Solutions to Final Exam 2014

(Total: $100 \mathrm{pts}, 50 \%$ of the grade)

1. Let $\boldsymbol{u}=[2,1,-3]^{T}, \boldsymbol{v}=[0,1,2]^{T}, \boldsymbol{w}=[1,3,1]^{T}, \boldsymbol{e}_{1}=[1,0,0]^{T}, \boldsymbol{e}_{2}=[0,1,0]^{T}$ and $\boldsymbol{e}_{3}=[0,0,1]^{T}$. (10 pts)
(a) Find $\boldsymbol{u} \times \boldsymbol{v}$ and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Show work!

Solution.

$$
\begin{gathered}
\boldsymbol{u} \times \boldsymbol{v}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
2 & 1 & -3 \\
0 & 1 & 2
\end{array}\right|=\left[\left|\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right|,-\left|\begin{array}{cc}
2 & -3 \\
0 & 2
\end{array}\right|,\left|\begin{array}{cc}
2 & 1 \\
0 & 1
\end{array}\right|\right]^{T}=\left[\begin{array}{c}
5 \\
-4 \\
2
\end{array}\right] . \\
\text { Volume }=|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|=|5 \cdot 1+(-4) \cdot 3+2 \cdot 1|=|-5|=5 .
\end{gathered}
$$

(b) Find the standard matrix A of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T\left(\boldsymbol{e}_{1}\right)=\boldsymbol{u}$, $T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right)=\boldsymbol{v}$ and $T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)=\boldsymbol{w}$. Show work!
Solution.

$$
\begin{gathered}
T\left(\boldsymbol{e}_{2}\right)=T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right)-T\left(\boldsymbol{e}_{1}\right)=\boldsymbol{v}-\boldsymbol{u}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-2 \\
0 \\
5
\end{array}\right] . \\
T\left(\boldsymbol{e}_{3}\right)=T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)-T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right)=\boldsymbol{w}-\boldsymbol{v}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] .
\end{gathered}
$$

Hence the standard matrix is

$$
A=\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), T\left(\boldsymbol{e}_{3}\right)\right]=\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 0 & 2 \\
-3 & 5 & -1
\end{array}\right]
$$

2. Consider the system of linear equations with augmented matrix $C=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}, \boldsymbol{c}_{5}, \boldsymbol{c}_{6}\right]$, where $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{6}$ are the columns of C. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C.
(30 pts)

$$
C=\left[\begin{array}{cccccc}
0 & 0 & 1 & -2 & 0 & -7 \\
1 & 1 & 0 & 2 & 0 & 9 \\
-1 & -1 & 0 & -1 & -1 & -6 \\
-3 & -3 & -2 & -2 & 0 & -13
\end{array}\right], \quad G=\left[\begin{array}{cccccc}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(a) Describe each step of a sequence of elementary row operations to obtain G from C by $[i, j],[i, j ; c],[i ; c]$ notation. Show work.
Solution.

$$
\begin{aligned}
& C \xrightarrow{[1,2]}\left[\begin{array}{cccccc}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
-1 & -1 & 0 & -1 & -1 & -6 \\
-3 & -3 & -2 & -2 & 0 & -13
\end{array}\right] \\
& {\left[\begin{array}{lcc|c|c}
\end{array}\left[\begin{array}{ccccccc}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
-3 & -3 & -2 & -2 & 0 & -13
\end{array}\right]\right.} \\
& \xrightarrow{[4,1 ; 3]}\left[\begin{array}{cccccc}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & -2 & 4 & 0 & 14
\end{array}\right] \xrightarrow{[4,2 ; 2]}\left[\begin{array}{cccccc}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=G .
\end{aligned}
$$

Hence the sequence of operations above is $[1,2],[3,1 ; 1],[4,1 ; 3],[4,2 ; 2]$.
(b) Find an invertible matrix P of size 4 such that $G=P C$ and express P as a product of elementary matrices. Show work.
Solution. $\quad P$ is the matrix obtained by applying the sequence of row operations $[1,2],[3,1 ; 1]$, $[4,1 ; 3],[4,2 ; 2]$ to the identity matrix of size 4 in this order. Hence

$$
P=E(4,2 ; 2) E(4,1 ; 3) E(3,1 ; 1) E(1,2)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
2 & 3 & 0 & 1
\end{array}\right]
$$

(c) Is P in (b) uniquely determined? Give a brief explanation.

