
1 Sets (集合)

1.1 Sets

Definition 1.1 [Set (集合) ] A set is a collection of objects. The objects that make up a set are called
its elements (or members). When a is an element of a set A, we say that a belongs to A and wirte

a ∈ A or A ∋ a.

If a is not a member of A, we write
a ̸∈ A or A ̸∋ a.

We consider a set with no elements and call the empty set（空集合）, null set or void set. The empty set
is denoted by ∅ or { }.

The number of elements in a set S is denoted by |S|. The |S| is also referred to as the cardinal number
（基数） or cardinality（濃度） of S. A set S is finite if |S| = n for some nonnegative integer n. A set S
is infinite if it is not finite.

Example 1.1 1. N , Z, Q, R, C, where N = {1, 2, . . . , }, the set of positive integers.

2. S = {x : x2 − 2 = 0} = {
√

2,−
√

2}. Unless it is clear by context, we write S = {x : x ∈
R and x2 − 2 = 0} or S = {x ∈ R : x2 − 2 = 0}. Note that {x ∈ Q : x2 − 2 = 0} = ∅.

1.2 Inclusion and Set Operations（包含関係と集合演算）
Definition 1.2 1. A set A is called a subset of a set B if every element of A belongs to B. If A is a

subset of B, then we write A ⊆ B or B ⊇ A.

2. Two sets A and B are equal and we write A = B if they have exactly same elements. This is
equivalent to say that A = B if and only if A ⊆ B and B ⊆ A.

3. A set A is a proper subset（真部分集合） of a set B if A ⊆ B and A ̸= B.

4. The union（和集合） of two sets A and B, denoted by A ∪ B, is the set of all elements belonging
to A or B; that is

A ∪ B = {x | x ∈ A or x ∈ B}.

5. The intersection（共通集合） of two sets A and B, denoted by A ∩ B, is the set of all elements
belonging to both A and B; that is

A ∩ B = {x | x ∈ A and x ∈ B}.

6. If two sets A and B have no elements in common, then A∩B = ∅, A and B are said to be disjoint
（互いに素）.

7. The difference（差集合） A − B of two sets A and B (also written as A \ B is defined as

A − B = {x | x ∈ A and x ̸∈ B}.

8. We are ordinarily concerned with subsets of some specified set U , called the universal set. In this
case for a subset A of U , U − A is denoted by A and called the complement（補集合） of A.

9. The set containing of all subsets of a given set A is called the power set（冪集合） of A and is
denoted by P(A).
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1.3 Indexed Collections of Sets（添え字付き集合族）
Definition 1.3 1. The union and intersection of the n ≥ 2 sets A1, A2, . . . , An are denoted by

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

i=1

Ai = {x : x ∈ Ai for some i, 1 ≤ i ≤ n}.

A1 ∩ A2 ∩ · · · ∩ An =
n⋂

i=1

Ai = {x : x ∈ Ai for all i, 1 ≤ i ≤ n}.

2. We also use the notation using an index set to describe a collection of sets {Sα}α∈I . It is called an
indexed collection of sets. Moreover,

⋃

α∈I

Aα = {x : x ∈ Aα for some α ∈ I},
⋂

α∈I

Aα = {x : x ∈ Aα for all α ∈ I}.

Example 1.2

An =
{

x ∈ R : − 1
n
≤ x ≤ 1

n

}
=
[
− 1

n
,
1
n

]
,
⋃

n∈N

An = [−1, 1],
⋂

n∈N

An = {0}.

1.4 Partitions of Sets（集合の分割）
Definition 1.4 1. A collection S of subsets of a set A is called pairwise disjoint if every two distinct

subsets that belong to S are disjoint.

2. A partition of A is a collection S of nonempty subsets of A such that every element of A belongs
to exactly one member of S. Equivalently, a partition of a set A is a collection S of subsets of A
satisfying the following three properties:

(1) X ̸= ∅ for every set X ∈ S.
(2) For every two sets X,Y ∈ S, either X = Y or X ∩ Y = ∅.

(3)
⋃

X∈S
X = A.

Example 1.3 For i = 0, 1, 2, let Ai = {3n + i : n ∈ Z}. Then {A0, A1, A2} is a partition of Z.

1.5 Cartesian Product of Sets（集合の直積）
Definition 1.5 1. The ordered pair (x, y) is a single element consisting of a pair of elements in which

x is the first element (or first coordinate) of the ordered pair (x, y) and y is the second element (or
second coordinate). Moreover (x, y) = (w, z) if and only if x = w and y = z.

2. The Cartesian product (or simply the product) A × B of two sets A and B is the set consisting of
all ordered pairs whose first coordinate belongs to A and whose second coordinate belongs to B. In
other words,

A × B = {(a, b) : a ∈ A and b ∈ B}.

