced row echelon form above, is it possible to obtain the matrix A back again by applying elementary row operations? Can you find the sequence of such elementary row operations from the one we obtained the reduced echelon form from A with a slight modification?

4. Find the solution of the system of linear equations. Use parameters if necessary.

Sol.

$$
\left\{\begin{array}{l}
x_{1}=4-s-2 t \\
x_{2}=1-3 s-t \\
x_{3}=s \\
x_{4}=7+2 t \\
x_{5}=t \\
x_{6}=-1
\end{array} \quad, \text { or }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
4 \\
1 \\
0 \\
7 \\
0 \\
-1
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
2 \\
1 \\
0
\end{array}\right] .\right.
$$

s and t are parameters.

Take－Home Quiz 2
Division：ID\＃：Name：
Let $A=\left[a_{h, i}\right]$ be an $r \times s$ matrix，$B=\left[b_{j, k}\right]$ an $s \times t$ matrix，$C=\left[c_{l, m}\right]$ a $t \times u$ matrix and let L and T be matrices given below．

$$
L=\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right], \quad \text { and } \quad T=\left[\begin{array}{ccc}
1 & 1 & 1 \\
6 & -3 & 1 \\
8 & 2 & -2
\end{array}\right] .
$$

1．What is the size of the matrix $(A B) C$ ．

2．Write the (h, k)－entry of $A B$ ．
$(A B)_{h, k}=$

3．Write the (h, m)－entry of $(A B) C$ ．

$$
((A B) C)_{h, m}=
$$

4．Compute the product $L T$ ．（Show work！）

5．Find a 3×3 matrix D such that $L T=T D$ ．（Solution only．）

Solutions to take-Home Quiz 2 (September 21, 2007)

1. What is the size of the matrix $(A B) C$.

Sol. The matrix $A B$ is of size $r \times t$ and C is of size $t \times u$. Hence the matrix $(A B) C$ is of size

$$
r \times u
$$

2. Write the (h, k)-entry of $A B$.

Sol.

$$
\begin{aligned}
(A B)_{h, k} & =A_{h, 1} B_{1, k}+A_{h, 2} B_{2, k}+\cdots+A_{h, s} B_{s, k} \\
& =a_{h, 1} b_{1, k}+a_{h, 2} b_{2, k}+\cdots+a_{h, s} b_{s, k} \\
& =\sum_{i=1}^{s} a_{h, i} b_{i, k}=\sum_{j=1}^{s} a_{h, j} b_{j, k} .
\end{aligned}
$$

3. Write the (h, m)-entry of $(A B) C$.

Sol.

$$
\begin{aligned}
((A B) C)_{h, m} & =(A B)_{h, 1} C_{1, m}+(A B)_{h, 2} C_{2, m}+\cdots+(A B)_{h, t} C_{t, m} \\
& =\left(\sum_{i=1}^{s} a_{h, i} b_{i, 1}\right) c_{1, m}+\left(\sum_{i=1}^{s} a_{h, i} b_{i, 2}\right) c_{2, m}+\cdots+\left(\sum_{i=1}^{s} a_{h, i} b_{i, t}\right) c_{t, m} \\
& =\sum_{k=1}^{t}\left(\sum_{i=1}^{s} a_{h, i} b_{i, k}\right) c_{k, m}=\sum_{k=1}^{t} \sum_{i=1}^{s} a_{h, i} b_{i, k} c_{k, m} .
\end{aligned}
$$

Note: From the above, we can show that $(A B) C=A(B C)$.
4. Compute the product $L T$. (Show work!)

Sol.

$$
\begin{aligned}
L T & =\left[\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 3 \\
0 & 4 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
6 & -3 & 1 \\
8 & 2 & -2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 \cdot 1+1 \cdot 6+0 \cdot 8 & 0 \cdot 1+1 \cdot(-3)+0 \cdot 2 & 0 \cdot 1+1 \cdot 1+0 \cdot(-2) \\
6 \cdot 1+1 \cdot 6+3 \cdot 8 & 6 \cdot 1+1 \cdot(-3)+3 \cdot 2 & 6 \cdot 1+1 \cdot 1+3 \cdot(-2) \\
0 \cdot 1+4 \cdot 6+3 \cdot 8 & 0 \cdot 1+4 \cdot(-3)+3 \cdot 2 & 0 \cdot 1+4 \cdot 1+3 \cdot(-2)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 & -3 & 1 \\
36 & 9 & 1 \\
48 & -6 & -2
\end{array}\right]
\end{aligned}
$$

5. Find a 3×3 matrix D such that $L T=T D$. (Solution only.)

Sol.

$$
D=\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: Can you guess $A A T=A^{2} T, A^{10} T$ and $A^{n} T$?

