Take－Home Quiz 6
（Due at 7：00 p．m．on Fri．October 19，2007）
Division：
ID\＃：
Name：

Let $A, \boldsymbol{x}, \boldsymbol{b}$ and T be as follows，where a, b, c and d are arbitrary numbers．

$$
A=\left[\begin{array}{cccc}
2 & -2 & -4 & 0 \\
-3 & 5 & 4 & 5 \\
4 & 2 & -5 & 3 \\
5 & -7 & -3 & 0
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
3 \\
-2 \\
1 \\
0
\end{array}\right], \text { and } T=\left[\begin{array}{cccc}
a & b & c & c \\
b & a & c & c \\
c & c & a & b \\
c & c & b & a
\end{array}\right]
$$

1．In the following we consider the equation $A \boldsymbol{x}=\boldsymbol{b}$ ．
（a）Evaluate $\operatorname{det}(A)$ ，and determine whether there is no solution，exactly one so－ lution or infinitely many solutions．
（b）By Cramer＇s rule express $x_{3}=\frac{\operatorname{det}(B)}{\operatorname{det}(A)}$ as a fraction of two determinants．Write down the matrix B in the numerator．
（c）Evaluate $\operatorname{det}(B)$ in the previous problem and find x_{3} ．

2．Evaluate the determinant of T ．

Message 欄：数学（または他の科目）など何かを学んでいて感激したことについて。 ［HP 揭載不可は明記のこと］

