I. For 1 to 6, let

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
2 & 4 & 5 & 3 \\
1 & 3 & 0 & -1 \\
4 & 9 & 6 & -1 \\
0 & -1 & 2 & 1
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-2
\end{array}\right], B_{0}=\left[\begin{array}{ccccc}
2 & 4 & 5 & 3 & c_{1} \\
1 & 3 & 0 & -1 & c_{2} \\
4 & 9 & 6 & -1 & c_{3} \\
0 & -1 & 2 & 1 & c_{4}
\end{array}\right] \\
B_{0} \rightarrow B_{1}=\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{2} \\
2 & 4 & 5 & 3 & c_{1} \\
4 & 9 & 6 & -1 & c_{3} \\
0 & -1 & 2 & 1 & c_{4}
\end{array}\right] \rightarrow B_{2}=\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{1}^{\prime} \\
0 & -2 & 5 & 5 & c_{2}^{\prime} \\
0 & -3 & 6 & 3 & c_{3}^{\prime} \\
0 & -1 & 2 & 1 & c_{4}^{\prime}
\end{array}\right] .
\end{gathered}
$$

Matrix B_{1} is obtained from B_{0} by an elementary row operation and B_{2} is obtained from B_{1} by a sequence of elementary row operations.

1. Express $c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}$ in terms of $c_{1}, c_{2}, c_{3}, c_{4}$.
2. Write a sequence of elementary row operations applied to B_{0} to obtain B_{2} using $[i ; c],[i, j],[i, j ; c]$ notation, by assuming that B_{1} is obtained by the first operation. (10 pts)
3. Find a 4×4 matrix P such that $P B_{0}=B_{2}$.

Points:

$\mathrm{I}-1$	2	3	4^{*}	5	6	$\mathrm{II}-1^{*}$	2	Total

$$
\text { *: } 20 \text { points }
$$

4. Find a reduced row echelon form of $[A \boldsymbol{b}]$ and find the solution \boldsymbol{x} of a matrix equation $A \boldsymbol{x}=\boldsymbol{b}$. Show work!
5. Let $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right]$. Show that the columns of A form a linearly dependent set. (10 pts)
6. Find a vector in \mathbb{R}^{4} which is not in the span of the set of column vectors of A, i.e., a vector \boldsymbol{x} not in $\operatorname{Span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right\}$.

II．For 1 and 2 below，let

$$
C=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & -2 & 1 \\
-2 & 2 & -5
\end{array}\right] \cdot \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \boldsymbol{d}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
\text { I }
\end{array}\right]=\left[\begin{array}{cccccc}
1 & -1 & 2 & 1 & 0 & 0 \\
3 & -2 & 1 & 0 & 1 & 0 \\
-2 & 2 & -5 & 0 & 0 & 1
\end{array}\right]
$$

1．Find the inverse of C by applying a sequence of elementary row operations to $[C I]$ ． Show work！．

2．Using the inverse of C obtained in the previous problem，find a solution to $C \boldsymbol{x}=\boldsymbol{d}$ ． Explain that $C \boldsymbol{x}=\boldsymbol{d}$ has exactly one solution．

Linear Algebra I

Solutions to Midterm Exam 2012
I. For 1 to 6, let

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
2 & 4 & 5 & 3 \\
1 & 3 & 0 & -1 \\
4 & 9 & 6 & -1 \\
0 & -1 & 2 & 1
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-2
\end{array}\right], B_{0}=\left[\begin{array}{ccccc}
2 & 4 & 5 & 3 & c_{1} \\
1 & 3 & 0 & -1 & c_{2} \\
4 & 9 & 6 & -1 & c_{3} \\
0 & -1 & 2 & 1 & c_{4}
\end{array}\right] \\
B_{0} \rightarrow B_{1}=\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{2} \\
2 & 4 & 5 & 3 & c_{1} \\
4 & 9 & 6 & -1 & c_{3} \\
0 & -1 & 2 & 1 & c_{4}
\end{array}\right] \rightarrow B_{2}=\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{1}^{\prime} \\
0 & -2 & 5 & 5 & c_{2}^{\prime} \\
0 & -3 & 6 & 3 & c_{3}^{\prime} \\
0 & -1 & 2 & 1 & c_{4}^{\prime}
\end{array}\right] .
\end{gathered}
$$

Matrix B_{1} is obtained from B_{0} by an elementary row operation and B_{2} is obtained from B_{1} by a sequence of elementary row operations.

1. Express $c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}$ in terms of $c_{1}, c_{2}, c_{3}, c_{4}$.

Solution. $c_{1}^{\prime}=c_{2}, c_{2}^{\prime}=c_{1}-2 c_{2}, c_{3}^{\prime}=c_{3}-4 c_{2}, c_{4}^{\prime}=c_{4}$.
2. Write a sequence of elementary row operations applied to B_{0} to obtain B_{2} using $[i ; c],[i, j],[i, j ; c]$ notation, by assuming that B_{1} is obtained by the first operation. (10 pts)
Solution. $\quad[1,2] \rightarrow[2,1 ;-2] \rightarrow[3,1 ;-4]$
3. Find a 4×4 matrix P such that $P B_{0}=B_{2}$.
(10 pts)
Solution.

$$
P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-4 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