Solution. No. $E(4 ; 2) P C=E(4 ; 2) G=G$ as the fourth row of G is $\mathbf{0}$. Since P is invertible, $E(4 ; 2) P \neq P$. Hence P is not uniquely determined.
(d) Find three columns of C that are linearly independent, and find three columns of C that are linearly dependent. Give a brief explanation.
Solution. $\boldsymbol{c}_{1}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}$ are linearly independent, as $\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}\right]$ is row equivalent to the submatrix of G formed by the first, the third and the fourth columns. $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}$ are linearly dependent, as $\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right]$ is row equivalent to the submatrix of G formed by the first, the second and the third columns.

$$
P\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}\right]=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad P\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(e) By applying a sequence of elementary row operations, reduce C to the reduced row echelon form. Show work!
Solution.

$$
G \xrightarrow{[1,3 ;-2]}\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 2 & 3 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{[2,3 ; 2]}\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 2 & 3 \\
0 & 0 & 1 & 0 & -2 & -1 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(f) Find all solutions of the system of linear equations.

Solution. Let $x_{2}=s$ and $x_{5}=t$ be free parameters. Then

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-s-2 t+3 \\
s \\
2 t-1 \\
t+3 \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
-1 \\
3 \\
0
\end{array}\right]+s \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t \cdot\left[\begin{array}{c}
-2 \\
0 \\
2 \\
1 \\
1
\end{array}\right] .
$$

3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.
(20 pts)

$$
A=\left[\begin{array}{cccc}
4 & -1 & 2 & 0 \\
1 & 2 & -2 & -1 \\
-1 & -2 & 1 & 1 \\
-2 & 3 & 1 & 2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
w \\
x \\
y \\
z
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(a) Evaluate $\operatorname{det}(A)$. Show work!

Solution.

$$
\operatorname{det}(A)=\left|\begin{array}{cccc}
4 & -1 & 2 & 0 \\
1 & 2 & -2 & -1 \\
-1 & -2 & 1 & 1 \\
-2 & 3 & 1 & 2
\end{array}\right|=\left|\begin{array}{cccc}
4 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 \\
-1 & -2 & 1 & 1 \\
0 & 7 & -1 & 0
\end{array}\right|=-\left|\begin{array}{ccc}
4 & -1 & 2 \\
0 & 0 & -1 \\
0 & 7 & -1
\end{array}\right|=-28 .
$$

(b) Express y as a quotient (bun-su) of determinants when $A \boldsymbol{x}=\boldsymbol{b}$, and write $\operatorname{adj}(A)$, the adjugate of A. Don't evaluate the determinants.

$$
\begin{aligned}
& y=\frac{\left|\begin{array}{cccc}
4 & -1 & 1 & 0 \\
1 & 2 & 2 & -1 \\
-1 & -2 & 3 & 1 \\
-2 & 3 & 4 & 2
\end{array}\right|}{\left|\begin{array}{cccc}
4 & -1 & 2 & 0 \\
1 & 2 & -2 & -1 \\
-1 & -2 & 1 & 1 \\
-2 & 3 & 1 & 2
\end{array}\right|},
\end{aligned}
$$

4. Let A be the 6×6 matrix given below, where a and b are real numbers.
(20 pts)

$$
A=\left[\begin{array}{llllll}
a & b & b & b & b & b \\
b & a & b & b & b & b \\
b & b & a & b & b & b \\
b & b & b & a & b & b \\
b & b & b & b & a & b \\
b & b & b & b & b & a
\end{array}\right]
$$

(a) Find the determinant of A. Show work!

