Solutions to Take-Home Quiz 1 (September 14, 2007)

ſ	$x_1 + x_3 - x_4 + 4x_5$	=	-3		Γ	1	0	1	-1	4	0	-3]
ł	$2x_1 + 2x_3 - x_4 + 6x_5$	=	1	D		2	0	2	-1	6	0	1
	$x_1 + x_3 + 2x_5 - x_6$	=	5	$D \equiv$		0	-2	-6	0	-2	0	-2
l	$-x_1 - 2x_2 - 7x_3 - 4x_5 + x_6$	=	-7		L –	1	-2	-7	0	-4	1	-7

1. Find the augmented matrix A of the system of linear equations above. Sol.

	[1	0	1	-1	4	0	-3]
4 —	2	0	2	-1	6	0	1
$A \equiv$	1	0	1	0	2	-1	5
	-1	-2	-7	0	-4	1	-7

- 2. The matrix B is obtained by applying an elementary row operation once to the augmented matrix A. Write the elementary row operation using the notation [i; c], [i, j], or [i, j; c].
 - **Sol.** [3, 4; 1].
- 3. Find the reduced row echelon form of the augmented matrix A. (Solution only.)Sol. Apply the following consecutively in this order:

$$[2, 1; -2], [4, 1; 1], [2, 3], [2, -\frac{1}{2}], [4, 2; 2], [4, 3; 1], [1, 3; 1].$$

Then we have

[1	0	1	0	2	0	4	
0	1	3	0	1	0	1	
0	0	0	1	-2	0	7	•
0	0	0	0	0	1	-1	

- There are many ways to obtain the reduced echelon form but the final matrix should be the same. When can we change the order of operations and when cannot?
- Starting from the reduced row echelon form above, is it possible to obtain the matrix A back again by applying elementary row operations? Can you find the sequence of such elementary row operations from the one we obtained the reduced echelon form from A with a slight modification?
- 4. Find the solution of the system of linear equations. Use parameters if necessary. Sol.

$$\begin{cases} x_1 = 4 - s - 2t \\ x_2 = 1 - 3s - t \\ x_3 = s \\ x_4 = 7 + 2t \\ x_5 = t \\ x_6 = -1 \end{cases}, \text{ or } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \\ 7 \\ 0 \\ -1 \end{bmatrix} + s \begin{bmatrix} -1 \\ -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ -1 \\ 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}.$$

s and t are parameters.