Solutions to Final Exam 2017

(Total: $100 \mathrm{pts}, 50 \%$ of the grade)

1. Let $\boldsymbol{u}=[1,0,1]^{\top}, \boldsymbol{v}=[1,-1,2]^{\top}, \boldsymbol{w}=\boldsymbol{u} \times \boldsymbol{v}, \boldsymbol{e}_{1}=[1,0,0]^{\top}, \boldsymbol{e}_{2}=[0,1,0]^{\top}$ and $\boldsymbol{e}_{3}=[0,0,1]^{\top}$. (10 pts)
(a) Find \boldsymbol{w} and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Show work!

Solution.

$$
\boldsymbol{w}=\boldsymbol{u} \times \boldsymbol{v}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
1 & 0 & 1 \\
1 & -1 & 2
\end{array}\right|=\left[\left|\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right|,-\left|\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right|,\left|\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right|\right]^{\top}=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right] .
$$

$$
\text { Volume }=|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|=\|\boldsymbol{w}\|^{2}=|1+1+1|=|3|=3 .
$$

(b) Find the standard matrix A of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(\boldsymbol{u})=\boldsymbol{e}_{1}$, $T(\boldsymbol{v})=\boldsymbol{e}_{2}$ and $T(\boldsymbol{w})=\boldsymbol{e}_{3}$. Show work!
Solution. Let $B=[\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}]$. Then

$$
A B=[A \boldsymbol{u}, A \boldsymbol{v}, A \boldsymbol{w}]=[T(\boldsymbol{u}), T(\boldsymbol{v}), T(\boldsymbol{w})]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]=I
$$

By Invertible Matrix Theorem, $A=B^{-1}$.

$$
\begin{aligned}
& \left.\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & 1 & 0 \\
1 & 2 & -1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{[3,1 ;-1],[2 ;-1]}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 0 \\
0 & 1 & -2 & -1 & 0 & 1
\end{array}\right] \xrightarrow{[1,2 ;-1],[3,2 ;-1]}\right] \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & -1 & 0 \\
0 & 0 & -3 & -1 & 1 & 1
\end{array}\right] \xrightarrow{[3 ;-1 / 3],[2,3 ;-1]}\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 / 3 & -2 / 3 & 1 / 3 \\
0 & 0 & 1 & 1 / 3 & -1 / 3 & -1 / 3
\end{array}\right]}
\end{aligned}
$$

Hence the standard matrix is

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 / 3 & -2 / 3 & 1 / 3 \\
1 / 3 & -1 / 3 & -1 / 3
\end{array}\right]
$$

2. Consider the system of linear equations with augmented matrix $C=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{7}\right]$, where $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{7}$ are the columns of C. Let $A=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{6}\right]$ be its coefficient matrix. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C.
(30 pts)

$$
C=\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
2 & 0 & -4 & 6 & -3 & -10 & 13 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
-3 & 2 & 8 & -13 & -2 & -13 & -9
\end{array}\right], \quad G=\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
0 & 0 & 0 & 0 & -3 & -12 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Describe each step of a sequence of elementary row operations to obtain G from C by $[i, j],[i, j ; c],[i ; c]$ notation. Show work.
Solution.

$$
\begin{gathered}
\xrightarrow{[2,1 ;-2]}\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & -3 & -12 & 3 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
-3 & 2 & 8 & -13 & -2 & -13 & -9
\end{array}\right] \xrightarrow{[4,1 ; 3]}\left[\begin{array}{cccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & -3 & -12 & 3 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
0 & 2 & 2 & -4 & -2 & -10 & 6
\end{array}\right] \\
\xrightarrow{[4,3 ;-2]}\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
0 & 0 & 0 & 0 & -3 & -12 & 3 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{[2,3]}\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
0 & 0 & 0 & 0 & -3 & -12 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=G .
\end{gathered}
$$

Hence the sequence of operations above is $[2,1 ;-2],[4,1 ; 3],[4,3 ;-2],[2,3]$. Another solution is $[2,1 ;-2],[4,1 ; 3],[2,3],[4,2 ;-2]$.
(b) Find an invertible matrix P of size 4 such that $G=P C$ and express P as a product of four elementary matrices. Do not forget writing P. Show work.
Solution. P is the matrix obtained by applying the sequence of row operations $[2,1 ;-2]$, $[4,1 ; 3],[4,3 ;-2],[2,3]$ to the identity matrix of size 4 in this order. Hence,

$$
\begin{aligned}
P & =E(2,3) E(4,3 ;-2) E(4,1 ; 3) E(2,1 ;-2) \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 1 \\
0 \\
3 & 0 & 0 \\
1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 \\
0 & 0 & 1 \\
0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-2 & 1 & 0 & 0 \\
3 & 0 & -2 & 1
\end{array}\right] .
\end{aligned}
$$

(c) Find an elementary matrix $E \neq I$ such that $E G=G$ and show that there is another invertible matrix Q different from P such that $G=Q C$.
Solution. Since the fourth row is zero, $[4, c]$ or $[i, 4 ; c](i=1,2,3)$ does not change G. Hence for example $E=E(4 ; 2)$ and $E(1,4 ;-1)$ are possibilities. If $Q=E P$, then $Q C=E P C=$ $E G=G$ and $P \neq E P=Q$, as desired.
(d) Find the reduced row echelon form of the matrix C. Show work.

