Linear Algebra I

Solutions to Final Exam 2012

(Total: $100 \mathrm{pts}, 40 \%$ of the grade)

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a transformation defined by:
(30 pts)

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2}, 2 x_{1}+2 x_{2}-3 x_{3},-3 x_{1}+x_{2}-5 x_{3}\right)
$$

(a) Show that T is a linear transformation.

Solution. Let $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right), \boldsymbol{y}=\left(y_{1}, y_{2}, y_{3}\right)$. By definition, we need to show that

$$
\begin{aligned}
& T(\boldsymbol{x}+\boldsymbol{y})=T(\boldsymbol{x})+T(\boldsymbol{y}), \quad T(c \boldsymbol{x})=c T(\boldsymbol{x}) \\
T(\boldsymbol{x}+\boldsymbol{y})= & T\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
= & \left(3\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right), 2\left(x_{1}+y_{1}\right)+2\left(x_{2}+y_{2}\right)-3\left(x_{3}+y_{3}\right),\right. \\
& \left.-3\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)-5\left(x_{3}+y_{3}\right)\right) \\
= & \left(3 x_{1}+x_{2}, 2 x_{1}+2 x_{2}-3 x_{3},-3 x_{1}+x_{2}-5 x_{3}\right) \\
& +\left(3 y_{1}+y_{2}, 2 y_{1}+2 y_{2}-3 y_{3},-3 y_{1}+y_{2}-5 y_{3}\right) \\
= & T(\boldsymbol{x})+T(\boldsymbol{y}) \\
T(c \boldsymbol{x})= & \left(3 c x_{1}+c x_{2}, 2 c x_{1}+2 c x_{2}-3 c x_{3},-3 c x_{1}+c x_{2}-5 c x_{3}\right) \\
= & c\left(3 x_{1}+x_{2}, 2 x_{1}+2 x_{2}-3 x_{3},-3 x_{1}+x_{2}-5 x_{3}\right) \\
= & c T(\boldsymbol{x}) .
\end{aligned}
$$

(b) Find the standard matrix $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ for the linear transformation T.

Solution. A satisfies the following:

$$
\begin{gathered}
A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 x_{1}+x_{2} \\
2 x_{1}+2 x_{2}-3 x_{3} \\
-3 x_{1}+x_{2}-5 x_{3}
\end{array}\right] . \text { For } \boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \\
\boldsymbol{v}_{1}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=A \boldsymbol{e}_{1}=\left[\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right], \boldsymbol{v}_{2}=A \boldsymbol{e}_{2}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \boldsymbol{v}_{3}=A \boldsymbol{e}_{3}=\left[\begin{array}{c}
0 \\
-3 \\
-5
\end{array}\right] .
\end{gathered}
$$

Thus

$$
A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=\left[\begin{array}{ccc}
3 & 1 & 0 \\
2 & 2 & -3 \\
-3 & 1 & -5
\end{array}\right]
$$

(c) Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$, where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are in (b).

Solution.

$$
\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
3 & 2 & -3 \\
1 & 2 & 1
\end{array}\right|=\left[\left|\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right|,-\left|\begin{array}{cc}
3 & -3 \\
1 & 1
\end{array}\right|,\left|\begin{array}{cc}
3 & 2 \\
1 & 2
\end{array}\right|\right]^{T}=\left[\begin{array}{c}
8 \\
-6 \\
4
\end{array}\right]
$$

(d) Let $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3} \in \mathbb{R}^{3}$. Suppose the volume of the parallelepiped determined by $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}$ is 5 . What is the volume of the parallelepiped determined by $T\left(\boldsymbol{u}_{1}\right), T\left(\boldsymbol{u}_{2}\right), T\left(\boldsymbol{u}_{3}\right)$. Write a brief explanation.
Solution. Since the volume of the parallelepiped determined by $T\left(\boldsymbol{u}_{1}\right), T\left(\boldsymbol{u}_{2}\right), T\left(\boldsymbol{u}_{3}\right)$ is $|\operatorname{det}(A)|$ times the volume of the parallelepiped determined by $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}$, it is

$$
|\operatorname{det}(A)| \cdot 5=\left|\operatorname{det}\left[\begin{array}{ccc}
3 & 1 & 0 \\
2 & 2 & -3 \\
-3 & 1 & -5
\end{array}\right]\right| \cdot 5=\left|\begin{array}{ccc}
0 & 1 & 0 \\
-4 & 2 & -3 \\
-6 & 1 & -5
\end{array}\right||\cdot 5=|-2| \cdot 5=10
$$

