## Final Exam 2015

（Total： $100 \mathrm{pts}, 50 \%$ of the grade）

## ID\＃：

## Name：

1．Let $\boldsymbol{u}=[1,4,9]^{T}, \boldsymbol{v}=[1,8,27]^{T}, \boldsymbol{w}=[1,2,3]^{T}, \boldsymbol{e}_{1}=[1,0,0]^{T}, \boldsymbol{e}_{2}=[0,1,0]^{T}$ and $\boldsymbol{e}_{3}=[0,0,1]^{T}$ ．
（a）Find $\boldsymbol{u} \times \boldsymbol{v}$ and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ ．Show work！
（b）Find the standard matrix $A$ of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)=\boldsymbol{u}, T\left(\boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)=\boldsymbol{v}$ and $T\left(\boldsymbol{e}_{3}\right)=\boldsymbol{w}$ ．Show work！

## Points：

| $1 .(a)$ | $(b)$ | $2 .(a)$ | $(b)$ | $(c)$ | $(d)$ | $(e)$ | $(f)$ | $3 .(a) *$ | $(b) *$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 4．$(a)$ | $(b) *$ | $(c)$ | $5 .(a)$ | $(b)$ | $(c) *$ |  |  | $n o n e$ | $*$ |
|  |  |  |  |  |  |  |  | 5 | 10 |  |

[^0]2. Consider the system of linear equations with augmented matrix $C=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{7}\right]$, where $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{7}$ are the columns of $C$. Let $A=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{6}\right]$ be its coefficient matrix. We obtained the reduced row echelon form $G$ after applying a sequence of elementary row operations to the matrix $C$.
\[

C=\left[$$
\begin{array}{ccccccc}
-2 & 4 & 0 & 1 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -3 & 0 & 0 \\
1 & -2 & 0 & 0 & 1 & 0 & 2 \\
3 & -6 & 2 & 0 & -3 & 1 & 11
\end{array}
$$\right], \quad G=\left[$$
\begin{array}{ccccccc}
1 & -2 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 7 \\
0 & 0 & 0 & 0 & 0 & 1 & 5
\end{array}
$$\right] .
\]

(a) Describe each step of a sequence of elementary row operations to obtain $G$ from $C$ by $[i, j],[i, j ; c],[i ; c]$ notation. Show work.
(b) Find an invertible matrix $P$ of size 4 such that $G=P C$ and express $P$ as a product of elementary matrices. Do not forget writing $P$. Show work.
(c) Explain (without computation) that $P^{-1}=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}, \boldsymbol{c}_{6}\right]$.
(d) Find all solutions of the system of linear equations.
(e) Explain that the matrix equation $A \boldsymbol{x}=\boldsymbol{b}$ is consistent for all $\boldsymbol{b} \in \mathbb{R}^{4}$.
(f) Explain that the linear transformation defined by $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{4}(\boldsymbol{x} \mapsto A \boldsymbol{x})$, i.e., $T(\boldsymbol{x})=A \boldsymbol{x}$ is NOT one-to-one.
3. Let $A, \boldsymbol{x}$ and $\boldsymbol{b}$ be a matrix and vectors given below.

$$
A=\left[\begin{array}{cccc}
3 & -5 & 7 & 9 \\
1 & -2 & 3 & -1 \\
-2 & 4 & -5 & -3 \\
0 & 1 & -2 & 3
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
2 \\
0 \\
1 \\
5
\end{array}\right] .
$$

(a) Evaluate $\operatorname{det}(A)$. Show work!
(b) Express $x_{4}$ as a quotient (bun-su) of determinants when $A \boldsymbol{x}=\boldsymbol{b}$, and write $\operatorname{adj}(A)$, the adjugate of $A$. Don't evaluate the determinants.

$$
x_{4}=\quad, \operatorname{adj}(A)=
$$

4. Let $A$ be the $3 \times 3$ matrix and $B$ the $4 \times 4$ matrix given below, where $a, b, c$ and $d$ are real numbers.

$$
A=\left[\begin{array}{ccc}
1 & b & b^{2} \\
1 & c & c^{2} \\
1 & d & d^{2}
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
1 & b & b^{2} & b^{3} \\
1 & c & c^{2} & c^{3} \\
1 & d & d^{2} & d^{3}
\end{array}\right], \quad f(x)=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}
$$

(a) Find the determinant of $A$. Show work!
(b) Find the determinant of $B$. Show work!
(c) Suppose $a, b, c, d$ are distinct. Using (b), show that if $f(a)=f(b)=f(c)=$ $f(d)=0$, then $f_{0}=f_{1}=f_{2}=f_{3}=0$ and $f(x)=0$.
5. Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 8 & 3 & 2 \\ 0 & 4 & 6\end{array}\right]$.
(20 pts)
(a) Show that 8 is an eigenvalue of $A$ by finding an eigenvector. Show work!
(b) Find the characteristic polynomial and all eigenvalues of $A$. Show work!
(c) Find an invertible matrix $P$ and a diagonal matrix $D$ such that $P^{-1} A P=D$. Show work!


[^0]:    メッセージ欄：この授業について，特に改善点について，その他何でもどうぞ。

