Final Exam 2017

（Total： $100 \mathrm{pts}, 50 \%$ of the grade）

ID\＃：

Name：

1．Let $\boldsymbol{u}=[1,0,1]^{\top}, \boldsymbol{v}=[1,-1,2]^{\top}, \boldsymbol{w}=\boldsymbol{u} \times \boldsymbol{v}, \boldsymbol{e}_{1}=[1,0,0]^{\top}, \boldsymbol{e}_{2}=[0,1,0]^{\top}$ and $\boldsymbol{e}_{3}=[0,0,1]^{\top}$ ．
（10 pts）
（a）Find \boldsymbol{w} and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ ．Show work！
（b）Find the standard matrix A of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(\boldsymbol{u})=\boldsymbol{e}_{1}, T(\boldsymbol{v})=\boldsymbol{e}_{2}$ and $T(\boldsymbol{w})=\boldsymbol{e}_{3}$ ．Show work！

Points：

$1 .(a)$	(b)	$2 .(a)$	(b)	(c)	(d)	(e)	(f)	$3 .(a) *$	$(b) *$	Total
$4 .(a) *$	(b)	(c)	(d)	(e)	$(f) *$			$n o n e$	$*$	
								5	10	

メッセージ欄：この授業について，特に改善点について，その他何でもどうぞ。
2. Consider the system of linear equations with augmented matrix $C=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{7}\right]$, where $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{7}$ are the columns of C. Let $A=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{6}\right]$ be its coefficient matrix. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C.
(30 pts)

$$
C=\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
2 & 0 & -4 & 6 & -3 & -10 & 13 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
-3 & 2 & 8 & -13 & -2 & -13 & -9
\end{array}\right], \quad G=\left[\begin{array}{ccccccc}
1 & 0 & -2 & 3 & 0 & 1 & 5 \\
0 & 1 & 1 & -2 & -1 & -5 & 3 \\
0 & 0 & 0 & 0 & -3 & -12 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) Describe each step of a sequence of elementary row operations to obtain G from C by $[i, j],[i, j ; c],[i ; c]$ notation. Show work.
(b) Find an invertible matrix P of size 4 such that $G=P C$ and express P as a product of four elementary matrices. Do not forget writing P. Show work.
(c) Find an elementary matrix $E \neq I$ such that $E G=G$ and show that there is another invertible matrix Q different from P such that $G=Q C$.
(d) Find the reduced row echelon form of the matrix C. Show work.
(e) Find all solutions of the system of linear equations.
(f) Explain that the linear transformation defined by $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}(\boldsymbol{x} \mapsto A \boldsymbol{x})$, i.e., $T(\boldsymbol{x})=A \boldsymbol{x}$ is NOT onto.
3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.

$$
A=\left[\begin{array}{cccc}
0 & 2 & 3 & 1 \\
-2 & 2 & 6 & -4 \\
3 & -1 & 0 & 2 \\
2 & 1 & -3 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
7
\end{array}\right] .
$$

(a) Evaluate $\operatorname{det}(A)$. Show work!
(b) Express x_{2} as a quotient (bun-su) of determinants when $A \boldsymbol{x}=\boldsymbol{b}$, and write $\operatorname{adj}(A)$, the adjugate of A. Don't evaluate the determinants.

$$
x_{2}=\quad, \operatorname{adj}(A)=
$$

4. Let A be the 4×4 matrix, and B an $m \times n$ matrix such that

$$
A=\left[\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right]=B^{\top} B, \quad \text { and let } \boldsymbol{b}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

(a) Find the determinant of A. Show work!
(b) Explain that if $B^{\top} B$ is invertible, then $m \geq n$.
(c) Show that if $m<n$, then $a=b$ or $a=-3 b$.
(d) Show that \boldsymbol{b} is an eigenvector of A. What is the corresponding eigenvalue?
(e) Find the characteristic polynomial and all eigenvalues of A. Show work!
(f) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$. Show work!

