Final Exam 2011

(Total: 100 pts$)$
ID\#:
Name:

1. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by:

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+3 x_{2}+x_{3}, x_{1}-x_{2}-x_{3},-x_{1}+3 x_{2}+5 x_{3}\right) .
$$

Let $A=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$ be the standard matrix A for the linear transformation T.
(a) Find A. Show work!
(b) Find $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$. Show work!
(c) Let $\boldsymbol{u}_{1}, \boldsymbol{u}_{3}, \boldsymbol{u}_{3} \in \mathbb{R}^{3}$. Suppose the volume of the parallelepiped determined by $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}$ is 2 . What is the volume of the parallelepiped determined by $T\left(\boldsymbol{u}_{1}\right), T\left(\boldsymbol{u}_{2}\right), T\left(\boldsymbol{u}_{3}\right)$. Write a brief explanation.

Points:

$1 .(a)$	(b)	(c)	$2 .(a)$	(b)	(c)	(d)	$(e) *$	none	$*$	Total
								5	10	
	(b)	(c)	(d)	(e)	(f)	(g)	$4 .(a) *$	(b)	(c)	

2. Let A and B be the following 4×4 matrices, and $\boldsymbol{b} \in \mathbb{R}^{4}$ given below.
$A=\left[\begin{array}{llll}a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a\end{array}\right], \quad B=\left[\begin{array}{llll}b & b & b & b \\ b & b & b & b \\ b & b & b & b \\ b & b & b & b\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
(a) Find the determinant of A. Show work!
(b) Find the condition that the set of columns of A is linearly dependent. Write a brief explanation.
(c) Find the eigenvalues of A, and their multiplicities.
(d) Suppose $b \neq 0$. Find a linearly independent set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ such that $B \boldsymbol{v}_{1}=B \boldsymbol{v}_{2}=B \boldsymbol{v}_{3}=\mathbf{0}$. Show that it is actually linearly independent.
(e) Let $T=\left[\boldsymbol{b}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]$. (i) Show that T is invertible, and (ii) there is a diagonal matrix D such that $T^{-1} A T=D$.
3. Let A, \boldsymbol{x} and \boldsymbol{b} be a matrix and vectors given below. Assume $A \boldsymbol{x}=\boldsymbol{b}$.

$$
A=\left[\begin{array}{cccc}
3 & -1 & 2 & 0 \\
1 & 2 & -2 & 5 \\
-1 & 3 & 1 & 1 \\
2 & 3 & 1 & -2
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] .
$$

(a) Evaluate $\operatorname{det}(A)$. Briefly explain each step.
(b) Applying the Cramer's rule and express x_{2} and x_{3} as quotients of determinants. Do not evaluate determinants.
(c) Let $B=\operatorname{adj}(A)$, the adjugate of A. Determine the (2,3)-entry of B. Do not evaluate the determinant involved.

Let B be the augmented matrix of $A \boldsymbol{x}=\boldsymbol{b}$. Let C be a matrix obtained from B after applying a series of elementary row operations.

$$
B=\left[\begin{array}{ccccc}
3 & -1 & 2 & 0 & 1 \\
1 & 2 & -2 & 5 & 2 \\
-1 & 3 & 1 & 1 & 3 \\
2 & 3 & 1 & -2 & 4
\end{array}\right], \quad C=\left[\begin{array}{ccccc}
1 & 2 & -2 & 5 & 2 \\
0 & 1 & -5 & 12 & 0 \\
0 & 5 & -1 & 6 & 5 \\
0 & -7 & 8 & -15 & -5
\end{array}\right]
$$

(d) Write a sequence of operations applied to B to obtain C using $[i ; c],[i, j],[i, j ; c]$ notation.
(e) Find a 4×4 matrix P such that $P B=C$.
(f) Express P^{-1} as a product of elementary matrices using the notation $E(i ; c)$, $E(i, j), E(i, j ; c)$.
(g) Explain that P in (e) is uniquely determined.

4．Let $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ and $\boldsymbol{v}_{3} \in \mathbb{R}^{3}$ be as follows．
$\boldsymbol{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \boldsymbol{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{l}2 \\ 3 \\ 8\end{array}\right]$.
（a）Find the reduced row echelon form of the following matrix．（Show work．）

$$
\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 8 & 0 & 0 & 1
\end{array}\right]
$$

（b）Using（a），explain that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is linearly independent．
（c）Find the standard matrix A of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T\left(\boldsymbol{v}_{1}\right)=\boldsymbol{e}_{1}, T\left(\boldsymbol{v}_{2}\right)=\boldsymbol{e}_{2}$ and $T\left(\boldsymbol{v}_{3}\right)=\boldsymbol{e}_{3}$.