Take－Home Quiz 3（Due at 7：00 p．m．on Fri．September 28，2007）
Division：
ID\＃：
Name：

Let A and B be 3×3 matrices given below，and $C=[A \mid I]$ ，where I is the identity matrix of size three．

$$
A=\left[\begin{array}{ccc}
-3 & 1 & -1 \\
-3 & 1 & -2 \\
-1 & 0 & -2
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 4 \\
-3 & 1 & -1
\end{array}\right], \quad \text { and } C=\left[\begin{array}{cccccc}
-3 & 1 & -1 & 1 & 0 & 0 \\
-3 & 1 & -2 & 0 & 1 & 0 \\
-1 & 0 & -2 & 0 & 0 & 1
\end{array}\right]
$$

We applied elementary row operations $[1,3],[1 ;-1],[2,1 ; 3]$ to the matrix C in this order and obtained a matrix $[B \mid P]$ ，where B is a 3×3 matrix above and P is a 3×3 matrix．

1．Find the matrix P ．

2．Find the reduced row echelon form of the matrix C ．（Solution only．）

3．Find the inverse matrix of A ．（Solution only．）

4．Express P^{-1} as a product of elementary matrices using the notation $P(i ; c), P(i, j)$ and $P(i, j ; c)$ ．

Message 欄：将来の夢，目標， 25 年後の自分について，世界について。［HP 掲載不可 は明記のこと］

Solutions to Take-Home Quiz 3 (September 28, 2007)

Let A and B be 3×3 matrices given below, and $C=[A \mid I]$, where I is the identity matrix of size three.

$$
A=\left[\begin{array}{ccc}
-3 & 1 & -1 \\
-3 & 1 & -2 \\
-1 & 0 & -2
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 4 \\
-3 & 1 & -1
\end{array}\right], \quad \text { and } C=\left[\begin{array}{cccccc}
-3 & 1 & -1 & 1 & 0 & 0 \\
-3 & 1 & -2 & 0 & 1 & 0 \\
-1 & 0 & -2 & 0 & 0 & 1
\end{array}\right]
$$

We applied elementary row operations $[1,3],[1 ;-1],[2,1 ; 3]$ to the matrix C in this order and obtained a matrix $[B \mid P]$, where B is a 3×3 matrix above and P is a 3×3 matrix.

1. Find the matrix P.

Sol.

$$
I \xrightarrow{[1,3]}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \xrightarrow{[1 ;-1]}\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \xrightarrow{[2,1 ; 3]}\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & -3 \\
1 & 0 & 0
\end{array}\right]=P
$$

2. Find the reduced row echelon form of the matrix C. (Solution only.)

Sol.

$$
\begin{aligned}
& {[B \mid P]=\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
-3 & 1 & -1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{[3,1 ; 3]}\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 1 & 5 & 1 & 0 & -3
\end{array}\right] \xrightarrow{[3,2 ;-1]}} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \xrightarrow{[1,3 ;-2]}\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 2 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \xrightarrow{[2,3 ;-4]}} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 2 & -1 \\
0 & 1 & 0 & -4 & 5 & -3 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right]=\left[I \mid A^{-1}\right] \text { (Reduced Echelon Form) }}
\end{aligned}
$$

3. Find the inverse matrix of A. (Solution only.)

Sol.

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & 2 & -1 \\
-4 & 5 & -3 \\
1 & -1 & 0
\end{array}\right]
$$

4. Express P^{-1} as a product of elementary matrices using the notation $P(i ; c), P(i, j)$ and $P(i, j ; c)$.
Sol. Since $P=P(2,1 ; 3) P(1 ;-1) P(1,3)$,

$$
P^{-1}=P(1,3)^{-1} P(1 ;-1)^{-1} P(2,1 ; 3)^{-1}=P(1,3) P(1 ;-1) P(2,1 ;-3) .
$$

Take－Home Quiz 4
 Division：ID\＃：

（This quiz is designed to give you hints to read an article titled＂The Reduced Row Echelon Form of a Matrix Is Unique：A Simple Proof，＂handed out at the second lecture．）

1．Express，if possible，the matrix below as a product of elementary matrices，if not， explain the reason．（If you apply a theorem，clarify which part is used．）

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 7 \\
3 & 3 & 9
\end{array}\right]
$$

2．We want to show＂the reduced row echelon form of a matrix is unique．＂Let A be an $m \times n$ matrix and let both B and C be reduced row echelon form of A ．Since B and C are obtained by performing a series to elementary row operations to A ，there are invertible matrices P and Q such that $B=P A$ and $C=Q A$ ．
（a）Let \boldsymbol{x} be an $n \times 1$ matrix．Show that $A \boldsymbol{x}=\mathbf{0} \Leftrightarrow B \boldsymbol{x}=\mathbf{0}$ ，where $\mathbf{0}$ is the zero matrix of size $n \times 1$ ．
（b）Let \boldsymbol{x} be an $n \times 1$ matrix．Show that if $A \boldsymbol{x}=\mathbf{0}$ ，then $(B-C) \boldsymbol{x}=\mathbf{0}$ ．

Message 欄：あなたにとって，豊かな生活とはどのようなものでしょうか。どのよう なとき幸せだと感じますか。［HP 掲載不可は明記のこと］

Solutions to take－Home Quiz 4

（This quiz is designed to give you hints to read an article titled＂The Reduced Row Echelon Form of a Matrix Is Unique：A Simple Proof，＂handed out at the second lecture．）

1．Express，if possible，the matrix below as a product of elementary matrices，if not， explain the reason．（If you apply a theorem，clarify which part is used．）

Sol．

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 7 \\
3 & 3 & 9
\end{array}\right] \xrightarrow{[2,1 ;-2]}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & -1 & -1 \\
3 & 3 & 9
\end{array}\right] \xrightarrow{[3,1 ;-3]}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & -1 & -1 \\
0 & -3 & -3
\end{array}\right] \xrightarrow{[2 ;-1]}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & -3 & -3
\end{array}\right]} \\
\stackrel{[1,2 ;-2]}{ }\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & -3 & -3
\end{array}\right] \xrightarrow{[3,2 ; 3]}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \text { (Reduced row echelon form) }
\end{gathered}
$$

