Solutions to take－Home Quiz 4

（This quiz is designed to give you hints to read an article titled＂The Reduced Row Echelon Form of a Matrix Is Unique：A Simple Proof，＂handed out at the second lecture．）

1．Express，if possible，the matrix below as a product of elementary matrices，if not， explain the reason．（If you apply a theorem，clarify which part is used．）

Sol．

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 7 \\
3 & 3 & 9
\end{array}\right] \xrightarrow{[2,1 ;-2]}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & -1 & -1 \\
3 & 3 & 9
\end{array}\right] \xrightarrow{[3,1 ;-3]}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & -1 & -1 \\
0 & -3 & -3
\end{array}\right] \xrightarrow{[2 ;-1]}\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 1 \\
0 & -3 & -3
\end{array}\right]} \\
& \stackrel{[1,2 ;-2]}{ }\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & -3 & -3
\end{array}\right] \xrightarrow{[3,2 ; 3]}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \text { (Reduced row echelon form) }
\end{aligned}
$$

Now we apply Theorem 5.1 （1．5．3 or 1．6．4 in the textbook）．（c）\Leftrightarrow（d）．Since the reduced row echelon form is not the identity matrix，A is not expressible as a product of elementary matrices．（Strictly speaking $(\mathrm{d}) \Rightarrow$（c），or its contraposition （（d）\Rightarrow（c）の対偶）is used．）
Another solution：Since $\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 3 & 7 \\ 3 & 3 & 9\end{array}\right]\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ ，by Theorem 5．1（1．5．3 or
1．6．4 in the textbook）．（b）$\Leftrightarrow(\mathrm{d})$ ，the matrix cannot be expressed as a product of elementary matrices．（Strictly speaking $(\mathrm{d}) \Rightarrow(\mathrm{b})$ ，or its contraposition is used． Can you tell how the nontrivial solution $[-2,-1,1]^{T}$ is found？It is read from the reduced row echelon form obtained above．）

2．We want to show＂the reduced row echelon form of a matrix is unique．＂Let A be an $m \times n$ matrix and let both B and C be reduced row echelon form of A ．Since B and C are obtained by performing a series to elementary row operations to A ，there are invertible matrices P and Q such that $B=P A$ and $C=Q A$ ．
（a）Let \boldsymbol{x} be an $n \times 1$ matrix．Show that $A \boldsymbol{x}=\mathbf{0} \Leftrightarrow B \boldsymbol{x}=\mathbf{0}$ ，where $\mathbf{0}$ is the zero matrix of size $n \times 1$ ．
Sol．Suppose $A \boldsymbol{x}=\mathbf{0}$ ．Then $B \boldsymbol{x}=P A \boldsymbol{x}=P \mathbf{0}=\mathbf{0}$ ．Conversely suppose $B \boldsymbol{x}=\mathbf{0}$ ．Since P is invertible，$A \boldsymbol{x}=P^{-1} P A \boldsymbol{x}=P^{-1} B \boldsymbol{x}=P^{-1} \mathbf{0}=\mathbf{0}$ ．
（b）Let \boldsymbol{x} be an $n \times 1$ matrix．Show that if $A \boldsymbol{x}=\mathbf{0}$ ，then $(B-C) \boldsymbol{x}=\mathbf{0}$ ．
Sol．By（a）we have $B \boldsymbol{x}=\mathbf{0} \Leftrightarrow A \boldsymbol{x}=\mathbf{0} \Leftrightarrow C \boldsymbol{x}=\mathbf{0}$ ，as $C=Q A$ and Q is invertible．Suppose $A \boldsymbol{x}=\mathbf{0}$ ．Then $B \boldsymbol{x}=\mathbf{0}=C \boldsymbol{x}$ ．Hence $(B-C) \boldsymbol{x}=$ $B \boldsymbol{x}-C \boldsymbol{x}=\mathbf{0}-\mathbf{0}=\mathbf{0}$ ．

Please read the article and understand its proof．It may be a little difficult but you can understand．

