November 16, 2017

Linear Algebra I Solutions to Final Exam 2017

(Total: 100 pts, 50% of the grade)

- 1. Let $\boldsymbol{u} = [1, 0, 1]^{\top}$, $\boldsymbol{v} = [1, -1, 2]^{\top}$, $\boldsymbol{w} = \boldsymbol{u} \times \boldsymbol{v}$, $\boldsymbol{e}_1 = [1, 0, 0]^{\top}$, $\boldsymbol{e}_2 = [0, 1, 0]^{\top}$ and $\boldsymbol{e}_3 = [0, 0, 1]^{\top}$. (10 pts)
 - (a) Find \boldsymbol{w} and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Show work! Solution.

$$\boldsymbol{w} = \boldsymbol{u} \times \boldsymbol{v} = \begin{vmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \boldsymbol{e}_3 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{vmatrix} = \begin{bmatrix} \begin{vmatrix} 0 & 1 \\ -1 & 2 \end{vmatrix}, -\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} \Big]^{\top} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}.$$

Volume = $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}| = ||\boldsymbol{w}||^2 = |1 + 1 + 1| = |3| = 3.$

(b) Find the standard matrix A of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\boldsymbol{u}) = \boldsymbol{e}_1$, $T(\boldsymbol{v}) = \boldsymbol{e}_2$ and $T(\boldsymbol{w}) = \boldsymbol{e}_3$. Show work! Solution. Let $B = [\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]$. Then

$$AB = [Au, Av, Aw] = [T(u), T(v), T(w)] = [e_1, e_2, e_3] = I.$$

By Invertible Matrix Theorem, $A = B^{-1}$.

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 1 & 0 \\ 1 & 2 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{[3,1;-1],[2;-1]} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{[1,2;-1],[3,2;-1]} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{[1,2;-1],[3,2;-1]} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -3 & -1 & 1 & 1 \end{bmatrix} \xrightarrow{[3;-1/3],[2,3;-1]} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1/3 & -2/3 & 1/3 \\ 0 & 0 & 1 & 1/3 & -1/3 & -1/3 \end{bmatrix}$$

Hence the standard matrix is

$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1/3 & -2/3 & 1/3 \\ 1/3 & -1/3 & -1/3 \end{bmatrix}.$$

2. Consider the system of linear equations with augmented matrix $C = [c_1, c_2, ..., c_7]$, where $c_1, c_2, ..., c_7$ are the columns of C. Let $A = [c_1, c_2, ..., c_6]$ be its coefficient matrix. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C. (30 pts)

C =	$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	0	$-2 \\ -4$	3 6	$0 \\ -3$	1 - 10	5^{-13}	,	G =	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0 1	$-2 \\ 1$	$\frac{3}{-2}$	$0 \\ -1$	1 -5	$\frac{5}{3}$]
	$ \begin{array}{c} 2 \\ 0 \\ -3 \end{array} $	$1 \\ 2$	1 8	$-2 \\ -13$	$-1 \\ -2$	$-5 \\ -13$	$\frac{10}{3}$ -9			0 0			$\begin{array}{c} 0\\ 0\\ 0\end{array}$	-3 0	$-12 \\ 0$	3 0	.

(a) Describe each step of a sequence of elementary row operations to obtain G from C by [i, j], [i, j; c], [i; c] notation. Show work.

Solution.

$$C \xrightarrow{[2,1;-2]} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & -3 & -12 & 3 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ -3 & 2 & 8 & -13 & -2 & -13 & -9 \end{bmatrix} \xrightarrow{[4,1;3]} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & -3 & -12 & 3 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ 0 & 2 & 2 & -4 & -2 & -10 & 6 \end{bmatrix}$$
$$\overset{[4,3;-2]}{\longrightarrow} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & -3 & -12 & 3 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{[2,3]} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = G.$$

Hence the sequence of operations above is [2, 1; -2], [4, 1; 3], [4, 3; -2], [2, 3]. Another solution is [2, 1; -2], [4, 1; 3], [2, 3], [4, 2; -2].

(20 pts)

(b) Find an invertible matrix P of size 4 such that G = PC and express P as a product of four elementary matrices. Do not forget writing P. Show work.

Solution. P is the matrix obtained by applying the sequence of row operations [2, 1; -2], [4, 1; 3], [4, 3; -2], [2, 3] to the identity matrix of size 4 in this order. Hence,

$$P = E(2,3)E(4,3;-2)E(4,1;3)E(2,1;-2)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 0 & -2 & 1 \end{bmatrix}.$$

(c) Find an elementary matrix $E \neq I$ such that EG = G and show that there is another invertible matrix Q different from P such that G = QC. Solution. Since the fourth row is zero, [4, c] or [i, 4; c] (i = 1, 2, 3) does not change G. Hence

for example E = E(4; 2) and E(1, 4; -1) are possibilities. If Q = EP, then QC = EPC = EG = G and $P \neq EP = Q$, as desired.

(d) Find the reduced row echelon form of the matrix C. Show work. Solution.

(e) Find all solutions of the system of linear equations.

Solution. Let $x_3 = s$, $x_4 = t$ and $x_6 = r$ be free parameters. Then

$egin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{array}$	=	$\begin{bmatrix} 2s - 3t - r + 5\\ -s + 2t + r + 2\\ s\\ t\\ -4r - 1\\ r \end{bmatrix}$	=	$\begin{bmatrix} 5 \\ 2 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix}$	$+ s \cdot$		$+ t \cdot$	$\begin{bmatrix} -3 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	$+ r \cdot$	$ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ -4 \\ 1 \end{bmatrix} $	
x_6		r		0		0		0		1	

(f) Explain that the linear transformation defined by $T : \mathbb{R}^6 \to \mathbb{R}^4 \ (\boldsymbol{x} \mapsto A\boldsymbol{x})$, i.e., $T(\boldsymbol{x}) = A\boldsymbol{x}$ is NOT onto.

