1 Sets (&H)

1.1 Sets

Definition 1.1 [Set (]88) | A set is a collection of objects. The objects that make up a set are called
its elements (or members). When a is an element of a set A, we say that a belongs to A and wirte

acAor A>a.

If a is not a member of A, we write

ag Aor A% a.

We consider a set with no elements and call the empty set (ZE54) | null set or void set. The empty set
is denoted by 0 or { }.

The number of elements in a set S is denoted by |S|. The |S] is also referred to as the cardinal number
(GEB)  or cardinality (BREE) of S. A set S is finite if |S| = n for some nonnegative integer n. A set S
is infinite if it is not finite.

Example 1.1 1. N, Z Q,R,C, where N ={1,2,...,}, the set of positive integers.
2.8 ={z:2%2 -2 =0} = {V/2,—v2}. Unless it is clear by context, we write S = {z : z €
Rand 2?2 —-2=0}or S={zr € R: 2% —2=0}. Note that {z € Q : 22 —2 =0} = 0.

1.2 Inclusion and Set Operations (ZEEREERETRH)

Definition 1.2 1. A set A is called a subset of a set B if every element of A belongs to B. If A is a
subset of B, then we write A C B or B D A.

2. Two sets A and B are equal and we write A = B if they have exactly same elements. This is
equivalent to say that A = B if and only if A C B and B C A.

3. A set A is a proper subset (Hif744) of aset Bif AC B and A # B.

4. The union (F1%EA) of two sets A and B, denoted by A U B, is the set of all elements belonging
to A or B; that is
AUB={x|z € Aor xz € B}.

5. The intersection (FHEEA) of two sets A and B, denoted by A N B, is the set of all elements
belonging to both A and B; that is

ANB={z|z € Aand z € B}.

6. If two sets A and B have no elements in common, then AN B = (), A and B are said to be disjoint

(H\wizsk) .
7. The difference (Z2%:4) A — B of two sets A and B (also written as A\ B is defined as

A-—B={x|zec Aand z ¢ B}.

8. We are ordinarily concerned with subsets of some specified set U, called the universal set. In this
case for a subset A of U, U — A is denoted by A and called the complement (&) of A.

9. The set containing of all subsets of a given set A is called the power set (FE5#4) of A and is
denoted by P(A).
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1.3 Indexed Collections of Sets (FRFR{TZTESIE)

Definition 1.3 1. The union and intersection of the n > 2 sets Ay, As, ..., A, are denoted by

A1UA2U-~~UA":UAi:{a::xGAiforsomei,lgign}.

i=1
AlﬂAgﬁ~-~ﬂAn:ﬂAi:{w:xeAiforalli,lgign}.
i=1

2. We also use the notation using an indez set to describe a collection of sets {S4 }acr. It is called an
indexed collection of sets. Moreover,

UAaz{x:xeAaforsomeael}, ﬂAa:{x:xeAQforallael}.

acl acl
Example 1.2
1 1 11
An={xeR:—<x<}= [—} U Ae=[-11, () A= {0}
n n n'n
nGN nEN

1.4 Partitions of Sets (ES§ D9 E)

Definition 1.4 1. A collection S of subsets of a set A is called pairwise disjoint if every two distinct
subsets that belong to S are disjoint.

2. A partition of A is a collection S of nonempty subsets of A such that every element of A belongs

to exactly one member of S. Equivalently, a partition of a set A is a collection S of subsets of A
satisfying the following three properties:

(1) X # 0 for every set X € S.
(2) For every two sets X,Y € S, either X =Y or X NY = (.

3 Jx=4a

XeS

Example 1.3 For i =0,1,2, let A; = {3n+1i:n € Z}. Then {Ao, 41, A2} is a partition of Z.

1.5 Cartesian Product of Sets (8 DER)

Definition 1.5 1. The ordered pair (z,y) is a single element consisting of a pair of elements in which
x is the first element (or first coordinate) of the ordered pair (x,y) and y is the second element (or
second coordinate). Moreover (z,y) = (w, 2) if and only if = w and y = z.

2. The Cartesian product (or simply the product) A x B of two sets A and B is the set consisting of

all ordered pairs whose first coordinate belongs to A and whose second coordinate belongs to B. In
other words,

Ax B={(a,b):a€ Aandbe B}.
3. If both A and B are finite sets, then |A x B| = |A]| - | B|.
Example 1.4

{(z,y) e Rx R:y=2x+3}.
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Russel’s Paradox (1903):  Let S be the set of all sets. Let
Ci={MeS|MgM}, Co={MecS|MecM}

Both Cy € €7 and C; ¢ Cy imply a contradiction. [ |

Reference:  "BUEMC: A L3410 (IFLOTESIADIDIT) ) INALEE, ¥t (BLUE BACKS
B1332 ISBN4-06-257332-6, 2001.5.20) Z&HIZ L TL 23 W0,

1.6 Exercises from Chapter 3

Homework: Chapter 3. Sets Exercises 45 (indexed), 46 (partition), 63 (product), 69 (list), 73
(cardinality)

Recitation Problems: Chapter 3. Sets Exercises 25, 27, 29, 31, 33, 34, 35, 36, 38, 40, 42, 44, 52, 59,
64, 65, 66, 69, 73, 77

2 Logic (Fe¥E)

2.1 Statements (fpRHE)

Definition 2.1 1. A statement is a declarative sentence or assertion that is true or false (but not
both).

eg. The integer 3 is odd. The integer 57 is prime.
2. Every statement has a truth value, namely true (denoted by T') or false (denoted by F).

3. An open sentence is a declarative sentence when that contains one or more variables, each variable
representing a value in some prescribed set, called the domain of the variable, and which becomes
a statement when values from their respective domains are substituted for these variables.

eg. 3z = 12. An integer z is prime.

Example 2.1 An open sentence
P(z): (x —3)* < 1.

over the domain Z is a true statement when = € {2, 3,4}, and a false statement otherwise.

2.2 Negation, Disjunction, Conjunction and Implication

Definition 2.2 [Logical Connectives, Compound Statement of Component Statements]
1. Truth table (EBIZ)
2. The negation (f5%E) of a statement P is the statement ‘not P’ and is denoted by ~ P.