(e) (i) Show that there is a linear transformation $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\left(\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \mapsto\right.$ $U(\boldsymbol{x})=U\left(x_{1}, x_{2}, x_{3}\right)$ such that $U\left(T\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}, x_{2}, x_{3}\right)$, i.e., $U(T(\boldsymbol{x}))=\boldsymbol{x}$ and that (ii) the standard matrix of U is A^{-1}.
Solution. Since the determinant of A is nonzero, A is invertible. Let $U: \mathbb{R}^{3} \rightarrow$ $\left.\mathbb{R}^{3}\left(\boldsymbol{x} \mapsto U(\boldsymbol{x})=A^{-1} \boldsymbol{x}\right)\right)$. Then $U(T(\boldsymbol{x}))=A^{-1}(A \boldsymbol{x})=\boldsymbol{x}$. Thus (i) and (ii) hold.
(f) Find the $(2,3)$ entry of A^{-1}.

Solution.

$$
\left(A^{-1}\right)_{2,3}=\frac{1}{|A|} C_{3,2}=\frac{1}{-2}(-1)^{3+2}\left|\begin{array}{cc}
3 & 0 \\
2 & -3
\end{array}\right|=-\frac{9}{2} .
$$

2. Let A and P be the following 4×4 matrices, and $\boldsymbol{b} \in \mathbb{R}^{4}$ given below.
(20 pts)

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-d & -c & -b & -a
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
1 \\
\lambda \\
\lambda^{2} \\
\lambda^{3}
\end{array}\right], \quad P=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & -2 & 3 \\
1 & 4 & 4 & 9 \\
1 & 8 & -8 & 27
\end{array}\right]
$$

(a) Find the characteristic polynomial $p(x)=\operatorname{det}(A-x I)$ of A.

Solution.

$$
\begin{aligned}
\left|\begin{array}{cccc}
-x & 1 & 0 & 0 \\
0 & -x & 1 & 0 \\
0 & 0 & -x & 1 \\
-d & -c & -b & -a-x
\end{array}\right| & =(-x)\left|\begin{array}{ccc}
-x & 1 & 0 \\
0 & -x & 1 \\
-c & -b & -a-x
\end{array}\right|-(-d)\left|\begin{array}{ccc}
1 & 0 & 0 \\
-x & 1 & 0 \\
0 & -x & 1
\end{array}\right| \\
& =(-x)^{2}\left|\begin{array}{cc}
-x & 1 \\
-b & -a-x
\end{array}\right|-c(-x)\left|\begin{array}{cc}
1 & 0 \\
x & 1
\end{array}\right|+d \\
& =x^{4}+a x^{3}+b x^{2}+c x+d .
\end{aligned}
$$

(b) Show that if λ is an eigenvalue of A, then \boldsymbol{b} is an eigenvector of A corresponding to λ.
Solution. Since $\boldsymbol{b} \neq \mathbf{0}$, it suffices to show that $A \boldsymbol{b}=\lambda \boldsymbol{b}$. By assumption λ is an eigenvalue, and hence $0=p(\lambda)=\lambda^{4}+a \lambda^{3}+b \lambda^{2}+c \lambda+d$. Thus $\lambda^{4}=-d-c \lambda-b \lambda^{2}-a \lambda^{3}$. Therefore

$$
A \boldsymbol{b}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-d & -c & -b & -a
\end{array}\right]\left[\begin{array}{c}
1 \\
\lambda \\
\lambda^{2} \\
\lambda^{3}
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
\lambda^{2} \\
\lambda^{3} \\
-d-c \lambda-b \lambda^{2}-a \lambda^{3}
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
\lambda^{2} \\
\lambda^{3} \\
\lambda^{4}
\end{array}\right]=\lambda \boldsymbol{b}
$$

(c) Suppose $A P=P D$ for some diagonal matrix D. Determine a, b, c, d and D.

