Solutions to Take-Home Quiz 7 (October 26, 2007)

Let A be a 5×5 matrix and B a 4×4 matrix given below.

1. Show that $\det(A) = (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5 - x_4) \det(B)$. Sol.

$$|A| = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 & x_5 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 & x_5^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 & x_5^3 \\ x_1^4 & x_2^4 & x_3^4 & x_4^4 & x_5^4 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 & x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 & x_5^2 \\ x_1^3 - x_5^3 & x_2^3 - x_5^3 & x_3^3 - x_5^3 & x_4^3 - x_5^3 & x_5^3 \\ x_1^4 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5^3 & x_2^3 - x_5^3 & x_3^3 - x_5^3 & x_4^3 - x_5^3 \\ x_1^4 - x_5^4 & x_2^4 - x_5^4 & x_3^4 - x_5^4 & x_4^4 - x_5^4 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5^3 & x_2^3 - x_5^3 & x_3^3 - x_5^3 & x_4^3 - x_5^3 \\ x_1^4 - x_5^4 & x_2^4 - x_5^4 & x_3^4 - x_5^4 & x_4^4 - x_5^4 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5^3 & x_2^3 - x_5^3 & x_3^3 - x_5^3 & x_4^3 - x_5^3 \\ x_1^4 - x_5x_1^3 & x_2^4 - x_5x_2^3 & x_3^4 - x_5x_3^3 & x_4^4 - x_5x_3^3 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5x_1^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5x_1^2 & x_2^3 - x_5x_2^2 & x_3^3 - x_5x_3^2 & x_4^4 - x_5x_3^3 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5x_1^2 & x_2^3 - x_5x_2^2 & x_3^3 - x_5x_3^2 & x_4^4 - x_5x_3^3 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x_5^2 \\ x_1^3 - x_5x_1^2 & x_2^3 - x_5x_2^2 & x_3^3 - x_5x_3^2 & x_4^4 - x_5x_3^3 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^3 - x_5x_1^2 & x_2^3 - x_5x_2^2 & x_3^3 - x_5x_3^2 & x_4^4 - x_5x_3 \end{vmatrix}$$

$$= (-1)^6 \begin{vmatrix} x_1 - x_5 & x_2 - x_5 & x_3 - x_5 & x_4 - x_5 \\ x_1^2 - x_5^2 & x_2^2 - x_5^2 & x_3^2 - x_5^2 & x_4^2 - x$$

Factor out $x_1 - x_5$ from the first column, and $x_2 - x_5$ from the second ...

$$= (-1)^{6}(x_{1} - x_{5})(x_{2} - x_{5})(x_{3} - x_{5})(x_{4} - x_{5}) \begin{vmatrix} 1 & 1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} & x_{4} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} \\ x_{1}^{3} & x_{2}^{3} & x_{3}^{3} & x_{4}^{3} \end{vmatrix}$$

$$= (x_{5} - x_{1})(x_{5} - x_{2})(x_{5} - x_{3})(x_{5} - x_{4})|B|$$

2. Find det(A). (Solution only.)

Sol. This is called the Vandermonde determinant. Please be careful on the indices. There are various expression of products just as Σ notation for summations.

$$|A| = (x_5 - x_1)(x_5 - x_2)(x_5 - x_3)(x_5 - x_4)(x_4 - x_3)(x_4 - x_2)(x_4 - x_1)$$

$$(x_3 - x_2)(x_3 - x_1)(x_2 - x_1)$$

$$= \prod_{j=2}^{5} \prod_{i=1}^{j-1} (x_j - x_i) = \prod_{1 \le i < j \le 5} (x_j - x_i)$$

$$= (-1)^{10} \prod_{i=1}^{4} \prod_{j=i+1}^{5} (x_i - x_j) = \prod_{1 \le i < j \le 5} (x_i - x_j).$$

For the general case, the Vandermonde determinant has the following value.

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ & \vdots & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i) = (-1)^{\frac{n(n+1)}{2}} \prod_{1 \le i < j \le n} (x_i - x_j).$$

The determinant is nonzero if x_1, x_2, \ldots, x_n are all distinct numbers.

3. Let $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ be a polynomial satisfying f(-3) = 2, f(-1) = 5, f(2) = -3, f(3) = 0 and f(7) = 100. Write down a system of linear equations to find a_0, a_1, a_2, a_3, a_4 and explain why the numbers a_0, a_1, a_2, a_3, a_4 are uniquely determined. Do not solve the equation!

Sol.

$$\begin{cases} a_0 + (-3)a_1 + (-3)^2a_2 + (-3)^3a_3 + (-3)^4a_4 &= 2\\ a_0 + (-1)a_1 + (-1)^2a_2 + (-1)^3a_3 + (-1)^4a_4 &= 5\\ a_0 + 2a_1 + 2^2a_2 + 2^3a_3 + 2^4a_4 &= -3\\ a_0 + 3a_1 + 3^2a_2 + 3^3a_3 + 3^4a_4 &= 0\\ a_0 + 7a_1 + 7^2a_2 + 7^3a_3 + 7^4a_4 &= 100 \end{cases}$$

The coefficient matrix C of this system of linear equation is the transpose of A with $x_1 = -3$, $x_2 = -1$. $x_3 = 2$, $x_4 = 3$ and $x_5 = 7$.

$$C = \begin{vmatrix} 1 & -3 & (-3)^2 & (-3)^3 & (-3)^4 \\ 1 & -1 & (-1)^2 & (-1)^3 & (-1)^4 \\ 1 & 2 & 2^2 & 2^3 & 2^4 \\ 1 & 3 & 2^2 & 3^3 & 3^4 \\ 1 & 7 & 7^2 & 7^3 & 7^4 \end{vmatrix}$$

$$|C| = |C^{T}|$$

$$= (7-3)(7-2)(7-(-1))(7-(-3))(3-2)(3-(-1))(3-(-3))$$

$$(2-(-1))(2-(-3))((-1)-(-3)).$$

Hence the determinant of the coefficient matrix is nonzero. Therefore a_0, a_1, a_2, a_3, a_4 are uniquely determined.

- 4. Explain why there are infinitely many polynomials $g(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ satisfying g(-3) = 2, g(-1) = 5, g(2) = -3 and g(3) = 0.
 - **Sol.** By the previous problem for each n with g(7) = m, a_0, a_1, a_2, a_3, a_4 are uniquely determined. They are different if m is distinct. Hence there are infinitely many polynomials g(x) satisfying the conditions.

Other Solution. We can find a polynomial with the conditions such that $a_4 = 0$. Let $g(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ be a polynomial satisfying g(-3) = 2, g(-1) = 5, g(2) = -3 and g(3) = 0. Then

$$h(x) = g(x) + a_4(x - (-3))(x - (-1))(x - 2)(x - 3)$$
 (a₄ is any number.)

also satisfies h(-3) = 2, h(-1) = 5, h(2) = -3 and h(3) = 0. Hence there are infinitely many polynomials of degree 4 satisfying the conditions.