3. The disjunction, i.e, logical or (HfiH% - FWPEMAI) of the statements P and Q is the statement ‘P or
@’ and is denoted by PV Q.

4. The conjunction, i.e., logical and (£ « FHET) of the statements P and Q is the statement ‘P
and @’ and is denoted by P A Q.

5. The implication (&) is the statement ‘If P, then Q' and is denoted by P = Q. We also express
P = @ in words as ‘P implies Q.

6. For statements (or open sentences) P and @, the implication Q = P is called the converse (i#f)
of P= Q.
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7. The statement (or open statement) P and @, the conjunction
(P=Q)N(Q=P)

of the implication P = @ and its converse is called the biconditional of P and ) and is denoted by
P < Q. The biconditional P < @ is often stated as ‘P is equivalent to Q’ ([l 7 & mE) or
‘P if and only if Q’. or as ‘P is a necessary and sufficient condition for Q° (WMFE+4751) .

8. A compound statement is called a tautology (F— v — - {HEM#) if it is true for all possible
combinations of truth values of the component statements.

9. A compound statement is called a contradiction (FJ&) if it is false for all possible combinations
of truth values (EHfil) of the component statements.

~P, PVQ, PNQ,P=Q,PsQ

PIQIPVQIPAQ|P=Q|P=Q
P ~P T(T| T T T T
T| F TIF| T F F F
F| T FlT| T F T F
F|F| F F T T

Exercise 2.1 Complete the following truth table.
1. (~P)VQ

L (~Q) = (~P)

C(PAQ) = ~Q

. ((~P)VQ)=P

(P=QA@Q=R)=(P=R)

[ A )

(Pl ~P)vQ | (~Q = (~P) | (PAQ =~Q | (~P)VQ)=P |

| (P=@AQ=R)=>(P=R) | PV(QAR) | (PVQAR |

IRl R RN Rl el et | EO N B RN T

R R TR Rl e R RN R =y

R el RN R N R R N RN Ba v B RS RS T R

2.3 Logical Equivalence

Whenever two (compound (£%) ) statements R and S have the same truth values for all combinations
of truth values of their component statements, then we say that R and S are logically equivalent (GiEE[F
fil) and indicated by writing R = S.

(~MP)VR=(~Q)= (~P)=P=Q
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2.4 Some Fundamental Properties of Logical Equivalence

Proposition 2.1 The following hold.

2.5 Quantified Statements

Universal quantifier and existential quantifier. See Section 4 as well.

2.6 Characterization of Statements

We say that the concept is characterized by Q(z) if
Vo € S, P(z) & Q(x).

See Section 4 as well.

2.7 Exercises from Chapter 2. Logic

Homework: 2.5, 16, 31, 40, 75

Recitation Problems: 2.3, 5, 8, 18, 22, 23, 24, 29, 33, 43, 44, 48, 49, 62, 70, 71, 73, 75, 76, 77
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3 Direct Proof and Proof by Contrapositive

3.1 Proof of Implication P = Q

Vz € S, P(x) = Q(x).

Pl Q| P=Q|~PVQ | ~Q=~P
T | T T T T
T | F F F F
F|T T T T
F | F T T T

Vacuous Proof

Example 3.1 1. VzeR, z<0=22>+1>0.
VreR, z2+1>0.

2.V €R, 22 —22+2<0= 2% >8.
Ve € R, 22 — 22 +2 > 0.

Types of Proofs
1. Direct Proof
2. Proof by Contrapositive
3. Proof by Cases
Example 3.2 Let x € Z. If 5bx — 7 is even, then z is odd.
Example 3.3 Let 2 € Z. Then 22 is even if and only if z is even.
Vo € Z, z°: even & z: even.

Proof. ~ We prove in the following two steps.

2

(1) If x is even, then z* is even.

(2) If z is odd, then x? is odd.

(x is not even, then 22 is not even.)

This proves the assertion.
Example 3.4 Let x € Z. If 5x — 7 is odd, then 9z + 2 is even.
Example 3.5 For z,y € Z. Then = and y are of the same parity if and only if z 4 y is even.
Example 3.6 Let A and B be sets. Then AU B = A if and only if B C A.
Proof.  We prove in the following two steps.

(1) If AUB = A, then B C A.

(2) If BC A, then AUB = A.

(1) f BZ Athen AUB # A.
~Vr,reB=x€A)=dx,x € BAx & A.

This proves the assertion.
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3.2 Divisibility of Integers

Let a,b € Z. The integer a divides b If there exists ¢ € Z such that b = ac. When a divides b, we write
a | b. If a does not divide b, we write a { b.

Vae ZNbe Z,a|b<s Iee Z,b=ac.
Proposition 3.1 Let a,b,c € Z.
(i) Always1|a, a|0 and0|a< a=0.
(i

(iii

)
) (a|b)A(b|c)=alco

) (a|b)A(b]a) < a=+b.

(iv) (a|b)A(a]c) < a|bx+cy for all integers x,y.

3.3 Congruence of Integers

Let m be positive integer. For a,b € Z, a is congruent to b modulo m if m | a — b. In this case we write
a=b (modm).
a=b (modm)<ml|a—0b.

Lemma 3.2 The following hold.
(i) a=a (mod m).
(i) a=b (modm)=b=a (modm).
(iii) (a=b (mod m)) A (b=c (modm))=a=c (modm).

Proposition 3.3 For integers a,b,c,d and a positive integer n, suppose a = b (mod n) and ¢ = d
(mod n). Then the following hold.

(i) a+c=b+d (modn).
(ii) ac=bd (mod n).

