Final Exam 2014

（Total： $100 \mathrm{pts}, 50 \%$ of the grade）

ID\＃：

Name：

1．Let $\boldsymbol{u}=[2,1,-3]^{T}, \boldsymbol{v}=[0,1,2]^{T}, \boldsymbol{w}=[1,3,1]^{T}, \boldsymbol{e}_{1}=[1,0,0]^{T}, \boldsymbol{e}_{2}=[0,1,0]^{T}$ and $\boldsymbol{e}_{3}=[0,0,1]^{T}$ ．
（a）Find $\boldsymbol{u} \times \boldsymbol{v}$ and the volume of the parallelepiped defined by $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ ．Show work！
（b）Find the standard matrix A of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T\left(\boldsymbol{e}_{1}\right)=\boldsymbol{u}, T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right)=\boldsymbol{v}$ and $T\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)=\boldsymbol{w}$ ．Show work！

Points：

$1 .(a)$	(b)	$2 .(a)$	(b)	(c)	(d)	(e)	(f)	$3 .(a) *$	$(b) *$	Total
$4 .(a) *$	(b)	(c)	$5 .(a)$	(b)	$(c) *$			$n o n e$	$*$	
								5	10	

[^0]2. Consider the system of linear equations with augmented matrix $C=\left[\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}, \boldsymbol{c}_{5}, \boldsymbol{c}_{6}\right]$, where $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots, \boldsymbol{c}_{6}$ are the columns of C. We obtained a row echelon form G after applying a sequence of elementary row operations to the matrix C.
\[

C=\left[$$
\begin{array}{cccccc}
0 & 0 & 1 & -2 & 0 & -7 \\
1 & 1 & 0 & 2 & 0 & 9 \\
-1 & -1 & 0 & -1 & -1 & -6 \\
-3 & -3 & -2 & -2 & 0 & -13
\end{array}
$$\right], \quad G=\left[$$
\begin{array}{cccccc}
1 & 1 & 0 & 2 & 0 & 9 \\
0 & 0 & 1 & -2 & 0 & -7 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$\right] .
\]

(a) Describe each step of a sequence of elementary row operations to obtain G from C by $[i, j],[i, j ; c],[i ; c]$ notation. Show work.
(b) Find an invertible matrix P of size 4 such that $G=P C$ and express P as a product of elementary matrices. Show work.
(c) Is P in (b) uniquely determined? Give a brief explanation.
(d) Find three columns of C that are linearly independent, and find three columns of C that are linearly dependent. Give a brief explanation.
(e) By applying a sequence of elementary row operations, reduce C to the reduced row echelon form. Show work!
(f) Find all solutions of the system of linear equations.
3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below.

$$
A=\left[\begin{array}{cccc}
4 & -1 & 2 & 0 \\
1 & 2 & -2 & -1 \\
-1 & -2 & 1 & 1 \\
-2 & 3 & 1 & 2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(a) Evaluate $\operatorname{det}(A)$. Show work!
(b) Express y as a quotient (bun-su) of determinants when $A \boldsymbol{x}=\boldsymbol{b}$, and write $\operatorname{adj}(A)$, the adjugate of A. Don't evaluate the determinants.

$$
y=\quad, \operatorname{adj}(A)=
$$

4. Let A be the 6×6 matrix given below, where a and b are real numbers. (20 pts)

$$
A=\left[\begin{array}{llllll}
a & b & b & b & b & b \\
b & a & b & b & b & b \\
b & b & a & b & b & b \\
b & b & b & a & b & b \\
b & b & b & b & a & b \\
b & b & b & b & b & a
\end{array}\right]
$$

(a) Find the determinant of A. Show work!
(b) Find the characteristic polynomial of A. Give a brief explanation.
(c) Find the condition on a and b that the matrix linear transformation $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}(\boldsymbol{x} \mapsto A \boldsymbol{x})$ is onto. Give a brief explanation.
5. Let A be the following matrix.

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & 8
\end{array}\right]
$$

(a) List all eigenvalues of A, and give a reason that A is diagonalizable.
(b) Find an eigenvector of the largest eigenvalue of A. Show work!
(c) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$. Show work!

[^0]: メッセージ欄：この授業について，特に改善点について，その他何でもどうぞ。