Solution. Since the column sum is $a+5 b$,

$$
\begin{aligned}
|A| & =\left[\begin{array}{cccccc}
a+5 b & a+5 b \\
b & a & b & b & b & b \\
b & b & a & b & b & b \\
b & b & b & a & b & b \\
b & b & b & b & a & b \\
b & b & b & b & b & a
\end{array}\right]=(a+5 b)\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
b & a & b & b & b & b \\
b & b & a & b & b & b \\
b & b & b & a & b & b \\
b & b & b & b & a & b \\
b & b & b & b & b & a
\end{array}\right] \\
& =(a+5 b)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
b & a-b & 0 & 0 & 0 & 0 \\
b & 0 & a-b & 0 & 0 & 0 \\
b & 0 & 0 & a-b & 0 & 0 \\
b & 0 & 0 & 0 & a-b & 0 \\
b & 0 & 0 & 0 & 0 & a-b
\end{array}\right]=(a+5 b)(a-b)^{5} .
\end{aligned}
$$

(b) Find the characteristic polynomial of A. Give a brief explanation.

Solution. $\operatorname{det}(A-x I)$ is obtained by replacing a by $a-x$. So

$$
\operatorname{det}(A-x I)=(a-x+5 b)(a-x-b)^{5}=(x-a-5 b)(x-a+b)^{5}
$$

(c) Find the condition on a and b that the matrix linear transformation
$T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}(\boldsymbol{x} \mapsto A \boldsymbol{x})$ is onto. Give a brief explanation.
Solution. Since A is a square matrix, by the invertible matrix theorem, T is onto if and only if A is invertible. Therefore the condition is $a+5 b \neq 0$ and $a-b \neq 0$, or equivalently $a \neq b,-5 b$.
5. Let A be the following matrix.

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 8
\end{array}\right]
$$

(a) List all eigenvalues of A, and give a reason that A is diagonalizable.

Solution. Eigenvalues of a tridiagonal matrix are diagonal entries, $1,2,4,8$ in this case. Since these eigenvalues are all distinct, A is diagonalizable.
(b) Find an eigenvector of the largest eigenvalue of A. Show work!

Solution. By the previous problem, 8 is the largest eigenvalue.

$$
\begin{aligned}
& A-8 I=\left[\begin{array}{cccc}
-7 & 1 & 1 & 1 \\
0 & -6 & 2 & 2 \\
0 & 0 & -4 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
-7 & 1 & 1 & 1 \\
0 & -6 & 2 & 2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
-7 & 1 & 0 & 2 \\
0 & -6 & 0 & 4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
-7 & 1 & 0 & 2 \\
0 & 3 & 0 & -2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
21 & -3 & 0 & -6 \\
0 & 3 & 0 & -2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
21 & 0 & 0 & -8 \\
0 & 3 & 0 & -2 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right], \boldsymbol{v}_{4}=\left[\begin{array}{c}
8 \\
14 \\
21 \\
21
\end{array}\right]
\end{aligned}
$$

Hence \boldsymbol{v}_{4} is an eigenvector for the largest eigenvalue 8.
(c) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$. Show work! Solution.

$$
\begin{gathered}
A-4 I=\left[\begin{array}{cccc}
-3 & 1 & 1 & 1 \\
0 & -2 & 2 & 2 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 4
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
-3 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
3 & 0 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{l}
2 \\
3 \\
3 \\
0
\end{array}\right] \\
A-2 I=\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
0 & 0 & 2 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 6
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \text { and } \boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
\end{gathered}
$$

Then $A \boldsymbol{v}_{1}=\boldsymbol{v}_{1}, A \boldsymbol{v}_{2}=2 \boldsymbol{v}_{2}, A \boldsymbol{v}_{3}=4 \boldsymbol{v}_{3}, A \boldsymbol{v}_{4}=8 \boldsymbol{v}_{4}$. Therefore

$$
P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right]=\left[\begin{array}{cccc}
1 & 1 & 2 & 8 \\
0 & 1 & 3 & 14 \\
0 & 0 & 3 & 21 \\
0 & 0 & 0 & 21
\end{array}\right] \text {, and } D=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 8
\end{array}\right] \text {. }
$$

Note that

$$
A P=A\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right]=\left[A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, A \boldsymbol{v}_{3}, A \boldsymbol{v}_{4}\right]=\left[\boldsymbol{v}_{1}, 2 \boldsymbol{v}_{2}, 4 \boldsymbol{v}_{3}, 8 \boldsymbol{v}_{4}\right]=P D
$$

Since $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}$ are eigenvectors corresponding to distinct eigenvectors $1,2,4,8$, they are linearly independent and P is invertible.