3.4 Exercises from Chapter 4
Homework: 4.3, 13, 19, 32, 37

Recitation Problems: 7, 10, 18, 20, 24, 26, 35, 36, 38, 40, 47, 51, 54, 55, 60, 61, 63, 64, 66

3.5 Exercises from Chapter 5
Homework: 5.3, 19, 34, 40, 67

Recitation Problems: 4, 8, 10, 16, 20, 22, 26, 28, 32, 46, 56, 58, 60, 66, 70, 85, 89, 96, 99
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4 Existence Proof and Proof by Contradiction

4.1 Quantified Statements
Open Statement: P(z). 2z > 1.

Quantified Statement: An open statement can be converted to a statement by a quantifier. FRE
i
Universal Quantifier: Vr € R e > 0,Vzx € R,e” > 1. s - fdanE
Existential Quantifier: Jr € R,e®* =2,dz € R,e” = 0. FAERL S - FRLEfmE

4.2 Counter Example (&)

~(Vrxe S R(x) =3z e S,~ R(z), ~ (/\ R(x)) = \/ (~ R(x)).

zeS zeS

Example 4.1 1. If z is a real number, then tan?z + 1 = sec?z.

Vz € R,tan® z + 1 = sec? z.

For = /2 + km, the right hand side is not defined.

Whenever both hand sides are defined, tan? z + 1 = sec? .

2. Let n € Z. If n? 4 3n is even, then n is odd.

The number 2 is a counter example. Note that n? + 3n = n(n + 3) is even for every integer n. It is
true that every even integer is a counter example. But . ...

3. For all non-negative integer n, F(n) = 22" + 1 is a prime.
F(0) =3, F(1) =5, F(2) = 17, F(3) = 257, F(4) = 65537, F(5) = 4294967297 = 641 - 6700417.

4. Mersenne Prime: M (p) = 2P — 1, where p is prime.

Sage Program

def me(n):
v =11
for i in prime_range(2,n):
if is_prime(27i-1):
v.append (i)
return v

m=me (1000) ;m

(2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607]

URL http://www.sagemath.org
HAGEIZ X % SageMath A1 :
URL http://subsite.icu.ac.jp/people/hsuzuki/science /computer /education/sage-j.html
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4.3 Proof by Contradiction (BEkIC K SEER)
If R: Vax € S, P(x) = Q(z), then a proof by contradiction might begin with

Assume, to the contrary, that there exists some element x € S for which P(z) is true and
Q(z) is false.

Example 4.2 Let p be a prime. Then /p is irrational.

4.4 Existence Proofs (fZ7EiEHH)

Jdx € S, R(x) : There exists € S such that R(x).
Example 4.3 There exist irrational numbers a and b such that a’ is rational.

Proof. Case 1. \/5\/§ is rational.
Then set a = b = /2.

Case 2. \/i\/5 is irrational.
Then set a = \/5\/5 and b = /2. ]
Example 4.4 The equation 2% +2z —5 = 0 has a unique real number solution between z = 1 and = = 2.

Proof.  Let f(z) = 2% + 22 — 5. Then f(1) = —2 and f(2) = 31. f(x) is continuous. Thus by the
Intermediate Value Theore, the assertion holds.

Forl<a<b<2a®+2a—5<b+2b—5. Or f/(z) =52*+2>0and f(x) is increasing. So if
a < b, then f(a) < f(b). [ |

Example 4.5 Let a be a real number. For each integer (Q > 1, there exist integers p, ¢ with 0 < ¢ < @
such that |ga — p| < 1/Q. In this case |a — 2 < é

4.5 Principle of Mathematical Induction (HZHIRHNEDRIE)

Definition 4.1 A nonempty subset S of real numbers is said to be well-ordered (FEHSEA) if every
nonempty subset of S has a least element, which is unique. The least element of a set 1" is denoted by
min T and

m=minT < meT, and Vr €T, m < z.
The Well-Ordering Principle:  The set IN of positive integers is well-ordered.

Every nonempty subset of a well-ordered set is well-ordered and hence every nonempty finite subset
S of real numbers is well-ordered.

Theorem 4.1 (Theorem 6.2 (The Principle of Mathematical Induction)) For each positive in-
teger n, let P(n) be a statement. If

(1) P(1) is true and

(2) the implication
If P(k), then P(k+1)

is true for every positive integer k,

then P(n) is true for every positive integer n.

4.6 Exercises from Chapter 6
Homework: 6.14, 20, 26, 40, 49
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Recitation Problems: 7, 8, 11, 22, 29, 32, 37, 44, 48, 50, 55, 60, 61, 62, 64

4.7 Exercises from Chapter 7
Homework: 7.1, 5,11, 18, 24

Recitation Problems: 2, 4,8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25
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5 Mathematical Induction (BZRIEHE)

5.1 General Principles of Mathematical Induction

Definition 5.1 [Review] An nonempty set S of real numbers is said to be well-ordered if every nonempty
subset of S has a least element min S, i.e.,

m=minS < mecS, and Vr € S, m < z.
Well-Ordered Set:  For each integer m € Z, the set S = {i € Z : i > m} is well-ordered.

Principle of Mathematical Induction:  (P(m) A (Vk > m, P(k) = P(k+ 1)) = (Vn > m, P(n)).

Every nonempty subset of a well-ordered set is well-ordered and hence every nonempty finite subset
S of real numbers is well-ordered.

Theorem 5.1 (The Strong Principle of Mathematical Induction) For a fized integer m, let S =
{i € Z :i>m}. For each integer n € S, let P(n) be a statement. If,

(1) P(m) is true and

(2) the implication;
if P(k) is true for every integer i with m < i <k, then P(k+1)

is true for every integer k € S,

then P(n) is true for every integer n € S.
Example 5.1 1. For every integer n > 5, 2" > n2.

Proof. For k>3, 281 =2.2F > 2k2 = k2 + k2 > k? + 3k > k? + 2k + 1 = (k + 1)%. Note that
we need n > 5. |

2. A sequence {a,} is defined recursively by
ar =1, a, =4, and a, =2a,_1 — Gn_o + 2 for n > 3.
Conjecture a formula for a,, and verify that your conjecture is correct.
a1 =1, a2=4,a3=9, ag =16,...,

Conjecture: a, = n2.

Proof.  The conjecture is valud when n = 1,2. Now for k& > 2,
apr1 =2ap —ap_1 +2=2k — (k- 12 +2=2k* — k> +2k—1+1=(k+1)?. m
3. Let a,b,p, ¢ be constants. Suppose a sequence {a, } satisfies the following.
ay =a,as =b, a, = pan_1+ qa,_o, for n > 3.

