Introduction to Linear Algebra

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by:

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{2}+x_{3}, x_{1}-x_{2}-x_{3},-x_{1}+3 x_{2}+5 x_{3}\right) .
$$

Let $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ be the standard matrix for the linear transformation T.
(a) Find A. Show work!

Solution. A satisfies the following:

$$
\begin{gathered}
A\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}+3 x_{2}+x_{3} \\
x_{1}-x_{2}-x_{3} \\
-x_{1}+3 x_{2}+5 x_{3}
\end{array}\right] . \text { For } \boldsymbol{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \\
\boldsymbol{v}_{1}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=A \boldsymbol{e}_{1}=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right], \boldsymbol{v}_{2}=A \boldsymbol{e}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right], \boldsymbol{v}_{3}=A \boldsymbol{e}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right] .
\end{gathered}
$$

Thus

$$
A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=\left[\begin{array}{ccc}
2 & 3 & 1 \\
1 & -1 & -1 \\
-1 & 3 & 5
\end{array}\right] .
$$

(b) Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$. Show work!

Solution.
$\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}=\left|\begin{array}{ccc}\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\ 2 & 1 & -1 \\ 3 & -1 & 3\end{array}\right|=\left[\left|\begin{array}{cc}1 & -1 \\ -1 & 3\end{array}\right|,\left|\begin{array}{cc}-1 & 2 \\ 3 & 3\end{array}\right|,\left|\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right|\right]^{T}=\left[\begin{array}{c}2 \\ -9 \\ -5\end{array}\right]$.
(c) Let $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3} \in \mathbb{R}^{3}$. Suppose the volume of the parallelepiped determined by $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}$ is 2 . What is the volume of the parallelepiped determined by $T\left(\boldsymbol{u}_{1}\right), T\left(\boldsymbol{u}_{2}\right), T\left(\boldsymbol{u}_{3}\right)$. Write a brief explanation.
Solution. Since the volume of the parallelepiped determined by $T\left(\boldsymbol{u}_{1}\right), T\left(\boldsymbol{u}_{2}\right), T\left(\boldsymbol{u}_{3}\right)$ is $|\operatorname{det}(A)|$ times the volume of the parallelepiped determined by $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}$, it is

$$
|\operatorname{det}(A)| \cdot 2=\left|\left|\begin{array}{ccc}
2 & 3 & 1 \\
1 & -1 & -1 \\
-1 & 3 & 5
\end{array}\right|\right| \cdot 2=\left|\left|\begin{array}{ccc}
0 & 5 & 3 \\
1 & -1 & -1 \\
0 & 2 & 4
\end{array}\right|\right| \cdot 2=|-14| \cdot 2=28
$$

2. Let A and B be the following 4×4 matrices, and $\boldsymbol{b} \in \mathbb{R}^{4}$ given below.
(30 pts)

$$
A=\left[\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right], \quad B=\left[\begin{array}{llll}
b & b & b & b \\
b & b & b & b \\
b & b & b & b \\
b & b & b & b
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] .
$$

(a) Find the determinant of A. Show work!

Solution. First apply $[1,2 ; 1],[1,3 ; 1],[1,4 ; 1]$ to columns, eg. add one times the second column to the first, etc,. we have

$$
\begin{aligned}
\left|\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right| & =\left|\begin{array}{llll}
a+3 b & b & b & b \\
a+3 b & a & b & b \\
a+3 b & b & a & b \\
a+3 b & b & b & a
\end{array}\right|=(a+3 b)\left|\begin{array}{cccc}
1 & b & b & b \\
1 & a & b & b \\
1 & b & a & b \\
1 & b & b & a
\end{array}\right| \\
& =(a+3 b)\left|\begin{array}{cccc}
1 & b & b & b \\
0 & a-b & 0 & 0 \\
0 & 0 & a-b & 0 \\
0 & 0 & 0 & a-b
\end{array}\right|=(a+3 b)(a-b)^{3} .
\end{aligned}
$$

(b) Find the condition that the set of columns of A is linearly dependent. Write a brief explanation.
Solution. The set of columns of A is linearly dependent if and only if $A \boldsymbol{x}=\mathbf{0}$ has a nontrivial solution. The latter condition is equivalent to A being singular (not invertible). Thus the condition is equivalent to $\operatorname{det}(A)=0$. Therefore $a+3 b=0$ or $a=b$.
(c) Find the eigenvalues of A, and their multiplicities.