4. Find a reduced row echelon form of $[A \boldsymbol{b}]$ and find the solution \boldsymbol{x} of a matrix equation $A \boldsymbol{x}=\boldsymbol{b}$. Show work!
(20 pts)
Solution. Since $c_{1}^{\prime}=c_{2}=2, c_{2}^{\prime}=c_{1}-2 c_{2}=-3, c_{3}^{\prime}=-6, c_{4}^{\prime}=-2$,

$$
\begin{gathered}
{[A \quad \boldsymbol{b}] \rightarrow\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & 2 \\
0 & -2 & 5 & 5 & -3 \\
0 & -3 & 6 & 3 & -6 \\
0 & -1 & 2 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 6 & 2 & -4 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 0 & -16 & -10 \\
0 & 1 & 0 & 5 & 4 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-10 \\
4 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
16 \\
-5 \\
-3 \\
1
\end{array}\right], s \text { is a free parameter }
\end{gathered}
$$

5. Let $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right]$. Show that the columns of A form a linearly dependent set. (10 pts)

Solution. Since $x_{1}=16, x_{2}=-5, x_{3}=-3, x_{4}=1$ is a solution to $A \boldsymbol{x}=\mathbf{0}$.

$$
\mathbf{0}=A \boldsymbol{x}=16 \boldsymbol{a}_{1}-5 \boldsymbol{a}_{2}-3 \boldsymbol{a}_{3}+\boldsymbol{a}_{4}=16\left[\begin{array}{l}
2 \\
1 \\
4 \\
0
\end{array}\right]-5\left[\begin{array}{c}
4 \\
3 \\
9 \\
-1
\end{array}\right]-3\left[\begin{array}{c}
5 \\
0 \\
6 \\
2
\end{array}\right]+\left[\begin{array}{c}
3 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

Hence the columns of A form a linearly dependent set.
6. Find a vector in \mathbb{R}^{4} which is not in the span of the set of column vectors of A, i.e., a vector \boldsymbol{x} not in $\operatorname{Span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right\}$.
(10 pts)
Solution. Using B_{2}, we obtain an echelon form.

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{2} \\
0 & -2 & 5 & 5 & c_{1}-2 c_{2} \\
0 & -3 & 6 & 3 & c_{3}-4 c_{2} \\
0 & -1 & 2 & 1 & c_{4}
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{2} \\
0 & 0 & 1 & 3 & c_{1}-2 c_{2}-2 c_{4} \\
0 & 0 & 0 & 0 & c_{3}-4 c_{2}-3 c_{4} \\
0 & -1 & 2 & 1 & c_{4}
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccccc}
1 & 3 & 0 & -1 & c_{2} \\
0 & -1 & 2 & 1 & c_{4} \\
0 & 0 & 1 & 3 & c_{1}-2 c_{2}-2 c_{4} \\
0 & 0 & 0 & 0 & c_{3}-4 c_{2}-3 c_{4}
\end{array}\right] . \text { Let } \boldsymbol{c}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right], \boldsymbol{v}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Since $A \boldsymbol{x}=\boldsymbol{c}$ has a solution if and only if $c_{3}-4 c_{2}-3 c_{4}=0$. Since \boldsymbol{v} with $c_{1}=0, c_{2}=1, c_{3}=0, c_{4}=0$ does not satisfy this condition, $A \boldsymbol{x}=\boldsymbol{v}$ does not have a solution and \boldsymbol{v} cannot be expressed as a linear combination of the columns of A. Hence \boldsymbol{v} is not in the span of the set of column vectors of A.
II. For 1 and 2 below, let

$$
C=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & -2 & 1 \\
-2 & 2 & -5
\end{array}\right] . \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \boldsymbol{d}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],[C I]=\left[\begin{array}{cccccc}
1 & -1 & 2 & 1 & 0 & 0 \\
3 & -2 & 1 & 0 & 1 & 0 \\
-2 & 2 & -5 & 0 & 0 & 1
\end{array}\right]
$$

1. Find the inverse of C by applying a sequence of elementary row operations to $[C I]$.

Show work!.
(20 pts)
Solution.
$\left[\begin{array}{cccccc}1 & -1 & 2 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 & 1 & 0 \\ -2 & 2 & -5 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & -1 & 2 & 1 & 0 & 0 \\ 0 & 1 & -5 & -3 & 1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & -3 & -2 & 1 & 0 \\ 0 & 1 & -5 & -3 & 1 & 0 \\ 0 & 0 & -1 & 2 & 0 & 1\end{array}\right]$
$\rightarrow\left[\begin{array}{cccccc}1 & 0 & -3 & -2 & 1 & 0 \\ 0 & 1 & -5 & -3 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & -1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & -8 & 1 & -3 \\ 0 & 1 & 0 & -13 & 1 & -5 \\ 0 & 0 & 1 & -2 & 0 & -1\end{array}\right], C^{-1}=\left[\begin{array}{ccc}-8 & 1 & -3 \\ -13 & 1 & -5 \\ -2 & 0 & -1\end{array}\right]$.
2. Using the inverse of C obtained in the previous problem, find a solution to $C \boldsymbol{x}=\boldsymbol{d}$. Explain that $C \boldsymbol{x}=\boldsymbol{d}$ has exactly one solution.
Solution.

$$
\boldsymbol{x}=C^{-1} C \boldsymbol{x}=C^{-1} \boldsymbol{d}=\left[\begin{array}{ccc}
-8 & 1 & -3 \\
-13 & 1 & -5 \\
-2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-15 \\
-26 \\
-5
\end{array}\right]
$$

If $C \boldsymbol{x}=\boldsymbol{d}$, then by multiplying C^{-1} from the left, we have $\boldsymbol{x}=C^{-1} \boldsymbol{d}$, which is the vector above. Therefore the solution is unique.