Let o, 8 be roots of 22 — pz — ¢ = 0. Then

o ﬁ%a((ﬁn—l _an—l)b+(a"—1ﬂ_aﬁ7L_1)a ifa#p0
n — (Tl _ 1)a71—2b _ (Tl _ z)an—la ifa= ﬁ

Proof. 1t is clear that a; = a and as = b in both cases.
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Suppose « # [ and n > 3. Then by induction hypothesis,
1

W= 5 (P((B" 2 =" b+ (@" 28— af"*)a) + q(6" % = " )b+ (" — af"?)a)
— (@8 08"~ (o + 0™ b+ (pat )" B~ (b8 + )aB"")a)
— ﬁia((ﬂnfl_anfl)b_‘_(anflﬁ_aﬂnfl)a.

The other case is similar and left as your exercise. [ ]

1

Example 5.2 Every positive number n > 2 is either a prime" or a product of primes.

Proof.  Let n be an integer at least 2. Suppose n is not a prime. Then there exist positive integers
2 < mq,mg < n such that n = mymsy, Since m1, ms < n, each of these is a prime or a product of primes.
|

Example 5.3 For each integer n > 8, there are nonnegative integers a and b such that n = 3a + 5b.
Proof. (i) OK for n = 8,9,10. Assume k+ 1 > 11, Then k — 2 > 8 hence,
k+1=(k—-2)+3=3a+5b+3=3(a+1)+ 50 ]
Example 5.4 Let a,b € Z. Then there is an integer d satisfying the following three conditions.
(i)d>0, (ii)d|aandd]|b, (iii)c|aand c|bimplies c]|d.

The integer d is uniquely determined and it is called the greatest common divisor of a and b. The greatest
common divisor d of a and b is denoted by d = gcd{a,b}. In this case, there are x,y € Z such that
d = ax + by.

Proof.  In the following we show that there is an integer d = ax + by (z,y € Z) satisfying (i), (ii), (iii).

If a=0=0, then d = 0 with x = y = 0 satisfies the condition. So assume that a # 0 or b # 0. Let
S={ax+by>0|xze€Z,yc Z} CN.

Since a # 0or b # 0, for v = a, y = bar+by = a®> +b*> > 0 and S # ). Thus by well-ordered
principle applied to IN, S has a least element d. Since d > 0, it satisfies (i). By definition of S there
is an expression d = ax + by with xz,y € Z. Suppose ¢ | a and ¢ | b. Since d = ax + by, ¢ | d, and we
have (iii). Suppose d t a. Then we have a = dq + r for some integers ¢ and r with 0 < r < d. Now
r=a—dq=a- (ax +by)qg = a(l — gx) + b(—qy), and by the definition of S r € S. This is absurd as
r < d and d is the least element of S. Therefore d | a. Similarly, d | b. Thus d satisfies (ii) and d has
desirable properties.

Suppose d’ satisfies the same conditions. Since d’ satisfies (ii) and d satisfies (iii), d’ | d. Similarly,
d| d. By (i), we have d = d’. Thus the integer satisfying (i), (ii), (iii) is unique. [ |

Exercise 5.1 Let a,b be integers with ged(a, b) = 1. Then for each £ > ab, there are nonnegarive integers
x,y such that ¢ = ax + by.

5.2 Exercises from Chapter 7
Homework: 7.26, 30, 41, 44, 45

Recitation Problems: 27, 31, 32, 33, 40, 42, 43, 46, 52, 53, 57, 62, 63, 64, 67,

5.3 Exercises from Chapter 8
Homework: 8.16, 56, 70, 76, 78

Recitation Problems: 1,2, 3,5, 6,7, 8, 29, 54, 58, 67, 68, 81, 88, 92

1A prime number p is a positive integer at least 2 such that 1 and p are the only positive divisors.
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6 Relations (FA{R)

6.1 Relations

Definition 6.1 Let A and B be two sets. By a relation R from A to B we mean a subset of A x B, i.e.,
R C Ax B. If (a,b) € R, then we say that a is related to b by R and write aRb. If (a,b) ¢ R, then a is
not related to b by R.

Let R be a relation from A to B. Then the domain and the range are defined as follows.

domR = {a € A: (a,b) € R for some b € B}, and
ranR = {b € B : (a,b) € R for some a € A}.

By a relation on a set A, we mean a relation from A to A.

Let R be a relation on a set A.

(R) (Va € A)aRa] (SR, reflexive law).
(S) (Va € A)(Vb € A)[aRb = bRa) (NFRAE, symmetric law)
(A) (Va € A)(Vb e A)[(aRb A bRa) = a = b] (B, antisymmetric law)
(T) (Va € A)(Vb e A)(Vec € A)[(aRb A bRc) = aRc] (HER£A, transitive law)

Example 6.1 The following are relations on a set.
1. (Z,<): R<c ={(a,b) € Z x Z :a <b}.
2. For aset X, (P(X), Q).

Reflexive, antisymmetric and transitive relation is called an ordering relation (NEFFEA{R) . A set with
an ordering relation is called a poset or a partially ordered set CENEFEEE) .

6.2 Equivalence Relation

Definition 6.2 A reflexive, symmetric and transitive relation on a set A is called an equivalence relation.
For a relation ~ on a set A,

(i) a ~ a for all a € A.
(ii) a ~ b implies b ~ a for all a,b € A.
(iii) @ ~ b and b ~ ¢ implies a ~ ¢ for all a,b,c € A.

Example 6.2 1. Let X be a set and let Y be a subset of X. For A, B € P(X), ANY = BNY if and
only if A ~y B.

2. Let X be the set of all lines on a plane. For ¢,m € X, £ || m if and only if ¢ is equal to m or parallel
to m.

3. Let X be the set of all triangles on a plane. For ST € X, S o T (S =T) if and only if S and T
are similar (or congruent).

4. Let m be positive integer. For a,b € Z, a is congruent to b modulo m if m | a — b. In this case we
write a = b (mod m).
a=b (modm)< mla-—>.

Lemma 6.1 The following hold.
(i) a=a (mod m).
(ii) a=b (mod m) =b=a (mod m).