Solution. Let D be a diagonal matrix of size 4 with $1,2,-2,3$ on the diagonal. By (b)

$$
\left.\left.\left.\begin{array}{rl}
A P & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-d & -c & -b & -a
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1
\end{array}\right] \\
1 & 2
\end{array}\right)-2 \begin{array}{c}
3 \\
1
\end{array} 2^{2}(-2)^{2} 3^{2}\right] 1^{3} 2^{3}(-2)^{3} 3^{3}\right] .\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]=P D .
$$

Now the characteristic polynomial of A equals the characteristic polynomial of D and $p(x)=(1-x)(2-x)(-2-x)(3-x)=(x-1)(x-2)(x+2)(x-3)=x^{4}-4 x^{3}-x^{2}+16 x-12$.

Therefore $a=-4, b=-1, c=16, d=-12$.
3. Let A, B, \boldsymbol{x} and \boldsymbol{b} be matrices and vectors given below. Assume $A \boldsymbol{x}=\boldsymbol{b}$.

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 1 & 3 & 4 \\
-2 & 2 & -3 & -2 & 2 \\
0 & -2 & -4 & 3 & 1 \\
-3 & 3 & 1 & -7 & -2 \\
1 & -1 & 2 & 3 & 0
\end{array}\right], B=\left[\begin{array}{ccccc}
1 & -1 & 2 & 3 & 0 \\
0 & 0 & 1 & 4 & 2 \\
0 & -2 & -4 & 3 & 1 \\
0 & 0 & 7 & 2 & -2 \\
0 & 2 & 1 & 3 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
3 \\
1 \\
4 \\
1 \\
5
\end{array}\right] .
$$

(a) The matrix B is obtained from the matrix A by applying a sequence of elementary row operations. (i) Find a matrix P such that $P A=B$, and (ii) express P as a product of elementary matrixes $E(i ; c), E(i, j), E(i, j ; c)$.
Solution. One of the sequence is $[1,5] \rightarrow[2,1 ; 2] \rightarrow[4,1 ; 3]$. Hence

$$
P=E(4,1 ; 3) E(2,1 ; 2) E(1,5)
$$

$$
=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Evaluate $\operatorname{det}(A)$. Briefly explain each step.

Solution. Using the fact that $|E(i ; c) X|=c|X|,|E(i, j) X|=-|X|,|E(i, j ; c) X|=$ $|X|$ and cofactor expansions,

$$
\begin{aligned}
|A| & =-|B|=-\left|\begin{array}{cccc}
0 & 1 & 4 & 2 \\
-2 & -4 & 3 & 1 \\
0 & 7 & 2 & -2 \\
2 & 1 & 3 & 4
\end{array}\right|=-\left|\begin{array}{cccc}
0 & 1 & 4 & 2 \\
0 & -3 & 6 & 5 \\
0 & 7 & 2 & -2 \\
2 & 1 & 3 & 4
\end{array}\right|=2\left|\begin{array}{ccc}
1 & 4 & 2 \\
-3 & 6 & 5 \\
7 & 2 & -2
\end{array}\right| \\
& =2\left|\begin{array}{ccc}
-13 & 0 & 6 \\
-24 & 0 & 11 \\
7 & 2 & -2
\end{array}\right|=-4\left|\begin{array}{cc}
-13 & 6 \\
-24 & 11
\end{array}\right|=-4\left|\begin{array}{cc}
-13 & 6 \\
2 & -1
\end{array}\right|=-4 .
\end{aligned}
$$

(c) The matrix P in (a) is uniquely determined. Give your reason.