Now we apply Theorem 5.1 （1．5．3 or 1．6．4 in the textbook）．（c）$\Leftrightarrow(d)$ ．Since the reduced row echelon form is not the identity matrix，A is not expressible as a product of elementary matrices．（Strictly speaking（d）\Rightarrow（c），or its contraposition $((\mathrm{d}) \Rightarrow(\mathrm{c})$ の対偶）is used．）

Another solution：Since $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 3 & 7 \\ 3 & 3 & 9\end{array}\right]\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ ，by Theorem 5.1 （1．5．3 or
1．6．4 in the textbook）．（b）$\Leftrightarrow(\mathrm{d})$ ，the matrix cannot be expressed as a product of elementary matrices．（Strictly speaking $(\mathrm{d}) \Rightarrow(\mathrm{b})$ ，or its contraposition is used． Can you tell how the nontrivial solution $[-2,-1,1]^{T}$ is found？It is read from the reduced row echelon form obtained above．）

2．We want to show＂the reduced row echelon form of a matrix is unique．＂Let A be an $m \times n$ matrix and let both B and C be reduced row echelon form of A ．Since B and C are obtained by performing a series to elementary row operations to A ，there are invertible matrices P and Q such that $B=P A$ and $C=Q A$ ．
（a）Let \boldsymbol{x} be an $n \times 1$ matrix．Show that $A \boldsymbol{x}=\mathbf{0} \Leftrightarrow B \boldsymbol{x}=\mathbf{0}$ ，where $\mathbf{0}$ is the zero matrix of size $n \times 1$ ．
Sol．Suppose $A \boldsymbol{x}=\mathbf{0}$ ．Then $B \boldsymbol{x}=P A \boldsymbol{x}=P \mathbf{0}=\mathbf{0}$ ．Conversely suppose $B \boldsymbol{x}=\mathbf{0}$ ．Since P is invertible，$A \boldsymbol{x}=P^{-1} P A \boldsymbol{x}=P^{-1} B \boldsymbol{x}=P^{-1} \mathbf{0}=\mathbf{0}$ ．
（b）Let \boldsymbol{x} be an $n \times 1$ matrix．Show that if $A \boldsymbol{x}=\mathbf{0}$ ，then $(B-C) \boldsymbol{x}=\mathbf{0}$ ．
Sol．By（a）we have $B \boldsymbol{x}=\mathbf{0} \Leftrightarrow A \boldsymbol{x}=\mathbf{0} \Leftrightarrow C \boldsymbol{x}=\mathbf{0}$ ，as $C=Q A$ and Q is invertible．Suppose $A \boldsymbol{x}=\mathbf{0}$ ．Then $B \boldsymbol{x}=\mathbf{0}=C \boldsymbol{x}$ ．Hence $(B-C) \boldsymbol{x}=$ $B \boldsymbol{x}-C \boldsymbol{x}=\mathbf{0}-\mathbf{0}=\mathbf{0}$ ．

Please read the article and understand its proof．It may be a little difficult but you can understand．

Take－Home Quiz 5
Division：
Division：ID\＃：
Let A be the 4×4 matrix given below and B the submatrix that remains after 1 st row and 2 nd colum are deleted from A ．

$$
A=\left[\begin{array}{cccc}
3 & 2 & 1 & 0 \\
1 & 0 & -1 & -3 \\
0 & -2 & 1 & 1 \\
1 & 0 & -1 & -1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & -3 \\
0 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

Let $M_{i, j}$ be the minor of the (i, j) entry of A above，i．e．，the determinant of the submatrix after i th row and j th column are deleted from A ．In particular，$M_{1,2}=\operatorname{det}(B)$ ．

1．Find $\operatorname{adj}(B)$ ，the adjoint of B ．$(\operatorname{Not} \operatorname{adj}(A)!)$

2．Find $\operatorname{det}(B)$ and determine whether or not the matrix B is invertible．

3．Express $\operatorname{det}(A)$ by the cofactor expansion along the 1 st row using minors $M_{i, j}$ ．

4．Express $\operatorname{det}(A)$ by the cofactor expansion along the 2 nd column using minors $M_{i, j}$ ．

5．Find $\operatorname{det}(A)$ ．

Message 欄：これまでの Linear Algebra I について。改善点について。［HP 掲載不可は明記のこと］

Solutions to Take-Home Quiz 5 (October 12, 2007)

Let A be the 4×4 matrix given below and B the submatrix that remains after 1st row and 2 nd colum are deleted from A.

$$
A=\left[\begin{array}{cccc}
3 & 2 & 1 & 0 \\
1 & 0 & -1 & -3 \\
0 & -2 & 1 & 1 \\
1 & 0 & -1 & -1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -1 & -3 \\
0 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

Let $M_{i, j}$ be the minor of the (i, j) entry of A above, i.e., the determinant of the submatrix after i th row and j th column are deleted from A. In particular, $M_{1,2}=\operatorname{det}(B)$.

