November 21, 2013

(Total: 100 pts, 40% of the grade)

Linear Algebra I Final Exam 2013

ID#:

Name:

1. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a transformation defined by: (30 pts)

 $T(x_1, x_2, x_3, x_4) = (3x_1 + x_2 - x_4, x_1 + 2x_2 - 3x_3 + 3x_4, -2x_1 + 4x_2 - 2x_3 + 5x_4).$

(a) Show that T is a linear transformation.

(b) Find the standard matrix $A = [\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4]$ for the linear transformation T.

Points:

1.(a)	(b)	(c)	(d)	(e)	(f)	2.(a)*	(b)	(c)	(d)	Total
3.(a)*	(b)*	(c)	4.(a)	(b)	(c)*			none	*	
								5	10	

- 1. Continued from page 1.
 - (c) Find $\boldsymbol{v}_1 \times \boldsymbol{v}_2$, where \boldsymbol{v}_1 and \boldsymbol{v}_2 are in (b).

(d) Find the volume of the parallelepiped determined by $\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3$, where $\boldsymbol{v}_1, \boldsymbol{v}_2$ and \boldsymbol{v}_3 are in (b).

(e) Determine whether T is one-to-one. Explain your answer.

(f) Determine whether T is onto. Explain your answer.

2. Let A be the following 4×4 matrix and a, b, c, d real numbers. (25 pts)

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{bmatrix}. \quad f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \text{ is called a } \underline{\text{cubic polynomial.}}$$

(a) Show that $\det(A) = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_3 - x_2)(x_4 - x_2)(x_4 - x_3).$

- 2. Continued from page 3.
 - (b) Explain that a cubic polynomial $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ is uniquely determined when f(1) = 2, f(2) = 0, f(3) = 1, f(4) = 3.

(c) Find a_3 in (b) by Cramer's rule. Don't evaluate determinants.

(d) Suppose x_1, x_2, x_3, x_4 are distinct. Explain that a cubic polynomial $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ is uniquely determined when $f(x_1) = y_1, f(x_2) = y_2, f(x_3) = y_3, f(x_4) = y_4$ for any y_1, y_2, y_3, y_4 .

3. Let A and B be matrices given below.

	3	-5	-5	-4	-2		1	-1	0	-2	-3]
	-3						0	1	2	0	-3	
A =	-3	3	0	6	9	, B =	0	-2	-5	2	7	.
	-3	1	-4	7	8						-1	
	-3	6	6	6	7		0	3	6	0	-2	

(a) The matrix B is obtained from the matrix A by applying a sequence of elementary row operations. Find (i) such a sequence of elementary row operations, (ii) a matrix P such that PA = B, and (iii) det(P).

(b) Evaluate det(A). Briefly explain each step.

(c) Write the (2, 4) entry of adj(A), the adjugate of A, as a determinant. Don't evaluate it.

Page 6 of 6

4. Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 \\ -1 & 2 & 4 & 1 \\ 1 & -2 & 2 & 5 \end{bmatrix}$$
. (20 pts)

- (a) Explain that A has eigenvalues 6 and 0 without computing the characteristic polynomial of A.
- (b) Find all eigenvalues of A.

(c) Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

メッセージ欄:この授業について、特に改善点について、その他何でもどうぞ。