3. If both A and B are finite sets, then |A × B| = |A| · |B|.

Example 1.4

{(x, y) ∈ R × R : y = 2x + 3}.
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Russel’s Paradox (1903): Let S be the set of all sets. Let

C1 = {M ∈ S | M ̸∈ M}, C2 = {M ∈ S | M ∈ M}.

Both C1 ∈ C1 and C1 ̸∈ C1 imply a contradiction.

Reference: 「新装版：集合とはなにか (はじめて学ぶ人のために)」竹内外史著、講談社 (BLUE BACKS
B1332 ISBN4-06-257332-6, 2001.5.20) を参考にしてください。

1.6 Exercises from Chapter 3

Homework: Chapter 3. Sets Exercises 45 (indexed), 46 (partition), 63 (product), 69 (list), 73
(cardinality)

Recitation Problems: Chapter 3. Sets Exercises 25, 27, 29, 31, 33, 34, 35, 36, 38, 40, 42, 44, 52, 59,
64, 65, 66, 69, 73, 77

2 Logic (論理)

2.1 Statements（命題）
Definition 2.1 1. A statement is a declarative sentence or assertion that is true or false (but not

both).
eg. The integer 3 is odd. The integer 57 is prime.

2. Every statement has a truth value, namely true (denoted by T ) or false (denoted by F ).

3. An open sentence is a declarative sentence when that contains one or more variables, each variable
representing a value in some prescribed set, called the domain of the variable, and which becomes
a statement when values from their respective domains are substituted for these variables.
eg. 3x = 12. An integer x is prime.

Example 2.1 An open sentence
P (x) : (x − 3)2 ≤ 1.

over the domain Z is a true statement when x ∈ {2, 3, 4}, and a false statement otherwise.

2.2 Negation, Disjunction, Conjunction and Implication

Definition 2.2 [Logical Connectives, Compound Statement of Component Statements]

1. Truth table（真理表）

2. The negation（否定） of a statement P is the statement ‘not P ’ and is denoted by ∼ P .

3. The disjunction, i.e, logical or（離接・論理和） of the statements P and Q is the statement ‘P or
Q’ and is denoted by P ∨ Q.

4. The conjunction, i.e., logical and（合接・論理積） of the statements P and Q is the statement ‘P
and Q’ and is denoted by P ∧ Q.

5. The implication（含意） is the statement ‘If P , then Q’ and is denoted by P ⇒ Q. We also express
P ⇒ Q in words as ‘P implies Q’.

6. For statements (or open sentences) P and Q, the implication Q ⇒ P is called the converse（逆）
of P ⇒ Q.
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7. The statement (or open statement) P and Q, the conjunction

(P ⇒ Q) ∧ (Q ⇒ P )

of the implication P ⇒ Q and its converse is called the biconditional of P and Q and is denoted by
P ⇔ Q. The biconditional P ⇔ Q is often stated as ‘P is equivalent to Q’（同値な論理命題） or
‘P if and only if Q’. or as ‘P is a necessary and sufficient condition for Q’（必要十分条件）.

8. A compound statement is called a tautology（トートロジー・恒真命題） if it is true for all possible
combinations of truth values of the component statements.

9. A compound statement is called a contradiction（矛盾） if it is false for all possible combinations
of truth values（真理値） of the component statements.

∼P , P ∨ Q, P ∧ Q, P ⇒ Q, P ⇔ Q

P ∼P
T F
F T

P Q P ∨ Q P ∧ Q P ⇒ Q P ⇔ Q
T T T T T T
T F T F F F
F T T F T F
F F F F T T

Exercise 2.1 Complete the following truth table.

1. (∼P ) ∨ Q

2. (∼Q) ⇒ (∼P )

3. (P ∧ Q) ⇒ ∼Q

4. ((∼P ) ∨ Q) ⇒ P

5. ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R)

P Q (∼P ) ∨ Q (∼Q) ⇒ (∼P ) (P ∧ Q) ⇒ ∼Q ((∼P ) ∨ Q) ⇒ P

T T

T F

F T

F F

P Q R ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R) P ∨ (Q ∧ R) (P ∨ Q) ∧ R

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

2.3 Logical Equivalence

Whenever two (compound（合成）) statements R and S have the same truth values for all combinations
of truth values of their component statements, then we say that R and S are logically equivalent（論理同
値） and indicated by writing R ≡ S.

(∼P ) ∨ Q ≡ (∼ Q) ⇒ (∼ P ) ≡ P ⇒ Q
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2.4 Some Fundamental Properties of Logical Equivalence

Proposition 2.1 The following hold.