1. Find $\operatorname{adj}(B)$, the adjoint of B. $(\operatorname{Not} \operatorname{adj}(A)!)$

Sol. Let $m_{i, j}$ the minor of the (i, j) entry of B. Then

$$
m_{1,1}=\operatorname{det}\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)=1(-1)-(-1) 1=0, m_{1,2}=\operatorname{det}\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)=-1 .
$$

Similarly, $m_{1,3}=-1, m_{2,1}=-2, m_{2,2}=2, m_{2,3}=0, m_{3,1}=2, m_{3,2}=1, m_{3,3}=1$. Hence

$$
\operatorname{adj}(B)=\left[\begin{array}{ccc}
m_{1,1} & -m_{1,2} & m_{1,3} \\
-m_{2,1} & m_{2,2} & -m_{2,3} \\
m_{3,1} & -m_{3,2} & m_{3,3}
\end{array}\right]^{T}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
2 & 2 & 0 \\
2 & -1 & 1
\end{array}\right]^{T}=\left[\begin{array}{ccc}
0 & 2 & 2 \\
1 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right] .
$$

2. Find $\operatorname{det}(B)$ and determine whether or not the matrix B is invertible.

Sol.

$$
\operatorname{det}(B) \cdot I=B \cdot \operatorname{adj}(B)=\left[\begin{array}{ccc}
1 & -1 & -3 \\
0 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & 2 \\
1 & 2 & -1 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

Hence $\operatorname{det}(B)=2 \neq 0$. So B is invertible. Actually $B^{-1}=\frac{1}{2} \operatorname{adj}(B)$.
3. Express $\operatorname{det}(A)$ by the cofactor expansion along the 1 st row using minors $M_{i, j}$.

Sol. Let $C_{i, j}$ be the cofactor of the (i, j) entry of A. Then $C_{i, j}=(-1)^{i+j} M_{i, j}$. Hence

$$
\operatorname{det}(A)=a_{1,1} C_{1,1}+a_{1,2} C_{1,2}+a_{1,3} C_{1,3}=3 M_{1,1}-2 M_{1,2}+M_{1,3} .
$$

4. Express $\operatorname{det}(A)$ by the cofactor expansion along the 2 nd column using minors $M_{i, j}$.

Sol.

$$
\operatorname{det}(A)=a_{1,2} C_{1,2}+a_{2,2} C_{2,2}+a_{3,2} C_{3,2}+a_{4,2} C_{4,2}=-2 M_{1,2}+2 M_{3,2}
$$

5. Find $\operatorname{det}(A)$.

Sol. Use the formula in 4 . Since $M_{1,2}=2$, it suffices to find $M_{3,2}$.

$$
\operatorname{det}\left(\begin{array}{ccc}
3 & 1 & 0 \\
1 & -1 & -3 \\
1 & -1 & -1
\end{array}\right)=3((-1)(-1)-(-1)(-3))-(1(-1)-(1)(-3))=-8 .
$$

Hence $\operatorname{det}(A)=2 M_{1,2}+2 M_{3,2}=-2 \cdot 2+2 \cdot(-8)=-20$.

Take－Home Quiz 6
Division：
ID\＃：

Name：

Let $A, \boldsymbol{x}, \boldsymbol{b}$ and T be as follows，where a, b, c and d are arbitrary numbers．

$$
A=\left[\begin{array}{cccc}
2 & -2 & -4 & 0 \\
-3 & 5 & 4 & 5 \\
4 & 2 & -5 & 3 \\
5 & -7 & -3 & 0
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
3 \\
-2 \\
1 \\
0
\end{array}\right], \text { and } T=\left[\begin{array}{cccc}
a & b & c & c \\
b & a & c & c \\
c & c & a & b \\
c & c & b & a
\end{array}\right]
$$

1．In the following we consider the equation $A \boldsymbol{x}=\boldsymbol{b}$ ．
（a）Evaluate $\operatorname{det}(A)$ ，and determine whether there is no solution，exactly one so－ lution or infinitely many solutions．
（b）By Cramer＇s rule express $x_{3}=\frac{\operatorname{det}(B)}{\operatorname{det}(A)}$ as a fraction of two determinants．Write down the matrix B in the numerator．
（c）Evaluate $\operatorname{det}(B)$ in the previous problem and find x_{3} ．

2．Evaluate the determinant of T ．

Message 欄：数学（または他の科目）など何かを学んでいて感激したことについて。 ［HP 掲載不可は明記のこと］

Solutions to take-Home Quiz 6

1. In the following we consider the equation $A \boldsymbol{x}=\boldsymbol{b}$.
(a) Evaluate $\operatorname{det}(A)$, and determine whether there is no solution, exactly one solution or infinitely many solutions.

Sol.

$$
\begin{aligned}
\left|\begin{array}{cccc}
2 & -2 & -4 & 0 \\
-3 & 5 & 4 & 5 \\
4 & 2 & -5 & 3 \\
5 & -7 & -3 & 0
\end{array}\right| & =2\left|\begin{array}{cccc}
1 & -1 & -2 & 0 \\
-3 & 5 & 4 & 5 \\
4 & 2 & -5 & 3 \\
5 & -7 & -3 & 0
\end{array}\right|=2\left|\begin{array}{cccc}
1 & -1 & -2 & 0 \\
0 & 2 & -2 & 5 \\
0 & 6 & 3 & 3 \\
0 & -2 & 7 & 0
\end{array}\right| \\
& =2\left|\begin{array}{ccc}
2 & -2 & 5 \\
6 & 3 & 3 \\
-2 & 7 & 0
\end{array}\right|=2\left|\begin{array}{cc}
2 & -2 \\
5 & 5 \\
0 & -12 \\
0 & 5
\end{array}\right| \\
& =2 \cdot 2 \cdot 3 \cdot 5 \cdot\left|\begin{array}{cc}
3 & -4 \\
1 & 1
\end{array}\right|=2 \cdot 2 \cdot 3 \cdot 5 \cdot 7=420 .
\end{aligned}
$$

(b) By Cramer's rule express $x_{3}=\frac{\operatorname{det}(B)}{\operatorname{det}(A)}$ as a fraction of two determinants. Write down the matrix B in the numerator.
Sol.

$$
B=\left[\begin{array}{cccc}
2 & -2 & 3 & 0 \\
-3 & 5 & -2 & 5 \\
4 & 2 & 1 & 3 \\
5 & -7 & 0 & 0
\end{array}\right]
$$

(c) Evaluate $\operatorname{det}(B)$ in the previous problem and find x_{3}.

