Solutions to Take-Home Quiz 1 (September 14, 2007)

$$
\left\{\begin{array}{cll}
x_{1}+x_{3}-x_{4}+4 x_{5} & = & -3 \\
2 x_{1}+2 x_{3}-x_{4}+6 x_{5} & = & 1 \\
x_{1}+x_{3}+2 x_{5}-x_{6} & = & 5 \\
-x_{1}-2 x_{2}-7 x_{3}-4 x_{5}+x_{6} & = & -7
\end{array} \quad B=\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & -1 & 4 & 0 & -3 \\
2 & 0 & 2 & -1 & 6 & 0 & 1 \\
0 & -2 & -6 & 0 & -2 & 0 & -2 \\
-1 & -2 & -7 & 0 & -4 & 1 & -7
\end{array}\right]\right.
$$

1. Find the augmented matrix A of the system of linear equations above.

Sol.

$$
A=\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & -1 & 4 & 0 & -3 \\
2 & 0 & 2 & -1 & 6 & 0 & 1 \\
1 & 0 & 1 & 0 & 2 & -1 & 5 \\
-1 & -2 & -7 & 0 & -4 & 1 & -7
\end{array}\right]
$$

2. The matrix B is obtained by applying an elementary row operation once to the augmented matrix A. Write the elementary row operation using the notation $[i ; c]$, $[i, j]$, or $[i, j ; c]$.
Sol. $[3,4 ; 1]$.
3. Find the reduced row echelon form of the augmented matrix A. (Solution only.)

Sol. Apply the following consecutively in this order:

$$
[2,1 ;-2],[4,1 ; 1],[2,3],\left[2,-\frac{1}{2}\right],[4,2 ; 2],[4,3 ; 1],[1,3 ; 1] .
$$

Then we have

$$
\left[\begin{array}{rrrrrrr}
1 & 0 & 1 & 0 & 2 & 0 & 4 \\
0 & 1 & 3 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & -2 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] .
$$

- There are many ways to obtain the reduced echelon form but the final matrix should be the same. When can we change the order of operations and when cannot?
- Starting from the reduced row echelon form above, is it possible to obtain the matrix A back again by applying elementary row operations? Can you find the sequence of such elementary row operations from the one we obtained the reduced echelon form from A with a slight modification?

4. Find the solution of the system of linear equations. Use parameters if necessary.

Sol.

$$
\left\{\begin{array}{l}
x_{1}=4-s-2 t \\
x_{2}=1-3 s-t \\
x_{3}=s \\
x_{4}=7+2 t \\
x_{5}=t \\
x_{6}=-1
\end{array} \quad, \text { or }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
4 \\
1 \\
0 \\
7 \\
0 \\
-1
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
2 \\
1 \\
0
\end{array}\right] .\right.
$$

s and t are parameters.

