Final Exam 2007

(Toal: 100pts)
Division: ID\#: Name:

1. Find the values of α and β for the following system to have a solution.

$$
\left\{\begin{array}{cl}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5} & =6 \\
6 x_{1}+7 x_{2}+8 x_{3}+9 x_{4}+10 x_{5} & =11 \\
11 x_{1}+12 x_{2}+13 x_{3}+14 x_{4}+15 x_{5} & =\alpha \\
16 x_{1}+17 x_{2}+18 x_{3}+19 x_{4}+20 x_{5} & =\beta
\end{array}\right.
$$

Points:

1.	2.	$3 .(a)$	(b)	(c)	$4 .(a)$	(b)	$5 .(a)$	(b)	(c)	$6 .(a)$	(b)	Total

2. Show the following.
(10 pts)

$$
\left|\right|=\left(x_{n}-x_{1}\right)\left(x_{n}-x_{2}\right) \cdots\left(x_{n}-x_{n-1}\right)\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-2} \\
1 & x_{n} & x_{n}{ }^{2} & \cdots & x_{n}{ }^{n-1}
\end{array}\right|\left|\begin{array}{ccccc}
\\
1 & x_{2} & x_{2}{ }^{2} & \cdots & x_{2}{ }^{n-2} \\
1 & x_{3} & x_{3}{ }^{2} & \cdots & x_{3}{ }^{n-2} \\
& & \cdots & \cdots & \\
1 & x_{n-1} & x_{n-1}{ }^{2} & \cdots & x_{n-1}{ }^{n-2}
\end{array}\right|
$$

3. Let A be the matrix below. (You can quote the formula of the previous problem.)
$A=\left[\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 2^{2} & 2^{3} & 2^{4} \\ 1 & 3 & 3^{2} & 3^{3} & 3^{4} \\ 1 & 4 & 4^{2} & 4^{3} & 4^{4} \\ 1 & 5 & 5^{2} & 5^{3} & 5^{4}\end{array}\right]$
(a) Show that A is invertible.
(b) Find the (5, 1)-entry of the inverse of A.
(c) Find the (1,4)-entry of the inverse of A.
4. Let A, \boldsymbol{x} and \boldsymbol{b} be the matrices below.

$$
A=\left[\begin{array}{cccc}
0 & 2 & -5 & 4 \\
-1 & -2 & 0 & 4 \\
1 & -3 & -1 & 2 \\
2 & -5 & -3 & 4
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(a) Evaluate $\operatorname{det}(A)$.
(b) Applying the Cramer's rule to find x_{4} of the equation $A \boldsymbol{x}=\boldsymbol{b}$.
5. Let B, C, \boldsymbol{x} and \boldsymbol{b} be matrices below.

$$
B=\left[\begin{array}{ccccc}
0 & 2 & -5 & 4 & a \\
-1 & -2 & 0 & 4 & b \\
1 & -3 & -1 & 2 & c \\
2 & -5 & -3 & 4 & d
\end{array}\right], C=\left[\begin{array}{ccccc}
1 & -3 & -1 & 2 & a^{\prime} \\
0 & 1 & -1 & 0 & b^{\prime} \\
0 & 2 & -5 & 4 & c^{\prime} \\
0 & -5 & -1 & 6 & d^{\prime}
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

(a) By a consecutive application of elementary row operations, the matrix C is obtained from B. Express $a^{\prime}, b^{\prime}, c^{\prime}$ and d^{\prime} in terms of a, b, c, d.
(b) Let P be a 4×4 matrix such that $P B=C$. Express P^{-1} as a product of elementary matrices using the notation $P(i ; \alpha), P(i, j), P(i, j ; \beta)$.
(10 pts)
(c) Show that for any numbers $b_{1}, b_{2}, b_{3}, b_{4}$, the equation $B \boldsymbol{x}=\boldsymbol{b}$ has infinitely many solutions.

6．Let $A=\left[\begin{array}{lll}x & 1 & 0 \\ 0 & x & 1 \\ 0 & 0 & x\end{array}\right]$
（a）Find the matrices A^{2} and A^{3} ．
（b）Find the matrix A^{n} for any natural number $n=1,2,3, \ldots$ ．