Sol.

$$
\begin{array}{rl}
|B| & =\left|\begin{array}{cccc}
2 & -2 & 3 & 0 \\
-3 & 5 & -2 & 5 \\
4 & 2 & 1 & 3 \\
5 & -7 & 0 & 0
\end{array}\right|=\left\lvert\, \begin{array}{ccc}
-10 & -8 & 3
\end{array}-9\right. \\
5 & 9 \\
-2 & 11 \\
0 & 0 \\
1 & 0 \\
5 & -7
\end{array} 0
$$

2. Evaluate the determinant of T.

Sol.

$$
\begin{aligned}
|T| & =\left|\begin{array}{cccc}
a+b+2 c & a+b+2 c & a+b+2 c & a+b+2 c \\
b & a & c & c \\
c & c & a & b \\
c & c & b & a
\end{array}\right|=(a+b+2 c)\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
b & a & c & c \\
c & c & a & b \\
c & c & b & a
\end{array}\right| \\
& =(a+b+2 c)\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
b & a-b & c-b & c-b \\
c & 0 & a-c & b-c \\
c & 0 & b-c & a-c
\end{array}\right|=(a+b+2 c)(a-b)\left((a-c)^{2}-(b-c)^{2}\right) \\
& =(a-b)^{2}(a+b+2 c)(a+b-2 c)=a^{4}-2 a^{2} b^{2}+8 a b c^{2}-4 c^{2} a^{2}+b^{4}-4 b^{2} c^{2} .
\end{aligned}
$$

Take－Home Quiz 7

Division：
ID\＃：
Name：

Let A be a 5×5 matrix and B a 4×4 matrix given below．

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1}{ }^{2} & x_{2}{ }^{2} & x_{3}{ }^{2} & x_{4}{ }^{2} & x_{5}{ }^{2} \\
x_{1}{ }^{3} & x_{2}{ }^{3} & x_{3}{ }^{3} & x_{4}{ }^{3} & x_{5}{ }^{3} \\
x_{1}{ }^{4} & x_{2}{ }^{4} & x_{3}{ }^{4} & x_{4}{ }^{4} & x_{5}{ }^{4}
\end{array}\right] \text {, and } B=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{1}{ }^{2} & x_{2}{ }^{2} & x_{3}{ }^{2} & x_{4}{ }^{2} \\
x_{1}{ }^{3} & x_{2}{ }^{3} & x_{3}{ }^{3} & x_{4}{ }^{3}
\end{array}\right]
$$

1．Show that $\operatorname{det}(A)=\left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{5}-x_{3}\right)\left(x_{5}-x_{4}\right) \operatorname{det}(B)$ ．（Use the back of this sheet．）

2．Find $\operatorname{det}(A)$ ．（Solution only．）

3．Let $f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial satisfying $f(-3)=2$ ， $f(-1)=5, f(2)=-3, f(3)=0$ and $f(7)=100$ ．Write down a system of linear equations to find $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ and explain why the numbers $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ are uniquely determined．Do not solve the equation！

4．Explain why there are infinitely many polynomials $g(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ satisfying $g(-3)=2, g(-1)=5, g(2)=-3$ and $g(3)=0$ ．

Message 欄：あなたにとって一番たいせつな（または，たいせつにしたい）もの，こ とはなんですか。そのほか，何でもどうぞ。［HP 掲載不可は明記のこと］

Solutions to take-Home Quiz 7

Let A be a 5×5 matrix and B a 4×4 matrix given below.

1. Show that $\operatorname{det}(A)=\left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{5}-x_{3}\right)\left(x_{5}-x_{4}\right) \operatorname{det}(B)$.

Sol.