(iii) (a=b (mod m))A(b=c (mod m)) = a=c (mod m).
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6.3 Equivalence Classes
Let ~ be an equivalence relation defined on a set A. For a € A let
) = [a~ = {2 | (x € A) A (& ~ @)}

The set [a] is called the equivalence class of a (a % & & [FAfERH) .
Proposition 6.2 The following hold.

(i) (Va € A)la € [a]].

(ii) (Va € A)(Vb e A)b € [a] = [a] = [b]].

(iii) (Va € A)(Wbe A)[ja]N[b] £ 0 = [a] = [b]]. (iii’) (Va € A)(¥b € A)[[a] # [b] = [a] N [b] = 0].

(iv) A= |JIa].
acA
Example 6.3 Let =3 be the congruence relation modulo 3 on the set of integers Z. Then [0] = [3] =

[6] = [-3], [1] = [4] = [-2]. We have Z = [0] U [1] U [2].
Recall the following.

Proposition 6.3 For integers a,b,c,d and a positive integer n, suppose a = b (mod n) and ¢ = d
(mod n). Then the following hold.

(i) a+c=b+d (modn).
(ii) ac=bd (mod n).
Proposition 6.4 Let [a]={x € Z:x=a (mod n)} for a € Z. The the following are well-defined.
(i) [al + [0] = [a +0].
(if) [a][b] = [ab].
Exercise 6.1 1. If n is an odd integer, n? = 1 (mod 8).
2. Let n be an integer. Then 4n + 3 cannot be written as a sum of two squares of integers.
3. If there is an integer n satisfying n? =a (mod 7), a =0,1,2,4 (mod 7).

4. If , y, and z are integers satisfying 2% + y? = 622, then x =y = 2 = 0.

6.4 Exercises from Chapter 9
Homework: 9.1, 11, 25, 38, 45, 51, 58, 61, 65, 83

Recitation Problems: 24, 28, 30, 31, 32, 33, 34, 39, 40, 42, 53, 54, 57, 59, 71, 75, 76, 80, 81, 82

6-4



7 Functions (5§ - B#)

7.1 The Definition of a Function

Definition 7.1 Let A and B be nonempty sets. By a function (G544 « BA%() f from A to B, written
f: A — B, we mean a relation from A to B with the property that every element a in A is related to
exactly one element in A.

f: a function from A to B< f C A x B and VYa € A,31b € B, (a,b) € f.
When f C A x B is a function, we write
f:A— B (ar f(a)),

where (a, f(a)) € f, i.e., f(a) is the unique element in B such that (a, f(a)) € f and b = f(a) is called
the image () of a. We also say that a is mapped to b = f(a) or f maps a into b. A is called the domain
(EFIK) of f and B the codomain (#38) of f.

domf ={a € A:(a,b) € f for some b € B} = A, and

ranf = {b € B: (a,b) € f for some a € A} = {f(z) : x € A} = f(A).
is the range of f.
Two functions f: A — B and g : C — D are equal whenever A = C, B =D and f(z) = g(z) for all
z €A
Example 7.1 1. f={(z,2%):2 € R} C R x R. We also write f : R — R (z — z?).
2. g={(z,2%): z € R} C R x R=". We also write g : R — R=" (z — z?).
3. h={(z,2?) : 2 € RZ°} C RZ% x RZ°. We also write h: R=® — RZ° (2 — 22).
Example 7.2 1. f: R— R (z +— €%).
2. f: R— R=" (z+— ¢”).
3. g R—=R(x—INx). oo This is not a function.
4. h: R - R (z — Inx).
Example 7.3 [Dirichlet Function] f : R — R (z — f(x))

1 if x is rational
-

0 if x is irrational.

Example 7.4 Let n be a positive integer.
fiZn— Zy (2] = [32]),  [2] = [y] = [Bz] = [3y]”

7.2 One-to-one and Onto Function

BA: The set of all functions from A to B is denoted by B4 or Map(A, B). Then |B4| = |B|I4l.

One-to-one Function (Injection B§t): A function f : A — B is one-to-one (or injection) if when-
ever f(z) = f(y), where x,y € A, then x = y.

Vee AVye A fz)=fly) =xz=y
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Onto Function (Surjection £8%): A function f: A — B is onto (or surjection) if every element of
B is the image of an element of A, ran(f) = f(A4) = B.

Yy e B,z € A, f(z) = y.
Bijection (285 - M4Y): A function f : A — B is said to be a bijection (one-to-one onto mapping) if
it is both injective and surjective.
Permutation (E#2): A bijection f: A — A is said to be a permutation on A.
Image (#%): Let f: A — B be a function and C C A. Then f(C) = {f(c): c € C}.

Preimage (JRf): Let f : A — B be a function and C C B. Then f~1(C) = {z € A: f(x) € C}.
When C = {c}, we write f~1(C) as f~1(c).

Composition (§m): Let f: A — B, g : B — C be functions. Then the function h from A to C
defined by h(z) = g(f(z)) is called the compotion of f and g. It is denoted by h =g o f.

Identity ([BEFEE#): is: A — A (z+— 2) is called the identity function on A.

Inverse (MEK): For functions f: A — B, and g: B — A, suppose go f =i4, and fog =ig. Then
g is called the inverse of f and write g = f~1.

Example 7.5 1. The function f: Z4 — Zs defined by f([z]) = [3z + 1] is a well defined function.
If £ —y=4m, then 3z +1) — 3y +1) = 12m.

2. The function g : Zg — Z4 defined by g([x]) = [3z + 1] is not well-defined.

9([2]) = 3] # [1] = g([8))-

Example 7.6 1. The functions

FR- (2} R (3} o Ty =8 D) g R (3 - R 2) e )

Suppose f(z) = f(y). Then 3z(y —2) = 3y(z —2) and = = y. Hence f is one-to-one. Set
f(x) =y. Then = = 2y/(y — 3). Hence if y # 3, then f(z) = y. Thus ran(f) = R — {3}. Since
f'(z) = —6/(x —2)? <0, f is decreasing. lim,_ 45 f(z) = +oo.
x
2. f(z)= PR ran(f) = [—1/2,1/2].
Proposition 7.1 Let f: X — Y be a function, and A,BC X, C;D CY. Then
(i) f(AUB) = f(A)U f(B), and f(ANB) C f(A)N f(B). Equality holds if f is one-to-one.
(ii) f7H(CUD)=fHC)U D), and f~HCND) = f~HC)N f~H(D).
(iii) A C f71(f(A)), and equality holds if f is one-to-one.
(iv) f(f~HC)) C C, and equality holds if f is onto.
Theorem 7.2 Let f: A— B, g: B— C and h: C — D be functions.
(i) If f and g are one-to-one, then so is go f.