Solution. If T is onto, its standard matrix A has a pivot position in every row. However, an echelon form of A is the first six columns of G and it does not have a pivot position in every row.

3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.

$$A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -2 & 2 & 6 & -4 \\ 3 & -1 & 0 & 2 \\ 2 & 1 & -3 & 4 \end{bmatrix}, \ \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 7 \end{bmatrix}.$$

(a) Evaluate det(A). Show work! Solution.

$$det(A) = \begin{vmatrix} 0 & 2 & 3 & 1 \\ -2 & 2 & 6 & -4 \\ 3 & -1 & 0 & 2 \\ 2 & 1 & -3 & 4 \end{vmatrix} = 6 \begin{vmatrix} 0 & 2 & 1 & 1 \\ -1 & 1 & 1 & -2 \\ 3 & -1 & 0 & 2 \\ 2 & 1 & -1 & 4 \end{vmatrix} = 6 \begin{vmatrix} 0 & 2 & 1 & 1 \\ -1 & -1 & 0 & -3 \\ 3 & -1 & 0 & 2 \\ 2 & 3 & 0 & 5 \end{vmatrix}$$
$$= 6 \begin{vmatrix} -1 & -1 & -3 \\ 3 & -1 & 2 \\ 2 & 3 & 5 \end{vmatrix} = 6 \begin{vmatrix} -1 & -1 & -3 \\ 0 & -4 & -7 \\ 0 & 1 & -1 \end{vmatrix} = 6 \cdot (-1)(4+7) = -66.$$

(b) Express x_2 as a quotient (*bun-su*) of determinants when Ax = b, and write adj(A), the adjugate of A. Don't evaluate the determinants.

4. Let A be the 4×4 matrix, and B an $m \times n$ matrix such that

$$A = \begin{bmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{bmatrix} = B^{\top}B, \text{ and let } \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Find the determinant of A. Show work! Solution.

 $\begin{vmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{vmatrix}$ $= \begin{vmatrix} a+3b & b & b & b \\ a+3b & a & b & b \\ a+3b & b & a & b \\ a+3b & b & b & a \end{vmatrix} = (a+3b) \begin{vmatrix} 1 & b & b & b \\ 1 & a & b & b \\ 1 & b & a & b \\ 1 & b & b & a \end{vmatrix} = (a+3b) \begin{vmatrix} 1 & b & b & b \\ 0 & a-b & 0 & 0 \\ 0 & 0 & a-b & 0 \\ 0 & 0 & 0 & a-b \end{vmatrix}.$

Hence $|A| = (a+3b)(a-b)^3$.

- (b) Explain that if $B^{\top}B$ is invertible, then $m \ge n$. Solution. We prove the contrapositive. Suppose m < n. Then every column of B cannot be a pivot column, $B\mathbf{x} = \mathbf{0}$ has a nontrivial solution $\mathbf{v} \neq \mathbf{0}$. Then $B\mathbf{v} = \mathbf{0}$ and $B^{\top}B\mathbf{v} = \mathbf{0}$. Since $B^{\top}B$ is a square matrix, by Invertible Matrix Theorem, $B^{\top}B$ cannot be invertible. This proves the assertion.
- (c) Show that if m < n, then a = b or a = -3b. Solution. If m < n, then by (b), $A = B^{\top}B$ is not invertible. Hence $\det(A) = (a+3b)(a-b)^3 =$ 0. Thus, a = -3b or a = b.

(40 pts)

- (d) Show that **b** is an eigenvector of A. What is the corresponding eigenvalue? Solution. Since **b** is the all one vector, every entry of $A\mathbf{b}$ is the row sum of A, which is a + 3b. Hence, $A\mathbf{b} = (a + 3b)\mathbf{b}$, and **b** is an eigenvector for an eigenvalue a + 3b.
- (e) Find the characteristic polynomial and all eigenvalues of A. Show work! *Solution.*

$$|A-xI| = \begin{vmatrix} a-x & b & b & b \\ b & a-x & b & b \\ b & b & a-x & b \\ b & b & b & a-x \end{vmatrix} = (a-x+3b)(a-x-b)^3 = (x-(a+3b))(x-(a-b))^3.$$

Note the determinant above is the determinant of A replacing a by a-x. Hence the eigenvalues are a + 3b of multiplicity 1 and a - b of multiplicity 3 if $b \neq 0$. If b = 0, then A = aI and the only eigenvalue of A is a of multiplicity four.

(f) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. Show work! Solution. If b = 0, then A = aI and P = I, D = aI. So assume that $b \neq 0$.

Hence,

$$P = \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} a+3b & 0 & 0 & 0 \\ 0 & a-b & 0 & 0 \\ 0 & 0 & a-b & 0 \\ 0 & 0 & 0 & a-b \end{bmatrix}.$$

If J is the all one matrix, then A = (a - b)I + bJ. Since an eigenvector of A corresponding to a - b is characterized by the property that its column sum is zero, which is also an eigenvector of J corresponding to 0, we can take

Hence,

$$AP = ((a-b)I + bJ)P = P((a-b)I + bD') = PD$$

Hiroshi Suzuki (Email: hsuzuki@icu.ac.jp)