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
x_{1}{ }^{2} & x_{2}{ }^{2} & x_{3}{ }^{2} & x_{4}{ }^{2} & x_{5}{ }^{2} \\
x_{1}{ }^{3} & x_{2}{ }^{3} & x_{3}{ }^{3} & x_{4}{ }^{3} & x_{5}{ }^{3} \\
x_{1}{ }^{4} & x_{2}{ }^{4} & x_{3}{ }^{4} & x_{4}{ }^{4} & x_{5}{ }^{4}
\end{array}\right|=\left|\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
x_{1}-x_{5} & x_{2}-x_{5} & x_{3}-x_{5} & x_{4}-x_{5} & x_{5} \\
x_{1}{ }^{2}-x_{5}{ }^{2} & x_{2}{ }^{2}-x_{5}{ }^{2} & x_{3}{ }^{2}-x_{5}{ }^{2} & x_{4}{ }^{2}-x_{5}{ }^{2} & x_{5}{ }^{2} \\
x_{1}{ }^{3}-x_{5}{ }^{3} & x_{2}{ }^{3}-x_{5}{ }^{3} & x_{3}{ }^{3}-x_{5}{ }^{3} & x_{4}{ }^{3}-x_{5}{ }^{3} & x_{5}{ }^{3} \\
x_{1}{ }^{4}-x_{5}{ }^{4} & x_{2}{ }^{4}-x_{5}{ }^{4} & x_{3}{ }^{4}-x_{5}{ }^{4} & x_{4}{ }^{4}-x_{5}{ }^{4} & x_{5}{ }^{4}
\end{array}\right| \\
& =(-1)^{6}\left|\begin{array}{cccc}
x_{1}-x_{5} & x_{2}-x_{5} & x_{3}-x_{5} & x_{4}-x_{5} \\
x_{1}{ }^{2}-x_{5}{ }^{2} & x_{2}{ }^{2}-x_{5}{ }^{2} & x_{3}{ }^{2}-x_{5}{ }^{2} & x_{4}{ }^{2}-x_{5}{ }^{2} \\
x_{1}^{3}-x_{5}{ }^{3} & x_{2}{ }^{3}-x_{5}{ }^{3} & x_{3}{ }^{3}-x_{5}{ }^{3} & x_{4}{ }^{3}-x_{5}{ }^{3} \\
x_{1}^{4}-x_{5}{ }^{4} & x_{2}{ }^{4}-x_{5}{ }^{4} & x_{3}{ }^{4}-x_{5}{ }^{4} & x_{4}{ }^{4}-x_{5}{ }^{4}
\end{array}\right| \quad \text { (Cofactor expansion) } \\
& \stackrel{\left[4,3 ; x_{5}\right]}{=}(-1)^{6}\left|\begin{array}{cccc}
x_{1}-x_{5} & x_{2}-x_{5} & x_{3}-x_{5} & x_{4}-x_{5} \\
x_{1}{ }^{2}-x_{5}{ }^{2} & x_{2}{ }^{2}-x_{5}{ }^{2} & x_{3}{ }^{2}-x_{5}{ }^{2} & x_{4}{ }^{2}-x_{5}{ }^{2} \\
x_{1}{ }^{3}-x_{5}{ }^{3} & x_{2}{ }^{3}-x_{5}{ }^{3} & x_{3}{ }^{3}-x_{5}{ }^{3} & x_{4}{ }^{3}-x_{5}{ }^{3} \\
x_{1}^{4}-x_{5} x_{1}{ }^{3} & x_{2}{ }^{4}-x_{5} x_{2}{ }^{3} & x_{3}{ }^{4}-x_{5} x_{3}{ }^{3} & x_{4}^{4}{ }^{4}-x_{5} x_{3}{ }^{3}
\end{array}\right| \\
& {\left[3,2 ; x_{5}\right] \quad(-1)^{6} \left\lvert\, \begin{array}{cccc}
x_{1}-x_{5} & x_{2}-x_{5} & x_{3}-x_{5} & x_{4}-x_{5} \\
x_{1}^{2}-x_{5}{ }^{2} & x_{2}{ }^{2}-x_{5}{ }^{2} & x_{3}{ }^{2}-x_{5}{ }^{2} & x_{4}{ }^{2}-x_{5}{ }^{2} \\
x_{1}{ }^{3}-x_{5} x_{1}{ }^{2} & x_{2}{ }^{3}-x_{5} x_{2}{ }^{2} & x_{3}{ }^{3}-x_{5} x_{3}{ }^{2} & x_{4}{ }^{3}-x_{5} x_{4}{ }^{2} \\
x_{1}^{4}-x_{5} x_{1}{ }^{3} & x_{2}{ }^{4}-x_{5} x_{2}{ }^{3} & x_{3}{ }^{4}-x_{5} x_{3}{ }^{3} & x_{4}^{4}-x_{5} x_{3}{ }^{3}
\end{array}\right.} \\
& {\left[2,1 ; x_{5}\right] \quad(-1)^{6}\left|\begin{array}{cccc}
x_{1}-x_{5} & x_{2}-x_{5} & x_{3}-x_{5} & x_{4}-x_{5} \\
x_{1}^{2}-x_{5} x_{1} & x_{2}{ }^{2}-x_{5} x_{1} & x_{3}{ }^{2}-x_{5} x_{1} & x_{4}{ }^{2}-x_{5} x_{1} \\
x_{1}^{3}-x_{5} x_{1}{ }^{2} & x_{2}{ }^{3}-x_{5} x_{2}{ }^{2} & x_{3}{ }^{3}-x_{5} x_{3}{ }^{2} & x_{4}{ }^{3}-x_{5} x_{4}{ }^{2} \\
x_{1}^{4}-x_{5} x_{1}^{3} & x_{2}{ }^{4}-x_{5} x_{2}{ }^{3} & x_{3}{ }^{4}-x_{5} x_{3}^{3} & x_{4}^{4}-x_{5} x_{3}{ }^{3}
\end{array}\right|}
\end{aligned}
$$

Factor out $x_{1}-x_{5}$ from the first column, and $x_{2}-x_{5}$ from the second \ldots

$$
\begin{aligned}
& =\quad(-1)^{6}\left(x_{1}-x_{5}\right)\left(x_{2}-x_{5}\right)\left(x_{3}-x_{5}\right)\left(x_{4}-x_{5}\right)\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{1}{ }^{2} & x_{2}{ }^{2} & x_{3}{ }^{2} & x_{4}{ }^{2} \\
x_{1}{ }^{3} & x_{2}{ }^{3} & x_{3}^{3} & x_{4}{ }^{3}
\end{array}\right| \\
& =\quad\left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{5}-x_{3}\right)\left(x_{5}-x_{4}\right)|B|
\end{aligned}
$$