(1) P ∨ P ≡ P .

(2) P ∧ P ≡ P .

(3) ∼(∼P ) ≡ P .

(4) P ∨ Q ≡ Q ∨ P .

(5) (P ∨ Q) ∨ R ≡ P ∨ (Q ∨ R).

(6) P ∧ Q ≡ Q ∧ P .

(7) (P ∧ Q) ∧ R ≡ P ∧ (Q ∧ R).

(8) P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R).

(9) P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R).

(10) ∼(P ∨ Q) ≡ (∼P ) ∧ (∼Q).

(11) ∼(P ∧ Q) ≡ (∼P ) ∨ (∼Q).

2.5 Quantified Statements

Universal quantifier and existential quantifier. See Section 4 as well.

2.6 Characterization of Statements

We say that the concept is characterized by Q(x) if

∀x ∈ S, P (x) ⇔ Q(x).

See Section 4 as well.

2.7 Exercises from Chapter 2. Logic

　

Homework: 2.5, 16, 31, 40, 75

Recitation Problems: 2.3, 5, 8, 18, 22, 23, 24, 29, 33, 43, 44, 48, 49, 62, 70, 71, 73, 75, 76, 77
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3 Direct Proof and Proof by Contrapositive

3.1 Proof of Implication P ⇒ Q

∀x ∈ S, P (x) ⇒ Q(x).

P Q P ⇒ Q ∼ P ∨ Q ∼ Q ⇒∼ P

T T T T T

T F F F F

F T T T T

F F T T T

Vacuous Proof

Example 3.1 1. ∀x ∈ R, x < 0 ⇒ x2 + 1 > 0.
∀x ∈ R, x2 + 1 > 0.

2. ∀x ∈ R, x2 − 2x + 2 ≤ 0 ⇒ x3 ≥ 8.
∀x ∈ R, x2 − 2x + 2 > 0.

Types of Proofs

1. Direct Proof

2. Proof by Contrapositive

3. Proof by Cases

Example 3.2 Let x ∈ Z. If 5x − 7 is even, then x is odd.

Example 3.3 Let x ∈ Z. Then x2 is even if and only if x is even.

∀x ∈ Z, x2: even ⇔ x: even.

Proof. We prove in the following two steps.

(1) If x is even, then x2 is even.

(2) If x is odd, then x2 is odd.
(x is not even, then x2 is not even.)

This proves the assertion.

Example 3.4 Let x ∈ Z. If 5x − 7 is odd, then 9x + 2 is even.

Example 3.5 For x, y ∈ Z. Then x and y are of the same parity if and only if x + y is even.

Example 3.6 Let A and B be sets. Then A ∪ B = A if and only if B ⊆ A.

Proof. We prove in the following two steps.

(1) If A ∪ B = A, then B ⊆ A.

(2) If B ⊆ A, then A ∪ B = A.

(1’) If B ̸⊆ A then A ∪ B ̸= A.
∼ (∀x, x ∈ B ⇒ x ∈ A) ≡ ∃x, x ∈ B ∧ x ̸∈ A.

This proves the assertion.
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3.2 Divisibility of Integers

Let a, b ∈ Z. The integer a divides b If there exists c ∈ Z such that b = ac. When a divides b, we write
a | b. If a does not divide b, we write a ! b.

∀a ∈ Z,∀b ∈ Z, a | b ⇔ ∃c ∈ Z, b = ac.

Proposition 3.1 Let a, b, c ∈ Z.

(i) Always 1 | a, a | 0 and 0 | a ⇔ a = 0.

(ii) (a | b) ∧ (b | c) ⇒ a | c。

(iii) (a | b) ∧ (b | a) ⇔ a = ±b.

(iv) (a | b) ∧ (a | c) ⇔ a | bx + cy for all integers x, y.

3.3 Congruence of Integers

Let m be positive integer. For a, b ∈ Z, a is congruent to b modulo m if m | a − b. In this case we write
a ≡ b (mod m).

a ≡ b (mod m) ⇔ m | a − b.

Lemma 3.2 The following hold.

(i) a ≡ a (mod m).

(ii) a ≡ b (mod m) ⇒ b ≡ a (mod m).

(iii) (a ≡ b (mod m)) ∧ (b ≡ c (mod m)) ⇒ a ≡ c (mod m).

Proposition 3.3 For integers a, b, c, d and a positive integer n, suppose a ≡ b (mod n) and c ≡ d
(mod n). Then the following hold.

(i) a + c ≡ b + d (mod n).

(ii) ac ≡ bd (mod n).

