Final Exam 2013

(Total: $100 \mathrm{pts}, 40 \%$ of the grade)
Name:

1. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a transformation defined by:

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(3 x_{1}+x_{2}-x_{4}, x_{1}+2 x_{2}-3 x_{3}+3 x_{4},-2 x_{1}+4 x_{2}-2 x_{3}+5 x_{4}\right) .
$$

(a) Show that T is a linear transformation.
(b) Find the standard matrix $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}, \boldsymbol{v}_{4}\right]$ for the linear transformation T.

Points:

$1 .(a)$	(b)	(c)	(d)	(e)	(f)	$2 .(a) *$	(b)	(c)	(d)	Total
	$3 .(a) *$	$(b) *$	(c)	$4 .(a)$	(b)	$(c) *$			$n o n e$	$*$
								5	10	

1. Continued from page 1.
(c) Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$, where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are in (b).
(d) Find the volume of the parallelepiped determined by $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$, where $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ and \boldsymbol{v}_{3} are in (b).
(e) Determine whether T is one-to-one. Explain your answer.
(f) Determine whether T is onto. Explain your answer.
2. Let A be the following 4×4 matrix and a, b, c, d real numbers.
$A=\left[\begin{array}{llll}1 & x_{1} & x_{1}{ }^{2} & x_{1}{ }^{3} \\ 1 & x_{2} & x_{2}{ }^{2} & x_{2}{ }^{3} \\ 1 & x_{3} & x_{3}{ }^{2} & x_{3}{ }^{3} \\ 1 & x_{4} & x_{4}{ }^{2} & x_{4}{ }^{3}\end{array}\right] . \quad f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is called a cubic polynomial.
(a) Show that $\operatorname{det}(A)=\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{4}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)$.
3. Continued from page 3.
(b) Explain that a cubic polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is uniquely determined when $f(1)=2, f(2)=0, f(3)=1, f(4)=3$.
(c) Find a_{3} in (b) by Cramer's rule. Don't evaluate determinants.
(d) Suppose $x_{1}, x_{2}, x_{3}, x_{4}$ are distinct. Explain that a cubic polynomial $f(x)=a_{0}+$ $a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ is uniquely determined when $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}, f\left(x_{3}\right)=$ $y_{3}, f\left(x_{4}\right)=y_{4}$ for any $y_{1}, y_{2}, y_{3}, y_{4}$.
4. Let A and B be matrices given below.

$$
A=\left[\begin{array}{ccccc}
3 & -5 & -5 & -4 & -2 \\
-3 & 4 & 2 & 6 & 6 \\
-3 & 3 & 0 & 6 & 9 \\
-3 & 1 & -4 & 7 & 8 \\
-3 & 6 & 6 & 6 & 7
\end{array}\right], B=\left[\begin{array}{ccccc}
1 & -1 & 0 & -2 & -3 \\
0 & 1 & 2 & 0 & -3 \\
0 & -2 & -5 & 2 & 7 \\
0 & -2 & -4 & 1 & -1 \\
0 & 3 & 6 & 0 & -2
\end{array}\right]
$$

(a) The matrix B is obtained from the matrix A by applying a sequence of elementary row operations. Find (i) such a sequence of elementary row operations, (ii) a matrix P such that $P A=B$, and (iii) $\operatorname{det}(P)$.
(b) Evaluate $\operatorname{det}(A)$. Briefly explain each step.
(c) Write the $(2,4)$ entry of $\operatorname{adj}(A)$, the adjugate of A, as a determinant. Don't evaluate it.

4．Let $A=\left[\begin{array}{cccc}1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ -1 & 2 & 4 & 1 \\ 1 & -2 & 2 & 5\end{array}\right]$ ．
（a）Explain that A has eigenvalues 6 and 0 without computing the characteristic polynomial of A ．
（b）Find all eigenvalues of A ．
（c）Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$ ．