2. Find $\operatorname{det}(A)$. (Solution only.)

Sol. This is called the Vandermonde determinant. Please be careful on the indices. There are various expression of products just as Σ notation for summations.

$$
\begin{aligned}
|A|= & \left(x_{5}-x_{1}\right)\left(x_{5}-x_{2}\right)\left(x_{5}-x_{3}\right)\left(x_{5}-x_{4}\right)\left(x_{4}-x_{3}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{1}\right) \\
& \left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)\left(x_{2}-x_{1}\right) \\
= & \prod_{j=2}^{5} \prod_{i=1}^{j-1}\left(x_{j}-x_{i}\right)=\prod_{1 \leq i<j \leq 5}\left(x_{j}-x_{i}\right) \\
= & (-1)^{10} \prod_{i=1}^{4} \prod_{j=i+1}^{5}\left(x_{i}-x_{j}\right)=\prod_{1 \leq i<j \leq 5}^{4}\left(x_{i}-x_{j}\right) .
\end{aligned}
$$

For the general case, the Vandermonde determinant has the following value.

$$
\left|\right|=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)=(-1)^{\frac{n(n+1)}{2}} \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) .
$$

The determinant is nonzero if $x_{1}, x_{2}, \ldots, x_{n}$ are all distinct numbers.
3. Let $f(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial satisfying $f(-3)=2$, $f(-1)=5, f(2)=-3, f(3)=0$ and $f(7)=100$. Write down a system of linear equations to find $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ and explain why the numbers $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ are uniquely determined. Do not solve the equation!
Sol.

$$
\left\{\begin{array}{cccc}
a_{0}+(-3) a_{1}+(-3)^{2} a_{2}+(-3)^{3} a_{3}+(-3)^{4} a_{4} & = & 2 \\
a_{0}+(-1) a_{1}+(-1)^{2} a_{2}+(-1)^{3} a_{3}+(-1)^{4} a_{4} & = & 5 \\
a_{0}+2 a_{1}+2^{2} a_{2}+2^{3} a_{3}+2^{4} a_{4} & = & -3 \\
a_{0}+3 a_{1}+3^{2} a_{2}+3^{3} a_{3}+3^{4} a_{4} & = & 0 \\
a_{0}+7 a_{1}+7^{2} a_{2}+7^{3} a_{3}+7^{4} a_{4} & = & 100
\end{array}\right.
$$

The coefficient matrix C of this system of linear equation is the transpose of A with $x_{1}=-3, x_{2}=-1 . x_{3}=2, x_{4}=3$ and $x_{5}=7$.

$$
\begin{aligned}
& C=\left|\begin{array}{ccccc}
1 & -3 & (-3)^{2} & (-3)^{3} & (-3)^{4} \\
1 & -1 & (-1)^{2} & (-1)^{3} & (-1)^{4} \\
1 & 2 & 2^{2} & 2^{3} & 2^{4} \\
1 & 3 & 2^{2} & 3^{3} & 3^{4} \\
1 & 7 & 7^{2} & 7^{3} & 7^{4}
\end{array}\right| \\
& |C|=\left|C^{T}\right| \\
& =(7-3)(7-2)(7-(-1))(7-(-3))(3-2)(3-(-1))(3-(-3)) \\
& \quad(2-(-1))(2-(-3))((-1)-(-3)) .
\end{aligned}
$$

Hence the determinant of the coefficient matrix is nonzero. Therefore $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ are uniquely determined.
4. Explain why there are infinitely many polynomials $g(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ satisfying $g(-3)=2, g(-1)=5, g(2)=-3$ and $g(3)=0$.
Sol. By the previous problem for each n with $g(7)=m, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ are uniquely determined. They are different if m is distinct. Hence there are infinitely many polynomials $g(x)$ satisfying the conditions.

Other Solution. We can find a polynomial with the conditions such that $a_{4}=0$. Let $g(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial satisfying $g(-3)=2, g(-1)=5$, $g(2)=-3$ and $g(3)=0$. Then

$$
h(x)=g(x)+a_{4}(x-(-3))(x-(-1))(x-2)(x-3) \quad\left(a_{4} \text { is any number. }\right)
$$

also satisfies $h(-3)=2, h(-1)=5, h(2)=-3$ and $h(3)=0$. Hence there are infinitely many polynomials of degree 4 satisfying the conditions.

Take－Home Quiz 8
Division：
ID\＃：

1．Let $\pi=(5,2,6,8,4,1,3,7)$ be a permutation．Find the number of inversions $\ell(\pi)$ and its $\operatorname{sign} \operatorname{sign}(\pi)$ ．

2．Add missing terms to equate the following．

$$
\begin{aligned}
& \left|\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{array}\right|=a_{1,1} a_{2,2} a_{3,3} a_{4,4}-a_{1,1} a_{2,2} a_{3,4} a_{4,3}-a_{1,1} a_{2,3} a_{3,2} a_{4,4}+a_{1,1} a_{2,3} a_{3,4} a_{4,2} \\
& \quad+a_{1,1} a_{2,4} a_{3,2} a_{4,3}-a_{1,1} a_{2,4} a_{3,3} a_{4,2}-a_{1,2} a_{2,1} a_{3,3} a_{4,4}+a_{1,2} a_{2,1} a_{3,4} a_{4,3}+a_{1,2} a_{2,3} a_{3,1} a_{4,4} \\
& \quad-a_{1,2} a_{2,3} a_{3,4} a_{4,1}-a_{1,2} a_{2,4} a_{3,1} a_{4,3}+a_{1,2} a_{2,4} a_{3,3} a_{4,1}+a_{1,3} a_{2,1} a_{3,2} a_{4,4}-a_{1,3} a_{2,1} a_{3,4} a_{4,2}
\end{aligned}
$$