3.4 Exercises from Chapter 4

Homework: 4.3, 13, 19, 32, 37

Recitation Problems: 7, 10, 18, 20, 24, 26, 35, 36, 38, 40, 47, 51, 54, 55, 60, 61, 63, 64, 66

3.5 Exercises from Chapter 5

Homework: 5.3, 19, 34, 40, 67

Recitation Problems: 4, 8, 10, 16, 20, 22, 26, 28, 32, 46, 56, 58, 60, 66, 70, 85, 89, 96, 99

3–2



4 Existence Proof and Proof by Contradiction

4.1 Quantified Statements

Open Statement: P (x). 2x ≥ 1.

Quantified Statement: An open statement can be converted to a statement by a quantifier. 限定
記号

Universal Quantifier: ∀x ∈ R, ex > 0, ∀x ∈ R, ex ≥ 1. 全称記号・全称命題
Existential Quantifier: ∃x ∈ R, ex = 2, ∃x ∈ R, ex = 0. 存在記号・存在命題

4.2 Counter Example（反例）

∼ (∀x ∈ S, R(x)) ≡ ∃x ∈ S,∼ R(x), ∼
(
∧

x∈S

R(x)

)
≡
∨

x∈S

(∼ R(x)).

Example 4.1 1. If x is a real number, then tan2 x + 1 = sec2 x.

∀x ∈ R, tan2 x + 1 = sec2 x.

For x = π/2 + kπ, the right hand side is not defined.
Whenever both hand sides are defined, tan2 x + 1 = sec2 x.

2. Let n ∈ Z. If n2 + 3n is even, then n is odd.
The number 2 is a counter example. Note that n2 + 3n = n(n + 3) is even for every integer n. It is
true that every even integer is a counter example. But . . . .

3. For all non-negative integer n, F (n) = 22n

+ 1 is a prime.
F (0) = 3, F (1) = 5, F (2) = 17, F (3) = 257, F (4) = 65537, F (5) = 4294967297 = 641 · 6700417.

4. Mersenne Prime: M(p) = 2p − 1, where p is prime.

Sage Program

def me(n):
v = []
for i in prime_range(2,n):

if is_prime(2^i-1):
v.append(i)

return v

m=me(1000);m

[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607]

URL http://www.sagemath.org
日本語による SageMath 入門：
URL http://subsite.icu.ac.jp/people/hsuzuki/science/computer/education/sage-j.html
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4.3 Proof by Contradiction（背理法による証明）
If R : ∀x ∈ S, P (x) ⇒ Q(x), then a proof by contradiction might begin with

Assume, to the contrary, that there exists some element x ∈ S for which P (x) is true and
Q(x) is false.

Example 4.2 Let p be a prime. Then √
p is irrational.

4.4 Existence Proofs（存在証明）

∃x ∈ S,R(x) : There exists x ∈ S such that R(x).

Example 4.3 There exist irrational numbers a and b such that ab is rational.

Proof. Case 1.
√

2
√

2
is rational.

Then set a = b =
√

2.
Case 2.

√
2
√

2
is irrational.

Then set a =
√

2
√

2
and b =

√
2.

Example 4.4 The equation x5 +2x−5 = 0 has a unique real number solution between x = 1 and x = 2.

Proof. Let f(x) = x5 + 2x − 5. Then f(1) = −2 and f(2) = 31. f(x) is continuous. Thus by the
Intermediate Value Theore, the assertion holds.

For 1 < a < b < 2, a5 + 2a − 5 < b5 + 2b − 5. Or f ′(x) = 5x4 + 2 > 0 and f(x) is increasing. So if
a < b, then f(a) < f(b).

Example 4.5 Let a be a real number. For each integer Q > 1, there exist integers p, q with 0 < q < Q
such that |qa − p| ≤ 1/Q. In this case |a − p

q | ≤
1
Q .

4.5 Principle of Mathematical Induction（数学的帰納法の原理）
Definition 4.1 A nonempty subset S of real numbers is said to be well-ordered（整列集合） if every
nonempty subset of S has a least element, which is unique. The least element of a set T is denoted by
minT and

m = min T ⇔ m ∈ T, and ∀x ∈ T, m ≤ x.

The Well-Ordering Principle: The set N of positive integers is well-ordered.

Every nonempty subset of a well-ordered set is well-ordered and hence every nonempty finite subset
S of real numbers is well-ordered.

Theorem 4.1 (Theorem 6.2 (The Principle of Mathematical Induction)) For each positive in-
teger n, let P (n) be a statement. If

(1) P (1) is true and

(2) the implication
If P (k), then P (k + 1)

is true for every positive integer k,

then P (n) is true for every positive integer n.