Solution. Since $\operatorname{det}(A) \neq 0, A$ is invertible and A^{-1} is uniquely determined. Hence $P=P A A^{-1}=B A^{-1}$.
(d) Applying the Cramer's rule and express x_{2} and x_{5} as quotients of determinants. Do not evaluate determinants.
Solution. By $(\mathrm{b}) \operatorname{det}(A)=-4$. Now by Cramer's rule,

$$
x_{2}=\frac{1}{|A|}\left|\begin{array}{ccccc}
0 & 3 & 1 & 3 & 4 \\
-2 & 1 & -3 & -2 & 2 \\
0 & 4 & -4 & 3 & 1 \\
-3 & 1 & 1 & -7 & -2 \\
1 & 5 & 2 & 3 & 0
\end{array}\right|, \quad x_{5}=\frac{1}{|A|}\left|\begin{array}{ccccc}
0 & 2 & 1 & 3 & 3 \\
-2 & 2 & -3 & -2 & 1 \\
0 & -2 & -4 & 3 & 4 \\
-3 & 3 & 1 & -7 & 1 \\
1 & -1 & 2 & 3 & 5
\end{array}\right| .
$$

4. Let $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 12 & 6 & 4 \\ 0 & 5 & 8\end{array}\right]$.
(a) Show that the characteristic polynomial of A is equal to the characteristic polynomial of A^{T}.
Solution. Since the determinant of a square matrix is equal to the determinant of the transpose of the matrix,

$$
\operatorname{det}(A-x I)=\operatorname{det}\left((A-x I)^{T}\right)=\operatorname{det}\left(A^{T}-x I^{T}\right)=\operatorname{det}\left(A^{T}-x I\right) .
$$

Thus the characteristic polynomial of A is equal to the characteristic polynomial of A^{T}.
(b) Show that 12 is an eigenvalue of A.

Solution. Since

$$
A^{T}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 12 & 0 \\
1 & 6 & 5 \\
0 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
12 \\
12 \\
12
\end{array}\right]=12\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

and the vector $[1,1,1]^{T}$ is nonzero, 12 is an eigenvector of A^{T}. Thus 12 is an eigenvalue of A as well by (a).
(c) Find an eigenvector of A corresponding to an eigenvalue 12 .

Solution.

$$
A-12 I=\left[\begin{array}{ccc}
-12 & 1 & 0 \\
12 & 6-12 & 4 \\
0 & 5 & 8-12
\end{array}\right]=\left[\begin{array}{ccc}
-12 & 1 & 0 \\
0 & -5 & 4 \\
0 & 5 & -4
\end{array}\right]=\left[\begin{array}{ccc}
-12 & 1 & 0 \\
0 & -5 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore $[1,12,15]^{T}$ is an eigenvector of 12 for A.
(d) Find all eigenvalues of A.

Solution.

$$
\begin{aligned}
|A-x I| & =\left|\begin{array}{ccc}
-x & 1 & 0 \\
12 & 6-x & 4 \\
0 & 5 & 8-x
\end{array}\right|=\left|\begin{array}{ccc}
-x+12 & -x+12 & -x+12 \\
12 & 6-x & 4 \\
0 & 5 & 8-x
\end{array}\right| \\
& =(12-x)\left|\begin{array}{ccc}
1 & 1 & 1 \\
12 & 6-x & 4 \\
0 & 5 & 8-x
\end{array}\right|=(12-x)\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & -6-x & -8 \\
0 & 5 & 8-x
\end{array}\right| \\
& =(12-x)(-(6+x)(8-x)+40)=(12-x)\left(x^{2}-2 x-8\right) \\
& =-(x-12)(x-4)(x+2) .
\end{aligned}
$$

Therefore eigenvalues are $12,4,-2$.
(e) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

Solution. Eivenvectors for eigenvalues 4 and -2 are as follows.

$$
A-4 I=\left[\begin{array}{ccc}
-4 & 1 & 0 \\
12 & 6-4 & 4 \\
0 & 5 & 8-4
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 1 & 0 \\
0 & 5 & 4 \\
0 & 5 & 4
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 1 & 0 \\
0 & 5 & 4 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore $[1,4,-5]^{T}$ is an eigenvector of 4 .

$$
A+2 I=\left[\begin{array}{ccc}
2 & 1 & 0 \\
12 & 6+2 & 4 \\
0 & 5 & 8+2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 4 \\
0 & 5 & 10
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

Therefore $[1,-2,1]^{T}$ is an eigenvector of -2 . Thus

$$
P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
12 & 4 & -2 \\
15 & -5 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{ccc}
12 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -2
\end{array}\right] .
$$