Solution.
$C \rightarrow \rightarrow \xrightarrow{[3 ;-1 / 3]}\left[\begin{array}{ccccccc}1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ 0 & 0 & 0 & 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \xrightarrow{[2,3 ; 1]}\left[\begin{array}{ccccccc}1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 1 & 1 & -2 & 0 & -1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(e) Find all solutions of the system of linear equations.

Solution. Let $x_{3}=s, x_{4}=t$ and $x_{6}=r$ be free parameters. Then

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
2 s-3 t-r+5 \\
-s+2 t+r+2 \\
s \\
t \\
-4 r-1 \\
r
\end{array}\right]=\left[\begin{array}{c}
5 \\
2 \\
0 \\
0 \\
-1 \\
0
\end{array}\right]+s \cdot\left[\begin{array}{c}
2 \\
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t \cdot\left[\begin{array}{c}
-3 \\
2 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+r \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
-4 \\
1
\end{array}\right] .
$$

(f) Explain that the linear transformation defined by $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}(\boldsymbol{x} \mapsto A \boldsymbol{x})$, i.e., $T(\boldsymbol{x})=A \boldsymbol{x}$ is NOT onto.
Solution. If T is onto, its standard matrix A has a pivot position in every row. However, an echelon form of A is the first six columns of G and it does not have a pivot position in every row.
3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.
(20 pts)

$$
A=\left[\begin{array}{cccc}
0 & 2 & 3 & 1 \\
-2 & 2 & 6 & -4 \\
3 & -1 & 0 & 2 \\
2 & 1 & -3 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
7
\end{array}\right]
$$

(a) Evaluate $\operatorname{det}(A)$. Show work!

Solution.

$$
\left.\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{cccc}
0 & 2 & 3 & 1 \\
-2 & 2 & 6 & -4 \\
3 & -1 & 0 & 2 \\
2 & 1 & -3 & 4
\end{array}\right|=6\left|\begin{array}{cccc}
0 & 2 & 1 & 1 \\
-1 & 1 & 1 & -2 \\
3 & -1 & 0 & 2 \\
2 & 1 & -1 & 4
\end{array}\right|=6\left|\begin{array}{ccc}
0 & 2 & 1 \\
-1 & 1 \\
-1 & 0 & -3 \\
3 & -1 & 0 \\
2 & 3 & 0
\end{array}\right|
\end{aligned} \right\rvert\,
$$

(b) Express x_{2} as a quotient (bun-su) of determinants when $\boldsymbol{A x}=\boldsymbol{b}$, and write $\operatorname{adj}(A)$, the adjugate of A. Don't evaluate the determinants.

$$
\begin{aligned}
& x_{2} \xlongequal{\left|\begin{array}{cccc}
0 & 2 & 3 & 1 \\
-2 & 0 & 6 & -4 \\
3 & 1 & 0 & 2 \\
2 & 7 & -3 & 4
\end{array}\right|}\left|\begin{array}{cccc}
0 & 2 & 3 & 1 \\
-2 & 2 & 6 & -4
\end{array}\right|\left(\frac{-240}{-66}=\frac{40}{11}\right), \quad\left(\operatorname{adj}(A)=\left[\begin{array}{rrrr}
36 & -33 & -24 & -30 \\
24 & -33 & 6 & -42 \\
-24 & 11 & -6 & 20 \\
-42 & 33 & 6 & 24
\end{array}\right]\right) \\
& \left|\begin{array}{cccc}
3 & -1 & 0 & 2 \\
2 & 1 & -3 & 4
\end{array}\right| \\
& {\left[\begin{array}{ccc}
\left.\left.\left|\begin{array}{ccc}
2 & 6 & -4 \\
-1 & 0 & 2 \\
1 & -3 & 4
\end{array}\right|, \quad-\left|\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 0 & 2 \\
1 & -3 & 4
\end{array}\right|, \quad\left|\begin{array}{ccc}
2 & 3 & 1 \\
2 & 6 & -4 \\
1 & -3 & 4
\end{array}\right|, \quad-\left|\begin{array}{ccc}
2 & 3 & 1 \\
2 & 6 & -4 \\
-1 & 0 & 2
\end{array}\right|\right] ~\right] ~
\end{array}\right.}
\end{aligned}
$$

4. Let A be the 4×4 matrix, and B an $m \times n$ matrix such that
(40 pts)

$$
A=\left[\begin{array}{cccc}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right]=B^{\top} B, \quad \text { and let } \boldsymbol{b}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

(a) Find the determinant of A. Show work!