4.6 Exercises from Chapter 6

Homework: 6.14, 20, 26, 40, 49
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Recitation Problems: 7, 8, 11, 22, 29, 32, 37, 44, 48, 50, 55, 60, 61, 62, 64

4.7 Exercises from Chapter 7

Homework: 7.1, 5, 11, 18, 24

Recitation Problems: 2, 4, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25
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5 Mathematical Induction (数学的帰納法)

5.1 General Principles of Mathematical Induction

Definition 5.1 [Review] An nonempty set S of real numbers is said to be well-ordered if every nonempty
subset of S has a least element minS, i.e.,

m = minS ⇔ m ∈ S, and ∀x ∈ S, m ≤ x.

Well-Ordered Set: For each integer m ∈ Z, the set S = {i ∈ Z : i ≥ m} is well-ordered.

Principle of Mathematical Induction: (P (m) ∧ (∀k ≥ m,P (k) ⇒ P (k + 1)) ⇒ (∀n ≥ m,P (n)).

Every nonempty subset of a well-ordered set is well-ordered and hence every nonempty finite subset
S of real numbers is well-ordered.

Theorem 5.1 (The Strong Principle of Mathematical Induction) For a fixed integer m, let S =
{i ∈ Z : i ≥ m}. For each integer n ∈ S, let P (n) be a statement. If,

(1) P (m) is true and

(2) the implication;
if P (k) is true for every integer i with m ≤ i ≤ k, then P (k + 1)

is true for every integer k ∈ S,

then P (n) is true for every integer n ∈ S.

Example 5.1 1. For every integer n ≥ 5, 2n > n2.

Proof. For k ≥ 3, 2k+1 = 2 · 2k > 2k2 = k2 + k2 ≥ k2 + 3k > k2 + 2k + 1 = (k + 1)2. Note that
we need n ≥ 5.

2. A sequence {an} is defined recursively by

a1 = 1, a2 = 4, and an = 2an−1 − an−2 + 2 for n ≥ 3.

Conjecture a formula for an and verify that your conjecture is correct.

a1 = 1, a2 = 4, a3 = 9, a4 = 16, . . . ,

Conjecture: an = n2.

Proof. The conjecture is valud when n = 1, 2. Now for k ≥ 2,

ak+1 = 2ak − ak−1 + 2 = 2k2 − (k − 1)2 + 2 = 2k2 − k2 + 2k − 1 + 1 = (k + 1)2.

3. Let a, b, p, q be constants. Suppose a sequence {an} satisfies the following.

a1 = a, a2 = b, an = pan−1 + qan−2, for n ≥ 3.

Let α,β be roots of x2 − px − q = 0. Then

an =

{
1

β−α ((βn−1 − αn−1)b + (αn−1β − αβn−1)a if α ̸= β

(n − 1)αn−2b − (n − 2)αn−1a if α = β.

Proof. It is clear that a1 = a and a2 = b in both cases.
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Suppose α ̸= β and n ≥ 3. Then by induction hypothesis,

an =
1

β − α
(p((βn−2 − αn−2)b + (αn−2β − αβn−2)a) + q(βn−3 − αn−3)b + (αn−3β − αβn−3)a)

=
1

β − α
((pβ + q)βn−3 − (pα+ q)αn−3)b + ((pα+ q)αn−3β − (pβ + q)αβn−3)a)

=
1

β − α
((βn−1 − αn−1)b + (αn−1β − αβn−1)a.

The other case is similar and left as your exercise.

Example 5.2 Every positive number n ≥ 2 is either a prime1 or a product of primes.

Proof. Let n be an integer at least 2. Suppose n is not a prime. Then there exist positive integers
2 ≤ m1,m2 ≤ n such that n = m1m2, Since m1,m2 < n, each of these is a prime or a product of primes.

Example 5.3 For each integer n ≥ 8, there are nonnegative integers a and b such that n = 3a + 5b.

Proof. (i) OK for n = 8, 9, 10. Assume k + 1 ≥ 11, Then k − 2 ≥ 8 hence,

k + 1 = (k − 2) + 3 = 3a + 5b + 3 = 3(a + 1) + 5b.

Example 5.4 Let a, b ∈ Z. Then there is an integer d satisfying the following three conditions.

(i) d ≥ 0, (ii) d | a and d | b, (iii) c | a and c | b implies c | d.

The integer d is uniquely determined and it is called the greatest common divisor of a and b. The greatest
common divisor d of a and b is denoted by d = gcd{a, b}. In this case, there are x, y ∈ Z such that
d = ax + by.
Proof. In the following we show that there is an integer d = ax + by (x, y ∈ Z) satisfying (i), (ii), (iii).