3．Find all λ such that $(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution，i．e．， $\boldsymbol{x} \neq \mathbf{0}$ ，where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-18 & 15 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . \quad \text { Show work! }
$$

Solutions to Take-Home Quiz 8 (November 2, 2007)

1. Let $\pi=(5,2,6,8,4,1,3,7)$ be a permutation. Find the number of inversions $\ell(\pi)$ and its $\operatorname{sign} \operatorname{sign}(\pi)$.
Sol. $(5,2),(5,4),(5,1),(5,3),(2,1),(6,4),(6,1),(6,3),(8,4),(8,1),(8,3),(8,7)$, $(4,1),(4,3)$ are inversions. Hence $\ell(\pi)=14$ and $\operatorname{sign}(\pi)=(-1)^{14}=1$. Therefore π is an even permutation.
2. Add missing terms to equate the following.

$$
\begin{aligned}
& \left|\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4}
\end{array}\right|=a_{1,1} a_{2,2} a_{3,3} a_{4,4}-a_{1,1} a_{2,2} a_{3,4} a_{4,3}-a_{1,1} a_{2,3} a_{3,2} a_{4,4}+a_{1,1} a_{2,3} a_{3,4} a_{4,2} \\
& \quad+a_{1,1} a_{2,4} a_{3,2} a_{4,3}-a_{1,1} a_{2,4} a_{3,3} a_{4,2}-a_{1,2} a_{2,1} a_{3,3} a_{4,4}+a_{1,2} a_{2,1} a_{3,4} a_{4,3}+a_{1,2} a_{2,3} a_{3,1} a_{4,4} \\
& \quad-a_{1,2} a_{2,3} a_{3,4} a_{4,1}-a_{1,2} a_{2,4} a_{3,1} a_{4,3}+a_{1,2} a_{2,4} a_{3,3} a_{4,1}+a_{1,3} a_{2,1} a_{3,2} a_{4,4}-a_{1,3} a_{2,1} a_{3,4} a_{4,2} \\
& \quad-a_{1,3} a_{2,2} a_{3,1} a_{4,4}+a_{1,3} a_{2,2} a_{3,4} a_{4,1}+a_{1,3} a_{2,4} a_{3,1} a_{4,2}-a_{1,3} a_{2,4} a_{3,2} a_{4,1}-a_{1,4} a_{2,1} a_{3,2} a_{4,3} \\
& \quad+a_{1,4} a_{2,1} a_{3,3} a_{4,2}+a_{1,4} a_{2,2} a_{3,1} a_{4,3}-a_{1,4} a_{2,2} a_{3,3} a_{4,1}-a_{1,4} a_{2,3} a_{3,1} a_{4,2}+a_{1,4} a_{2,3} a_{3,2} a_{4,1} .
\end{aligned}
$$

The missing permutations and their number of inversions are $\ell(3,2,1,4)=3$, $\ell(3,2,4,1)=4, \ell(3,4,1,2)=4, \ell(3,4,2,1)=5, \ell(4,1,2,3)=3, \ell(4,1,3,2)=4$, $\ell(4,2,1,3)=4, \ell(4,2,3,1)=5, \ell(4,3,1,2)=5$ and $\ell(4,3,2,1)=6$. Thus the last two lines above are missing terms.
3. Find all λ such that $(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution, i.e., $\boldsymbol{x} \neq \mathbf{0}$, where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-18 & 15 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . \quad \text { Show work! }
$$

Sol. $\quad(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution if and only if $\lambda I-A$ is invertible by Theorem 5.1 (1.5.3). Moreover $\lambda I-A$ is invertible if and only if $\operatorname{det}(\lambda I-A)=0$ by Theorem 8.3 (2.3.3). So we compute $\operatorname{det}(\lambda I-A)$.

$$
\begin{aligned}
\operatorname{det}(\lambda I-A) & =\left|\begin{array}{ccc}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
18 & -15 & \lambda-4
\end{array}\right|=\lambda^{2}(\lambda-4)+18-15 \lambda \\
& =\lambda^{3}-4 x \lambda^{2}-15 \lambda+18=(\lambda-6)(\lambda-1)(\lambda+3)
\end{aligned}
$$

Hence $(\lambda I-A) \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution if and only if $\lambda=6,1$ or -3 .

$$
\text { Let } \boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \boldsymbol{v}_{2}=\left[\begin{array}{c}
1 \\
-3 \\
9
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{c}
1 \\
6 \\
36
\end{array}\right] \text {, and } T=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -3 & 6 \\
1 & 9 & 36
\end{array}\right]
$$

Then $A \boldsymbol{v}_{1}=\boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=-3 \boldsymbol{v}_{2}$ and $A \boldsymbol{v}_{3}=6 \boldsymbol{v}_{3}$, and

$$
A T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-18 & 15 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -3 & 6 \\
1 & 9 & 36
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -3 & 6 \\
1 & 9 & 36
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 6
\end{array}\right]=T D,
$$

where D is a diagonal matrix with diagonal entry $1,-3,6 . T$ is invertible as its determinant is a Vandermonde type and $T^{-1} A T=D$.

