November 16, 2017

Linear Algebra I Final Exam 2017

(Total: 100 pts, 50% of the grade)

ID#:

Name:

- 1. Let $\boldsymbol{u} = [1, 0, 1]^{\top}$, $\boldsymbol{v} = [1, -1, 2]^{\top}$, $\boldsymbol{w} = \boldsymbol{u} \times \boldsymbol{v}$, $\boldsymbol{e}_1 = [1, 0, 0]^{\top}$, $\boldsymbol{e}_2 = [0, 1, 0]^{\top}$ and $\boldsymbol{e}_3 = [0, 0, 1]^{\top}$. (10 pts)
 - (a) Find \boldsymbol{w} and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Show work!

(b) Find the standard matrix A of a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\boldsymbol{u}) = \boldsymbol{e}_1, T(\boldsymbol{v}) = \boldsymbol{e}_2$ and $T(\boldsymbol{w}) = \boldsymbol{e}_3$. Show work!

Points:

1.(a)	(b)	2.(a)	(b)	(c)	(d)	(e)	(f)	3.(a)*	(b)*	Total
4 ()	(1)		(1)							
4.(a)*	(b)	(<i>c</i>)	(d)	(e)	(f)*			none	*	
								5	10	

メッセージ欄:この授業について、特に改善点について、その他何でもどうぞ。

2. Consider the system of linear equations with augmented matrix $C = [c_1, c_2, ..., c_7]$, where $c_1, c_2, ..., c_7$ are the columns of C. Let $A = [c_1, c_2, ..., c_6]$ be its coefficient matrix. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C. (30 pts)

$$C = \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 2 & 0 & -4 & 6 & -3 & -10 & 13 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ -3 & 2 & 8 & -13 & -2 & -13 & -9 \end{bmatrix}, \quad G = \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & 1 & 5 \\ 0 & 1 & 1 & -2 & -1 & -5 & 3 \\ 0 & 0 & 0 & 0 & -3 & -12 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Describe each step of a sequence of elementary row operations to obtain G from C by [i, j], [i, j; c], [i; c] notation. Show work.

(b) Find an invertible matrix P of size 4 such that G = PC and express P as a product of <u>four</u> elementary matrices. Do not forget writing P. Show work.

(c) Find an elementary matrix $E \neq I$ such that EG = G and show that there is another invertible matrix Q different from P such that G = QC.

(d) Find the reduced row echelon form of the matrix C. Show work.

(e) Find all solutions of the system of linear equations.

(f) Explain that the linear transformation defined by $T : \mathbb{R}^6 \to \mathbb{R}^4 \ (\boldsymbol{x} \mapsto A\boldsymbol{x})$, i.e., $T(\boldsymbol{x}) = A\boldsymbol{x}$ is NOT onto.

3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.

(20 pts)

$$A = \begin{bmatrix} 0 & 2 & 3 & 1 \\ -2 & 2 & 6 & -4 \\ 3 & -1 & 0 & 2 \\ 2 & 1 & -3 & 4 \end{bmatrix}, \ \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \ \boldsymbol{b} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 7 \end{bmatrix}.$$

(a) Evaluate det(A). Show work!

(b) Express x_2 as a quotient (*bun-su*) of determinants when $A\boldsymbol{x} = \boldsymbol{b}$, and write $\operatorname{adj}(A)$, the adjugate of A. Don't evaluate the determinants.

$$x_2 =$$
, $\operatorname{adj}(A) =$

4. Let A be the 4×4 matrix, and B an $m \times n$ matrix such that

$$A = \begin{bmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{bmatrix} = B^{\top}B, \text{ and let } \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Find the determinant of A. Show work!

(b) Explain that if $B^{\top}B$ is invertible, then $m \ge n$.

(c) Show that if m < n, then a = b or a = -3b.

(40 pts)

(d) Show that \boldsymbol{b} is an eigenvector of A. What is the corresponding eigenvalue?

(e) Find the characteristic polynomial and all eigenvalues of A. Show work!

(f) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$. Show work!