If a = b = 0, then d = 0 with x = y = 0 satisfies the condition. So assume that a ̸= 0 or b ̸= 0. Let

S = {ax + by > 0 | x ∈ Z, y ∈ Z} ⊆ N .

Since a ̸= 0 or b ̸= 0, for x = a, y = b ax + by = a2 + b2 > 0 and S ̸= ∅. Thus by well-ordered
principle applied to N , S has a least element d. Since d > 0, it satisfies (i). By definition of S there
is an expression d = ax + by with x, y ∈ Z. Suppose c | a and c | b. Since d = ax + by, c | d, and we
have (iii). Suppose d ! a. Then we have a = dq + r for some integers q and r with 0 < r < d. Now
r = a − dq = a − (ax + by)q = a(1 − qx) + b(−qy), and by the definition of S r ∈ S. This is absurd as
r < d and d is the least element of S. Therefore d | a. Similarly, d | b. Thus d satisfies (ii) and d has
desirable properties.

Suppose d′ satisfies the same conditions. Since d′ satisfies (ii) and d satisfies (iii), d′ | d. Similarly,
d | d′. By (i), we have d = d′. Thus the integer satisfying (i), (ii), (iii) is unique.

Exercise 5.1 Let a, b be integers with gcd(a, b) = 1. Then for each ℓ ≥ ab, there are nonnegarive integers
x, y such that ℓ = ax + by.

5.2 Exercises from Chapter 7

Homework: 7.26, 30, 41, 44, 45

Recitation Problems: 27, 31, 32, 33, 40, 42, 43, 46, 52, 53, 57, 62, 63, 64, 67,

5.3 Exercises from Chapter 8

Homework: 8.16, 56, 70, 76, 78

Recitation Problems: 1, 2, 3, 5, 6, 7, 8, 29, 54, 58, 67, 68, 81, 88, 92
1A prime number p is a positive integer at least 2 such that 1 and p are the only positive divisors.
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6 Relations (関係)

6.1 Relations

Definition 6.1 Let A and B be two sets. By a relation R from A to B we mean a subset of A×B, i.e.,
R ⊆ A × B. If (a, b) ∈ R, then we say that a is related to b by R and write aRb. If (a, b) ̸∈ R, then a is
not related to b by R.

Let R be a relation from A to B. Then the domain and the range are defined as follows.

domR = {a ∈ A : (a, b) ∈ R for some b ∈ B}, and

ranR = {b ∈ B : (a, b) ∈ R for some a ∈ A}.
By a relation on a set A, we mean a relation from A to A.

Let R be a relation on a set A.

(R) (∀a ∈ A)[aRa] (反射律, reflexive law).

(S) (∀a ∈ A)(∀b ∈ A)[aRb ⇒ bRa] (対称律, symmetric law)

(A) (∀a ∈ A)(∀b ∈ A)[(aRb ∧ bRa) ⇒ a = b] (反対称律, antisymmetric law)

(T) (∀a ∈ A)(∀b ∈ A)(∀c ∈ A)[(aRb ∧ bRc) ⇒ aRc] (推移律, transitive law)

Example 6.1 The following are relations on a set.

1. (Z,≤): R≤ = {(a, b) ∈ Z × Z : a ≤ b}.

2. For a set X, (P(X),⊆).

Reflexive, antisymmetric and transitive relation is called an ordering relation（順序関係）. A set with
an ordering relation is called a poset or a partially ordered set（半順序集合）.

6.2 Equivalence Relation

Definition 6.2 A reflexive, symmetric and transitive relation on a set A is called an equivalence relation.
For a relation ∼ on a set A,

(i) a ∼ a for all a ∈ A.

(ii) a ∼ b implies b ∼ a for all a, b ∈ A.

(iii) a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ A.

Example 6.2 1. Let X be a set and let Y be a subset of X. For A,B ∈ P(X), A∩Y = B ∩Y if and
only if A ∼Y B.

2. Let X be the set of all lines on a plane. For ℓ, m ∈ X, ℓ ∥ m if and only if ℓ is equal to m or parallel
to m.

3. Let X be the set of all triangles on a plane. For S, T ∈ X, S ∝ T (S ≡ T ) if and only if S and T
are similar (or congruent).

4. Let m be positive integer. For a, b ∈ Z, a is congruent to b modulo m if m | a − b. In this case we
write a ≡ b (mod m).

a ≡ b (mod m) ⇔ m | a − b.

Lemma 6.1 The following hold.

(i) a ≡ a (mod m).

(ii) a ≡ b (mod m) ⇒ b ≡ a (mod m).

(iii) (a ≡ b (mod m)) ∧ (b ≡ c (mod m)) ⇒ a ≡ c (mod m).
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6.3 Equivalence Classes

Let ∼ be an equivalence relation defined on a set A. For a ∈ A let

[a] = [a]∼ = {x | (x ∈ A) ∧ (x ∼ a)}.