(ii) If f and g are onto, then so is go f.

(iii) If f and g are bijective, then so is go f.

() (hog)of=hol(gof).

Theorem 7.3 Let f: A — B, g: B — C be functions.
(i) If go f is one-to-one, then so is f.
(ii) If go f is onto, then so is g.

(iii) If g o f is bijective, then f is one-to-one and g is onto.
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7.3 Exercises from Chapter 10
Homework:  10.5, 22, 24, 26, 32, 35, 42, 54, 56, 61

Recitation Problems: 10.4, 6, 9, 11, 12, 17, 19, 25, 29, 31, 33, 43, 45, 48, 51, 55, 58, 63, 67, 68, 70,
72, 74, 76, 77, 78, 81, 82, 83,
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8 Cardinality of Sets (RS DEE)

8.1 Numerically Equivalent Sets

Definition 8.1 Two sets A and B are said to have the same cardinality ([Fl UJREE), written |A| = |B],
if either A and B are both empty or there is a bijective function f from A to B. Two sets having the
same cardinality are also referred to as numerically equivalent sets.

Proposition 8.1 Let S be a nonempty collection of nonempty sets. For A,B € S, A~ B if and only if
A and B are numerically equivalent. Then this is an equivalent relation.

Note.

1. For m,n € N, the sets {1,2,...,m} and {1,2,...,n} are numerically equivalent if and only if
m = n. So we write [{1,2,...,n}| = n and say that the cardinality (JE%(. IREE) of the set
{1,2,...,n} is n.

2. The cardinality of N is called aleph null and is written |[N| = Ng. (We will wirte |[R| = X or ¢
(continuum).

Definition 8.2 A set A is called denumerable if |A| = |N|. A denumerable set is also called countably
infinite (AIELAERR). A set is countable (FJ%L) if it is either finite or denumerable. A set is called uncountable
(FERIEL) if it is not countable.

Example 8.1 1. |[2Z| = |Z].
2. [N|=12°| =12~
3. 1Z| = |N|.

f:N—Z (nb—>
f(l):O,f(Q):l,f(3)=—1, f(2n)2n7 f(2n+1):_

1+ (-1)"(2n—1)
)

4. [N| = |N x N|. If |A| = |B|] = Ry then |A x B| = Ry. (10.5)
h(m,n) = (m+n— 1)2(m+n—2) .
h(1,1) = 1,h(2,1) = 2,h(1,2) = 3, h(3,1) = 4,h(2,2) = 5,h(1,3) =6, .. .
5. 1Q7° =N, |1Q| = N|. (10.6), (10.7)
6. [[a,b]| = |[0, 1]] and |(a,b)| = |(0,1)| for all a < b. Hence |[a,b]| = |[c,d]|.
7. 1(0,1)] = |R)|.

1-2 1 1
g:(O,l)—>R(x»—> To_Z_ )

22—z r x-—1

001 (e (- 1))

Proposition 8.2 Suppose A, B, C, D be sets with A ~ C and B ~ D. Then the following hold.
(i) fAnB=0=CnND, then AUB ~ CUD.
(i) Ax B~C x D.
(iii) P(4) ~ P(C).
(iv) Map(A4, B) ~ Map(C, D).
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Proposition 8.3 The following hold.

(i) Every infinite subset of a denumerable set is denumerable.

If there is a one-to-one function from an infinite set A to a denumerable set B, then |A| = Nq.
(ii) If there is an onto function from a denumerable set B to an infinite set A, then |A| = Ry.

(iii) If A and B are denumerable, then A x B is denumerable.
Proposition 8.4 P(A) ~ Map(A4,{0,1}).
Proposition 8.5 The open interval (0,1) of real numbers is uncountable.
Proof. Let f : N — (0,1) be a bijection and write f(n) = a, = 0.ap1ap2.... Write 0.40... rather
than 0.399.... b= 0.b1b2 ceey
") 5 ifa; #5.
Then b € f(IN). ]

8.2 Comparing Cardinality of Sets

Definition 8.3 Let A and B be set. We write |A| < |B] if A =0 or there is a one-to-one function from
A to B. If |A| < |B| and there is not bijective function from A to B we write |A| < |B].

Theorem 8.6 (Cantor) If X be a set, then |X| < |P(X)].

Proof.  The fact that |X| < |P(X)] is clear.

Let ¢ be a function from X to P(X). Foreach x € X, p(z) =4, CX. Set B={a | (z € X)A (z &
Az)}. Then B C X. Let z € X. Then either z € A, or z € B. So ¢(z) = A, # B. Thus there is no
z € X such that ¢(z) = B. In particular, there is not bijective function from X to P(X). Since there is
a one-to-one function from X to P(X), |X| < |P(X)]. [ |

8.3 Schroder Bernstein Theorem

Theorem 8.7 (Schrider Bernstein Theorem) If |A| < |B| and |B| < |A|, then |A| = |B.
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8.4 Exercises from Chapter 11
Homework: 11.3,7, 10, 12, 14, 16, 22, 26, 27, 33

Recitation Problems: 11.4, 6, 8, 11, 15, 17, 18, 19, 20, 23, 24, 25, 28, 30, 32, 34, 35, 36, 37, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49

Challenge Problem

Let X, Y, Z be sets. Then
Map(X,Map(Y, Z)) ~ Map(X x Y, Z).
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9 Three Topics of Set Theory

Review

Comparison of Cardinalities: Let A and B be set. We write |A| < |B| if A = 0 or there is a one-
to-one function from A to B. If |A| < |B| and there is not bijective function from A to B we write
Al < |B].

There is a Set with Greater Cardinality: |X| < |P(X)].
[R| >Ro:  [R[ = [(0,1)] > [N].

