Final Exam 2012

(Total: $100 \mathrm{pts}, 40 \%$ of the grade)
Name:

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a transformation defined by:

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{2}, 2 x_{1}+2 x_{2}-3 x_{3},-3 x_{1}+x_{2}-5 x_{3}\right) .
$$

(a) Show that T is a linear transformation.
(b) Find the standard matrix $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ for the linear transformation T.
(c) Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$, where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are in (b).

Points:

$1 .(a)$	(b)	(c)	(d)	(e)	(f)	$2 .(a) *$	(b)	(c)	none	Total
									5	
									10	

1. Continued from page 1.
(d) Let $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3} \in \mathbb{R}^{3}$. Suppose the volume of the parallelepiped determined by $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}$ is 5 . What is the volume of the parallelepiped determined by $T\left(\boldsymbol{u}_{1}\right), T\left(\boldsymbol{u}_{2}\right), T\left(\boldsymbol{u}_{3}\right)$. Write a brief explanation.
(e) (i) Show that there is a linear transformation $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\left(\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \mapsto\right.$ $U(\boldsymbol{x})=U\left(x_{1}, x_{2}, x_{3}\right)$ such that $U\left(T\left(x_{1}, x_{2}, x_{3}\right)\right)=\left(x_{1}, x_{2}, x_{3}\right)$, i.e., $U(T(\boldsymbol{x}))=$ \boldsymbol{x} and that (ii) the standard matrix of U is A^{-1}.
(f) Find the $(2,3)$ entry of A^{-1}.
2. Let A and P be the following 4×4 matrices, and $\boldsymbol{b} \in \mathbb{R}^{4}$ given below.
$A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -d & -c & -b & -a\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}1 \\ \lambda \\ \lambda^{2} \\ \lambda^{3}\end{array}\right], \quad P=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & -2 & 3 \\ 1 & 4 & 4 & 9 \\ 1 & 8 & -8 & 27\end{array}\right]$.
(a) Find the characteristic polynomial $p(x)=\operatorname{det}(A-x I)$ of A.
(b) Show that if λ is an eigenvalue of A, then \boldsymbol{b} is an eigenvector of A corresponding to λ.
(c) Suppose $A P=P D$ for some diagonal matrix D. Determine a, b, c, d and D.
3. Let A, B, \boldsymbol{x} and \boldsymbol{b} be matrices and vectors given below. Assume $A \boldsymbol{x}=\boldsymbol{b}$. (20 pts)

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 1 & 3 & 4 \\
-2 & 2 & -3 & -2 & 2 \\
0 & -2 & -4 & 3 & 1 \\
-3 & 3 & 1 & -7 & -2 \\
1 & -1 & 2 & 3 & 0
\end{array}\right], B=\left[\begin{array}{ccccc}
1 & -1 & 2 & 3 & 0 \\
0 & 0 & 1 & 4 & 2 \\
0 & -2 & -4 & 3 & 1 \\
0 & 0 & 7 & 2 & -2 \\
0 & 2 & 1 & 3 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
3 \\
1 \\
4 \\
1 \\
5
\end{array}\right] .
$$

(a) The matrix B is obtained from the matrix A by applying a sequence of elementary row operations. (i) Find a matrix P such that $P A=B$, and (ii) express P as a product of elementary matrixes $E(i ; c), E(i, j), E(i, j ; c)$.
(b) Evaluate $\operatorname{det}(A)$. Briefly explain each step.
(c) The matrix P in (a) is uniquely determined. Give your reason.
(d) Applying the Cramer's rule and express x_{2} and x_{5} as quotients of determinants. Do not evaluate determinants.
4. Let $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 12 & 6 & 4 \\ 0 & 5 & 8\end{array}\right]$.
(a) Show that the characteristic polynomial of A is equal to the characteristic polynomial of A^{T}.
(b) Show that 12 is an eigenvalue of A.
(c) Find an eigenvector of A corresponding to an eigenvalue 12 .
（d）Find all eigenvalues of A ．
（e）Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$ ．