The set [a] is called the equivalence class of a（a を含む同値類）.

Proposition 6.2 The following hold.

(i) (∀a ∈ A)[a ∈ [a]].

(ii) (∀a ∈ A)(∀b ∈ A)[b ∈ [a] ⇒ [a] = [b]].

(iii) (∀a ∈ A)(∀b ∈ A)[[a] ∩ [b] ̸= ∅ ⇒ [a] = [b]]. (iii’) (∀a ∈ A)(∀b ∈ A)[[a] ̸= [b] ⇒ [a] ∩ [b] = ∅].

(iv) A =
⋃

a∈A

[a].

Example 6.3 Let ≡3 be the congruence relation modulo 3 on the set of integers Z. Then [0] = [3] =
[6] = [−3], [1] = [4] = [−2]. We have Z = [0] ∪ [1] ∪ [2].

Recall the following.

Proposition 6.3 For integers a, b, c, d and a positive integer n, suppose a ≡ b (mod n) and c ≡ d
(mod n). Then the following hold.

(i) a + c ≡ b + d (mod n).

(ii) ac ≡ bd (mod n).

Proposition 6.4 Let [a] = {x ∈ Z : x ≡ a (mod n)} for a ∈ Z. The the following are well-defined.

(i) [a] + [b] = [a + b].

(ii) [a][b] = [ab].

Exercise 6.1 1. If n is an odd integer, n2 ≡ 1 (mod 8).

2. Let n be an integer. Then 4n + 3 cannot be written as a sum of two squares of integers.

3. If there is an integer n satisfying n2 ≡ a (mod 7), a ≡ 0, 1, 2, 4 (mod 7).

4. If x, y, and z are integers satisfying x2 + y2 = 6z2, then x = y = z = 0.

6.4 Exercises from Chapter 9

Homework: 9.1, 11, 25, 38, 45, 51, 58, 61, 65, 83

Recitation Problems: 24, 28, 30, 31, 32, 33, 34, 39, 40, 42, 53, 54, 57, 59, 71, 75, 76, 80, 81, 82
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7 Functions (写像・関数)

7.1 The Definition of a Function

Definition 7.1 Let A and B be nonempty sets. By a function (写像・関数) f from A to B, written
f : A → B, we mean a relation from A to B with the property that every element a in A is related to
exactly one element in A.

f : a function from A to B ⇔ f ⊆ A × B and ∀a ∈ A,∃1b ∈ B, (a, b) ∈ f.

When f ⊆ A × B is a function, we write

f : A → B (a 8→ f(a)),

where (a, f(a)) ∈ f , i.e., f(a) is the unique element in B such that (a, f(a)) ∈ f and b = f(a) is called
the image (像) of a. We also say that a is mapped to b = f(a) or f maps a into b. A is called the domain
(定義域) of f and B the codomain (終域) of f .

domf = {a ∈ A : (a, b) ∈ f for some b ∈ B} = A, and

ranf = {b ∈ B : (a, b) ∈ f for some a ∈ A} = {f(x) : x ∈ A} = f(A).

is the range of f .
Two functions f : A → B and g : C → D are equal whenever A = C, B = D and f(x) = g(x) for all

x ∈ A.

Example 7.1 1. f = {(x, x2) : x ∈ R} ⊆ R × R. We also write f : R → R (x 8→ x2).

2. g = {(x, x2) : x ∈ R} ⊆ R × R≥0. We also write g : R → R≥0 (x 8→ x2).

3. h = {(x, x2) : x ∈ R≥0} ⊆ R≥0 × R≥0. We also write h : R≥0 → R≥0 (x 8→ x2).

Example 7.2 1. f : R → R (x 8→ ex).

2. f : R → R≥0 (x 8→ ex).

3. g : R → R (x 8→ ln x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . This is not a function.

4. h : R>0 → R (x 8→ lnx).

Example 7.3 [Dirichlet Function] f : R → R (x 8→ f(x))

f(x) =

{
1 if x is rational
0 if x is irrational.

Example 7.4 Let n be a positive integer.

f : Zn → Zn ([x] 8→ [3x]), [x] = [y] ⇒ [3x] = [3y]?

7.2 One-to-one and Onto Function

BA: The set of all functions from A to B is denoted by BA or Map(A,B). Then |BA| = |B||A|.

One-to-one Function (Injection 単射): A function f : A → B is one-to-one (or injection) if when-
ever f(x) = f(y), where x, y ∈ A, then x = y.