Solution. Let $f(x)$ be the characteristic polynomial of A. Then
$f(x)=\operatorname{det}(A-x I)=\left|\begin{array}{cccc}a-x & b & b & b \\ b & a-x & b & b \\ b & b & a-x & b \\ b & b & b & a-x\end{array}\right|=((a-x)+3 b)(a-x-b)^{3}$
by replacing a by $a-x$ in the previous problem. Hence

$$
f(x)=(x-(a+3 b))(x-(a-b))^{3},
$$

and $a+3 b$ is an eigenvalue with multiplicity 1 and $a-b$ with multiplicity 3 unless $a+3 b=a-b$, in which case A has only one eigenvalue a with multiplicity 4 and $b=0$.
(d) Suppose $b \neq 0$. Find a linearly independent set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ such that $B \boldsymbol{v}_{1}=B \boldsymbol{v}_{2}=B \boldsymbol{v}_{3}=\mathbf{0}$. Show that it is actually linearly independent.
Solution. By solving the equation $B \boldsymbol{x}=\mathbf{0}$ by augmented matrix, we have
$\left[\begin{array}{lllll}b & b & b & b & 0 \\ b & b & b & b & 0 \\ b & b & b & b & 0 \\ b & b & b & b & 0\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=s \cdot\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right]+t \cdot\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+u \cdot\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$
Let $\boldsymbol{v}_{1}=[-1,1,0,0]^{T}, \boldsymbol{v}_{2}=[-1,0,1,0]^{T}$ and $\boldsymbol{v}_{3}=[-1,0,0,1]^{T}$. If $s \boldsymbol{v}_{1}+$ $t \boldsymbol{v}_{2}+u \boldsymbol{v}_{2}=\mathbf{0}$, then $[-s-t-u, s, t, u]=[0,0,0,0]$. In this case we must have $s=t=u=0$. Therefore the set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent.
(e) Let $T=\left[\boldsymbol{b}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$. (i) Show that T is invertible, and (ii) there is a diagonal matrix D such that $T^{-1} A T=D$.

Solution. In our case above,

$$
T=\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right], \text { and } \operatorname{det}(T)=\left|\begin{array}{cccc}
4 & -1 & -1 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|=4 \neq 0
$$

Hence T is invertible.

$$
A T=A\left[\boldsymbol{b}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=\left[(a+3 b) \boldsymbol{b},(a-b) \boldsymbol{v}_{1},(a-b) \boldsymbol{v}_{2},(a-b) \boldsymbol{v}_{3}\right]=T D,
$$

where D is a diagonal matrix with $a+3 b, a-b, a-b, a-b$ on the diagonal.
Since T is invertible, $T^{-1} A T=D$.
Remarks. First note that $B \boldsymbol{b}=(4 b) \cdot \boldsymbol{b}$. So $B T=B\left[\boldsymbol{b}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=$ $\left[B \boldsymbol{b}, B \boldsymbol{v}_{1}, B \boldsymbol{v}_{2}, B \boldsymbol{v}_{3}\right]=[4 b \boldsymbol{b}, \mathbf{0}, \mathbf{0}, \mathbf{0}]=\left[\boldsymbol{b}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right] \operatorname{diag}(4 b, 0,0,0)=T \operatorname{diag}(4 b, 0,0,0)$, where $\operatorname{diag}(4 b, 0,0,0)$ is a diagonal matrix with $4 b, 0,0,0$ on its diagonal. Thus B is diagonalized by T. Note that $4 b \neq 0, \boldsymbol{b}$ cannot be written as a linear combination of $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$. Thus the columns of T are linearly independent and T is invertible. Since $A=(a-b) I+B$, we are done. Check the following.

$$
T^{-1} A T=T^{-1}((a-b) I+B) T=(a-b) I+T^{-1} B T=(a-b) I+\operatorname{diag}(4 b, 0,0,0)=D
$$

3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below. Assume $A \boldsymbol{x}=\boldsymbol{b}$. (35 pts)

$$
A=\left[\begin{array}{cccc}
3 & -1 & 2 & 0 \\
1 & 2 & -2 & 5 \\
-1 & 3 & 1 & 1 \\
2 & 3 & 1 & -2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

(a) Evaluate $\operatorname{det}(A)$. Briefly explain each step.

Solution. The first 4 steps are exactly the same as in (d). Then $[3,2,-5],[4,2 ; 7]$ and we have the 2×2 determinant by expanding along the first and the second column. The rest are easy.

$$
\begin{aligned}
& A \xlongequal{ }\left|\begin{array}{cccc}
3 & -1 & 2 & 0 \\
1 & 2 & -2 & 5 \\
-1 & 3 & 1 & 1 \\
2 & 3 & 1 & -2
\end{array}\right|=-\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
3 & -1 & 2 & 0 \\
-1 & 3 & 1 & 1 \\
2 & 3 & 1 & -2
\end{array}\right|=-\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
0 & -7 & 8 & -15 \\
0 & 5 & -1 & 6 \\
0 & -1 & 5 & -12
\end{array}\right| \\
& =\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
0 & -1 & 5 & -12 \\
0 & 5 & -1 & 6 \\
0 & -7 & 8 & -15
\end{array}\right|=-\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
0 & 1 & -5 & 12 \\
0 & 5 & -1 & 6 \\
0 & -7 & 8 & -15
\end{array}\right|=-\left|\begin{array}{cccc}
1 & 2 & -2 & 5 \\
0 & 1 & -5 & 12 \\
0 & 0 & 24 & -54 \\
0 & 0 & -27 & 69
\end{array}\right| \\
& =-\left|\begin{array}{cc}
24 & -54 \\
-27 & 69
\end{array}\right|=-\left|\begin{array}{cc}
24 & -54 \\
-3 & 15
\end{array}\right|=-6 \cdot 3\left|\begin{array}{cc}
4 & -9 \\
-1 & 5
\end{array}\right|=-198 .
\end{aligned}
$$

