Solutions to Take-Home Quiz 3 (September 28, 2007)

Let A and B be 3×3 matrices given below, and $C=[A \mid I]$, where I is the identity matrix of size three.

$$
A=\left[\begin{array}{lll}
-3 & 1 & -1 \\
-3 & 1 & -2 \\
-1 & 0 & -2
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 4 \\
-3 & 1 & -1
\end{array}\right], \quad \text { and } C=\left[\begin{array}{cccccc}
-3 & 1 & -1 & 1 & 0 & 0 \\
-3 & 1 & -2 & 0 & 1 & 0 \\
-1 & 0 & -2 & 0 & 0 & 1
\end{array}\right]
$$

We applied elementary row operations $[1,3],[1 ;-1],[2,1 ; 3]$ to the matrix C in this order and obtained a matrix $[B \mid P]$, where B is a 3×3 matrix above and P is a 3×3 matrix.

1. Find the matrix P.

Sol.

$$
I \xrightarrow{[1,3]}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \xrightarrow{[1 ;-1]}\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \xrightarrow{[2,1 ; 3]}\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & -3 \\
1 & 0 & 0
\end{array}\right]=P
$$

2. Find the reduced row echelon form of the matrix C. (Solution only.)

Sol.

$$
\begin{gathered}
\left.[B \mid P]=\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
-3 & 1 & -1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{[3,1 ; 3]}\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 1 & 5 & 1 & 0 & -3
\end{array}\right] \xrightarrow{[3,2 ;-1]}\right] \\
{\left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \xrightarrow{[1,3 ;-2]}\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 2 & -1 \\
0 & 1 & 4 & 0 & 1 & -3 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right] \xrightarrow{[2,3 ;-4]}} \\
{\left[\begin{array}{cccccc}
1 & 0 & 0 & -2 & 2 & -1 \\
0 & 1 & 0 & -4 & 5 & -3 \\
0 & 0 & 1 & 1 & -1 & 0
\end{array}\right]=\left[I \mid A^{-1}\right] \text { (Reduced Echelon Form) }}
\end{gathered}
$$

3. Find the inverse matrix of A. (Solution only.)

Sol.

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & 2 & -1 \\
-4 & 5 & -3 \\
1 & -1 & 0
\end{array}\right]
$$

4. Express P^{-1} as a product of elementary matrices using the notation $P(i ; c), P(i, j)$ and $P(i, j ; c)$.
Sol. Since $P=P(2,1 ; 3) P(1 ;-1) P(1,3)$,

$$
P^{-1}=P(1,3)^{-1} P(1 ;-1)^{-1} P(2,1 ; 3)^{-1}=P(1,3) P(1 ;-1) P(2,1 ;-3) .
$$