9.1 Proof of Schrider(-Cantor)-Bernstein’s Theorem

Theorem 9.1 If |A| < |B| and |B| < |A], then |A| = |B|.

Proof. Let f: X —Y and g:Y — X be one-to-one functions. Assume that neither f nor g is onto.
Element of X \ g(Y) and Y\ f(X) are called primitive

Fist Kind With finite steps of taking ascendants it reaches a primitive element of X.

Second Kind With finite steps of taking ascendants it reaches a primitive element of Y.

Third Kind There is an infinite sequence of taking parents.

The descendants of 7th elements are ith elements.
f(Xl) = Yl, g(}/g U YE},) = XQ U )(37 X = Xl U X2 U X3 (disjoint), Y = Yi U }/2 U YE}, (dlSJOlIlt) Now
we define a bijection from X = X7 U X5 U X3 to Y =Y, UY5 U Y3 as follows.

f(x) if v € Xy, )

h: X=X1UXoUX: Y=Y1UY,UY- h(z) =
1 2 3 1 2 3 («TH (37) { gil(x) lfl’eXQUXQ

This establishes the assertion. |

9.2 Base-b Numeral System

Let b > 2 be an integer. Let a be a nonnegative real number and write a = [a] + {a}, where [a] is the
largest integer at most a, i.e., [a] < a < [a] + 1, and {a} = a — [a]. Then 0 < {a} < 1.

For a nonnegative integer n, we define a,, recursively as follows. Let ¢o = [a], ¢; = bgi+1 + a;. So if
b < la] < b

[a] = bg1+ao="0bbga + a1)+ao=0b(b(bgs + az) +a1)+ag="---
= apb" 4 an 1" N4+ arb' + agh®.

a = po, a; = [bp;] and p;11 = {bp;} < 1. Hence we have bp; = a_1_; + p;y1 and p; = a_1_;b~ ' +

p7;+1b71. So
{a} = a0t 4pbt

a1t 4+ (a_ob™t + peb b
a_1b7t +(a_ob ™t 4+ (a_sb ™t +psbHo !
a_1b P Ha b2 4a sb P4 Fa b 4 pub ™

Thus by letting ¢, = a_1b ' +a_b 2 +a_3b 3+ -+ a_,b™
{a} —cm={a} —(a_1b" " +a b2 +asb 3+ - Fa_n,b ™) =pub " <b ™.

Therefore lim,, . ¢, = {a} and we can write a as follows.

a=lal+ {a} = Zaibi + Za_jb_j.
i=0 j=1
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9.3 The Set of Real Numbers
Proposition 9.2 The set of reals R and P(IN) are numerically equivalent.

Proof. Let I = (0.1) ={z € R:0 <z < 1}. It suffices to show that there are one-to-one mapping
from I to P(IN) and from P(IN) to I, (choosing terminating expression when applicable)

n

¢:1— P(N) (Z;H{jeN;aj=1}>.

i=1

Y:P(N)— 1 (SHzl‘Zi).

i€S
Thus I ~ P(N) and |R| = |P(N)|. [

Note.  The proposition above also shows that |R| > Ny.

9.4 Axiom of Choice

The following statement is called the Axiom of Choice (FERZVEL).

For every collection of of pairwise disjoint nonempty sets, there exists at least one set that
contains exactly one element of each of these nonempty set. (Equivalently, suppose {S, : y €
Y} € P(X) is a collection of nonempty mutually disjoint subsets of X. Then there is a set
{sy : y € Y}, such that each s, € S,.)

Let f: X — Y be an onto function. Then there is a function g : Y — X such that fog =iy.

Proposition 9.3 Suppose there is an onto function from a set X to a set Y. Then |Y| < |X]|.

Proof.  We need Axiom of Choice. [ ]
Corollary 9.4 Suppose there is an onto function from a set X to a set Y. Then |Y| < |X]|.

Definition 9.1 Let (A, <) be a (nonempty) partially ordered set. A subset S of A is called a chain if
a<borb<aforall a,b € A. A is said to be inductive if every nonempty chain in A has an upper bound
in A.

Zorn’s Lemma: Every inductive set has a maximal element.

9.5 Exercises from Chapter 12
Homework: 12.1, 9, 11, 15, 21, 30, 37, 38, 40, 65

Recitation Problems: 12.29, 36, 41, 43, 54, 58, 60, 64, 66, 70, 73, 78, 81, 83, 84
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10 Proofs in Number Theory (B EmDEER)

10.1 Review: Divisibility Properties of Integers

Let a,b € Z. The integer a divides b If there exists ¢ € Z such that b = ac. When a divides b, we write
a | b. If a does not divide b, we write a 1 b.

Vae ZNbe Z,a|bs Iee Z,b=ac.
Note that if a | b, then [b] = |al|c| and |a| < |b| unless b = 0.
Proposition. Let a,b,c€ Z.
(i) Always1|a,a|0and 0]a < a=0.
(i) (@] b)A(b]c)=alco
(iii) (a|b)A(b|a) < a=+b.
) (a]b)A(a]c) < albr+ cy for all integers x, y.

(iv

Congruence of Integers Let m be positive integer. For a,b € Z, a is congruent to b modulo m if
m | a —b. In this case we write a =b (mod m).

Lemma.  The following hold, i.e., the relation of integers a = b (mod m) defined by m | a — b is an
equivalence relation.

(i) a=a (mod m).
(ii) a=b (mod m) =b=a (mod m).

(iii) (a=b (mod m))A(b=c (mod m)) = a=c (mod m).

Proposition. For integers a,b,c,d and a positive integer n, suppose a = b (mod n) and ¢ = d
(mod n). Then the following hold.

(i) a+c=b+d (modn). (ii) ac=bd (modn).
Proposition. Let[a]={z€ Z:x2=a (modn)} for a € Z. The the following are well-defined.
(i) o]+ o] =[a+0]. (ii) [a]fb] = [ab].
Let Z,, = {[a] : a € Z}. Then the following functions are well-defined.