(b) Applying the Cramer's rule and express x_{2} and x_{3} as quotients of determinants. Do not evaluate determinants.
Solution.
$x_{2}=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}, x_{3}=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}$ with $A_{2}=\left[\begin{array}{cccc}3 & 1 & 2 & 0 \\ 1 & 2 & -2 & 5 \\ -1 & 3 & 1 & 1 \\ 2 & 4 & 1 & -2\end{array}\right], A_{3}=\left[\begin{array}{cccc}3 & -1 & 1 & 0 \\ 1 & 2 & 2 & 5 \\ -1 & 3 & 3 & 1 \\ 2 & 3 & 4 & -2\end{array}\right]$.
(c) Let $B=\operatorname{adj}(A)$, the adjugate of A. Determine the $(2,3)$-entry of B. Do not evaluate the determinant involved.
Solution.

$$
B_{2,3}=(-1)^{2+3}\left|\begin{array}{ccc}
3 & 2 & 0 \\
1 & -2 & 5 \\
2 & 1 & -2
\end{array}\right|=-\left|\begin{array}{ccc}
3 & 2 & 0 \\
1 & -2 & 5 \\
2 & 1 & -2
\end{array}\right| .
$$

Let B be the augmented matrix of $A \boldsymbol{x}=\boldsymbol{b}$. Let C be a matrix obtained from B after applying a series of elementary row operations.

$$
B=\left[\begin{array}{ccccc}
3 & -1 & 2 & 0 & 1 \\
1 & 2 & -2 & 5 & 2 \\
-1 & 3 & 1 & 1 & 3 \\
2 & 3 & 1 & -2 & 4
\end{array}\right], \quad C=\left[\begin{array}{ccccc}
1 & 2 & -2 & 5 & 2 \\
0 & 1 & -5 & 12 & 0 \\
0 & 5 & -1 & 6 & 5 \\
0 & -7 & 8 & -15 & -5
\end{array}\right]
$$

(d) Write a sequence of operations applied to B to obtain C using $[i ; c],[i, j],[i, j ; c]$ notation.
Solution. $[1,2] \rightarrow[2,1 ;-3] \rightarrow[3,1 ; 1] \rightarrow[4,1 ;-2] \rightarrow[2,4] \rightarrow[2 ;-1]$.
(e) Find a 4×4 matrix P such that $P B=C$.

Solution.
$P=E(2 ;-1) E(2,4) E(4,1 ;-2) E(3,1 ; 1) E(2,1 ;-3) E(1,2)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 1 & -3 & 0 & 0\end{array}\right]$.
(f) Express P^{-1} as a product of elementary matrices using the notation $E(i ; c)$, $E(i, j), E(i, j ; c)$.

Solution.

$$
\begin{aligned}
P^{-1} & =(E(2 ;-1) E(2,4) E(4,1 ;-2) E(3,1 ; 1) E(2,1 ;-3) E(1,2))^{-1} \\
& =E(1,2) E(2,1 ; 3) E(3,1 ;-1) E(4,1 ; 2) E(2,4) E(2 ;-1) .
\end{aligned}
$$

(g) Explain that P in (e) is uniquely determined.

Solution. Let C^{\prime} be the 4×4 matrix consisting of the first 4 columns of C. Since the first four columns of B forms A, we have $P A=C^{\prime}$. Since $\operatorname{det}(A) \neq 0$ in (a), A is invertible. Thus $P=C^{\prime} A^{-1}$ and P is uniquely determined.
4. Let $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ and $\boldsymbol{v}_{3} \in \mathbb{R}^{3}$ be as follows.
$\boldsymbol{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right]$.
(a) Find the reduced row echelon form of the following matrix. (Show work.)

$$
\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 8 & 0 & 0 & 1
\end{array}\right]
$$

Solution.

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 8 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & -1 & -1 & -2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & 0 & -1 & -6 & 1 & 1
\end{array}\right]} \\
& \\
& \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & 0 & 1 & 6 & -1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & -11 & 2 & 2 \\
0 & 1 & 0 & -4 & 0 & 1 \\
0 & 0 & 1 & 6 & -1 & -1
\end{array}\right] .
\end{aligned}
$$

(b) Using (a), explain that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent.

Solution. Let $B=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$. Then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent if and only if B is invertible. B is invertible if and only if its reduced echelon form is I. This is the case as we have seen above. Hence $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent.
(c) Find the standard matrix A of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{e}_{1}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{e}_{2}$ and $T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{e}_{3}$.
Solution. As in the previous problem let $B=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$. Then by out assumption, we have

$$
A B=A\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=\left[A \boldsymbol{v}_{1}, A \boldsymbol{v}_{2}, A \boldsymbol{v}_{3}\right]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]=I .
$$

Thus B is invertible and $A=B^{-1}$ and by (a)

$$
B=\left[\begin{array}{ccc}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{array}\right]
$$