Solution.

$$
\begin{aligned}
& \left|\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right| \\
& \quad=\left|\begin{array}{cccc}
a+3 b & b & b & b \\
a+3 b & a & b & b \\
a+3 b & b & a & b \\
a+3 b & b & b & a
\end{array}\right|=(a+3 b)\left|\begin{array}{cccc}
1 & b & b & b \\
1 & a & b & b \\
1 & b & a & b \\
1 & b & b & a
\end{array}\right|=(a+3 b)\left|\begin{array}{cccc}
1 & b & b & b \\
0 & a-b & 0 & 0 \\
0 & 0 & a-b & 0 \\
0 & 0 & 0 & a-b
\end{array}\right| .
\end{aligned}
$$

Hence $|A|=(a+3 b)(a-b)^{3}$.
(b) Explain that if $B^{\top} B$ is invertible, then $m \geq n$.

Solution. We prove the contrapositive. Suppose $m<n$. Then every column of B cannot be a pivot column, $B \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution $\boldsymbol{v} \neq \mathbf{0}$. Then $B \boldsymbol{v}=\mathbf{0}$ and $B^{\top} B \boldsymbol{v}=\mathbf{0}$. Since $B^{\top} B$ is a square matrix, by Invertible Matrix Theorem, $B^{\top} B$ cannot be invertible. This proves the assertion.
(c) Show that if $m<n$, then $a=b$ or $a=-3 b$.

Solution. If $m<n$, then by (b), $A=B^{\top} B$ is not invertible. Hence $\operatorname{det}(A)=(a+3 b)(a-b)^{3}=$ 0 . Thus, $a=-3 b$ or $a=b$.
(d) Show that \boldsymbol{b} is an eigenvector of A. What is the corresponding eigenvalue?

Solution. Since \boldsymbol{b} is the all one vector, every entry of $A \boldsymbol{b}$ is the row sum of A, which is $a+3 b$. Hence, $A \boldsymbol{b}=(a+3 b) \boldsymbol{b}$, and \boldsymbol{b} is an eigenvector for an eigenvalue $a+3 b$.
(e) Find the characteristic polynomial and all eigenvalues of A. Show work!

Solution.

$$
|A-x I|=\left|\begin{array}{cccc}
a-x & b & b & b \\
b & a-x & b & b \\
b & b & a-x & b \\
b & b & b & a-x
\end{array}\right|=(a-x+3 b)(a-x-b)^{3}=(x-(a+3 b))(x-(a-b))^{3} .
$$

Note the determinant above is the determinant of A replacing a by $a-x$. Hence the eigenvalues are $a+3 b$ of multiplicity 1 and $a-b$ of multiplicity 3 if $b \neq 0$. If $b=0$, then $A=a I$ and the only eigenvalue of A is a of multiplicity four.
(f) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$. Show work!

Solution. If $b=0$, then $A=a I$ and $P=I, D=a I$. So assume that $b \neq 0$.

$$
A-(a-b) I=\left[\begin{array}{llll}
b & b & b & b \\
b & b & b & b \\
b & b & b & b \\
b & b & b & b
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad s\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Hence,

$$
P=\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array} \left\lvert\,, \quad D=\left[\begin{array}{cccc}
a+3 b & 0 & 0 & 0 \\
0 & a-b & 0 & 0 \\
0 & 0 & a-b & 0 \\
0 & 0 & 0 & a-b
\end{array}\right] .\right.\right.
$$

If J is the all one matrix, then $A=(a-b) I+b J$. Since an eigenvector of A corresponding to $a-b$ is characterized by the property that its column sum is zero, which is also an eigenvector of J corresponding to 0 , we can take

$$
\begin{gathered}
P=\left[\left.\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array} \right\rvert\, . \quad \text { If } J=\left[\left.\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array} \right\rvert\, \text { and } D^{\prime}=\left[\left.\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right\rvert\,,\right. \text { then }\right.\right. \\
{\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array} \left\lvert\,\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array} \left\lvert\,=\left[\left.\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array} \right\rvert\,\left[\left.\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array} \right\rvert\, .\right.\right.\right.\right.\right.\right.}
\end{gathered}
$$

Hence,

$$
A P=((a-b) I+b J) P=P\left((a-b) I+b D^{\prime}\right)=P D .
$$