¢:ZnxZy— Zyn (([a],[0]) = [a+b]), ¢:ZnxZ,— Z,(([a],[b]) = [ab]),

Well-ordered Property and Mathematical Induction
Definition. [Review] An nonempty set S of real numbers is said to be well-ordered if every nonempty
subset of S has a least element min S, i.e.,

m=minS < meS, and Vx € S, m < z.

For each integer m € Z, the set S = {i € Z : i > m}. is well-ordered.
Principle of Mathematical Induction:  (P(m) A (Vk > m, P(k —1) = P(k)) = (Vn > m, P(n)).

Strong Principle of Mathematical Induction: (P(m) A (Vk > m,(m <Vi <k, P(i)) = P(k))) =
(Yn > m, P(n)).
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Example. Every positive number n > 2 is either a prime? or a product of primes.

Example. Let a,b € Z. Then there is an integer d satisfying the following three conditions.
(i)d>0, (ii)d|aandd|b, (iii)c]|aandc]|bimpliesc|d.

The integer d is uniquely determined and it is called the greatest common divisor of a and b. The greatest
common divisor d of a and b is denoted by d = ged{a,b}. In this case, there are z,y € Z such that
d=azx + by.

10.2 Division Algorithm

Proposition 10.1 For integers a and b with a # 0, there exist unique integers q and r such thatb = aq+r

with 0 <r < |al.

Proof. ~ We assume a,b > 0. For general case, see Exercise 11.12. Consider the set S = {b—azx :z €
Z and b— azx > 0}.

By letting 2 = 0, we find b € S and S # 0. Since Z=° is a well-ordered set, S has a smallest element,
say r > 0. Since r € S, there is some integer ¢ € Z such that b = aqg + r. If r > a, then

0<r—a=b—-ag—a=b—alg+1)€S,

while » — a < r. A contradiction. Thus 0 <7 < a.
Assume that b =ag+r =a¢ + 7' with 0 <r <r' <a. Thena(¢—¢)=7r"—r. Soa|r—1r" and
0 <7’ —r < a. Thus ' = r. Therefore ¢ = ¢’ as a # 0. [ ]

Lemma 10.2 Let a and b be positive integers. If b= aq+r for some integers q and r, then ged(a,b) =
ged(r,a). Moreover if d = rx + ay, then d = a(y — qx) + bzx.

Example 10.1 d = gcd(374,946) = 22 and 22 = 374 - (—5) + 946 - 2.

Proposition 10.3 Let a and b be integers not both zero. Then ged(a,b) = 1 if and only if there exist
integers s and t such that 1 = as + bt.

Corollary 10.4 (Euclid’s Lemma) Let a, b and c be integers. If a | be and ged(a,b) = 1, then a | c.
In particular, if p is a prime, and p | be, then p | b orp | c.

Corollary 10.5 Let a,b,c € Z, where a and b are relatively prime. If a | ¢ and b | ¢, then ab | c.
Proof. Let as+bt =1. ¢ =ax and ¢ = by. Now ¢ = ¢(as + bt) = absy + abtx = ab(sy + tx). [ |

10.3 The Fundamental Theorem of Arithmetic

Theorem 10.6 Fvery integer n > 2 is either prime or can be expressed as a product of primes, that is

N = PP - Pm, Where p1,pa,...,Pm are primes.
Moreover, such expression is unique up to the ordering. That is if n = p1pa -+ Pm = q1q2 - qe are
both products of primes, then m = £ and there is a permutation ji,jo,...,5¢ of 1,2,...,¢ such that

P1=4G5,,P2 = qjy5---3Pm = 45, -

10.4 Exercises from Chapter 12
Homework: 12.1, 9, 11, 15, 21, 30, 37, 38, 40, 65

Recitation Problems: 12.29, 36, 41, 43, 54, 58, 60, 64, 66, 70, 73, 78, 81, 83, 84

2A prime number p is a positive integer at least 2 such that 1 and p are the only positive divisors.
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11 Two Topics

11.1 Base-b Numeral System

Let b > 2 be an integer. Let a be a nonnegative real number and write a = [a] + {a}, where [a] is the
largest integer at most a, i.e., [a] < a < [a] + 1, and {a} = a — [a]. Then 0 <{a} < 1.

For a nonnegative integer n, we define a,, recursively as follows. Let gy = [a], ¢; = bg;+1 + a;. So if
bn S [a] < bn-{-l’

[a] = bqyr +ap="bbg2+ a1) +ag =b(b(bgs + az) +a1) +ag=---
= apb" F an_ 10"+ 4 a4 aph®.

a = po, a; = [bp;] and p;11 = {bp;} < 1. Hence we have bp; = a_1_; + piy1 and p; = a_1_;b~* +
p¢+1bfl. So

{ay = a b l4pbt=a bt F(aob P Hpb b =a b7+ (aob Tt + (a3t +psb )b
= agbtHashPHdazbPh o da bt Fpb

Thus by letting ¢,, =a_1b"' +a_sb 2 +a_3b 3+ -+ a_,,b™
{a} — ¢y ={a} — (a_lb*1 +aobP4a b P+ + Apb™™) = prb” ™ <O

Therefore lim,, o ¢, = {a} and we can write a as follows.
a=lal+{a} = Zaibi + Za,jb*j.
i=0 j=1

11.2 Axiom of Choice and Zorn’s Lemma

M=

The following statement is called the Axiom of Choice (FERZVEL).

Axiom of Choice: For every collection of of pairwise disjoint nonempty sets, there exists at least one
set that contains exactly one element of each of these nonempty set. (Equivalently, suppose {Sy, : y €
Y} € P(X) is a collection of nonempty mutually disjoint subsets of X. Then there is a set {s, : y € Y},
such that each s, € S,,.)

Proposition 11.1 Let f : X — Y be an onto function. Then there is a function g :' Y — X such that
fog=iy.

Proof.  We need Axiom of Choice. [ ]
Corollary 11.2 Suppose there is an onto function from a set X to a set’ Y. Then |Y| < |X].

Definition 11.1 Let (A, <) be a (nonempty) partially ordered set. A subset S of A is called a chain
ifa<borb<aforall a,b € A. A is said to be inductive if every nonempty chain in A has an upper
bound in A.

Zorn’s Lemma: Every inductive set has a maximal element.
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