∀x ∈ A,∀y ∈ A, f(x) = f(y) ⇒ x = y
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Onto Function (Surjection 全射): A function f : A → B is onto (or surjection) if every element of
B is the image of an element of A, ran(f) = f(A) = B.

∀y ∈ B, ∃x ∈ A, f(x) = y.

Bijection (全単射・双射): A function f : A → B is said to be a bijection (one-to-one onto mapping) if
it is both injective and surjective.

Permutation (置換): A bijection f : A → A is said to be a permutation on A.

Image (像): Let f : A → B be a function and C ⊆ A. Then f(C) = {f(c) : c ∈ C}.

Preimage (原像): Let f : A → B be a function and C ⊆ B. Then f−1(C) = {x ∈ A : f(x) ∈ C}.
When C = {c}, we write f−1(C) as f−1(c).

Composition (合成): Let f : A → B, g : B → C be functions. Then the function h from A to C
defined by h(x) = g(f(x)) is called the compotion of f and g. It is denoted by h = g ◦ f .

Identity (恒等写像): iA : A → A (x 8→ x) is called the identity function on A.

Inverse (逆写像): For functions f : A → B, and g : B → A, suppose g ◦ f = iA, and f ◦ g = iB . Then
g is called the inverse of f and write g = f−1.

Example 7.5 1. The function f : Z4 → Z6 defined by f([x]) = [3x + 1] is a well defined function.
If x − y = 4m, then (3x + 1) − (3y + 1) = 12m.

2. The function g : Z6 → Z4 defined by g([x]) = [3x + 1] is not well-defined.
g([2]) = [3] ̸= [1] = g([8]).

Example 7.6 1. The functions

f : R − {2} → R − {3} (x → 3x

x − 2
= 3 +

6
x − 2

), g : R − {3} → R − {2} (x → 2x

x − 3
)

Suppose f(x) = f(y). Then 3x(y − 2) = 3y(x − 2) and x = y. Hence f is one-to-one. Set
f(x) = y. Then x = 2y/(y − 3). Hence if y ̸= 3, then f(x) = y. Thus ran(f) = R − {3}. Since
f ′(x) = −6/(x − 2)2 < 0, f is decreasing. limx→±2 f(x) = ±∞.

2. f(x) =
x

x2 + 1
. ran(f) = [−1/2, 1/2].

Proposition 7.1 Let f : X → Y be a function, and A,B ⊆ X, C,D ⊆ Y . Then

(i) f(A ∪ B) = f(A) ∪ f(B), and f(A ∩ B) ⊆ f(A) ∩ f(B). Equality holds if f is one-to-one.

(ii) f−1(C ∪ D) = f−1(C) ∪ f−1(D), and f−1(C ∩ D) = f−1(C) ∩ f−1(D).

(iii) A ⊆ f−1(f(A)), and equality holds if f is one-to-one.

(iv) f(f−1(C)) ⊆ C, and equality holds if f is onto.

Theorem 7.2 Let f : A → B, g : B → C and h : C → D be functions.

(i) If f and g are one-to-one, then so is g ◦ f .

(ii) If f and g are onto, then so is g ◦ f .

(iii) If f and g are bijective, then so is g ◦ f .

(iv) (h ◦ g) ◦ f = h ◦ (g ◦ f).

Theorem 7.3 Let f : A → B, g : B → C be functions.

(i) If g ◦ f is one-to-one, then so is f .

(ii) If g ◦ f is onto, then so is g.

(iii) If g ◦ f is bijective, then f is one-to-one and g is onto.
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7.3 Exercises from Chapter 10

Homework: 10.5, 22, 24, 26, 32, 35, 42, 54, 56, 61

Recitation Problems: 10.4, 6, 9, 11, 12, 17, 19, 25, 29, 31, 33, 43, 45, 48, 51, 55, 58, 63, 67, 68, 70,
72, 74, 76, 77, 78, 81, 82, 83,
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8 Cardinality of Sets (集合の濃度)

8.1 Numerically Equivalent Sets

Definition 8.1 Two sets A and B are said to have the same cardinality (同じ濃度), written |A| = |B|,
if either A and B are both empty or there is a bijective function f from A to B. Two sets having the
same cardinality are also referred to as numerically equivalent sets.

Proposition 8.1 Let S be a nonempty collection of nonempty sets. For A, B ∈ S, A ∼ B if and only if
A and B are numerically equivalent. Then this is an equivalent relation.

Note.

1. For m,n ∈ N , the sets {1, 2, . . . , m} and {1, 2, . . . , n} are numerically equivalent if and only if
m = n. So we write |{1, 2, . . . , n}| = n and say that the cardinality (基数、濃度) of the set
{1, 2, . . . , n} is n.

2. The cardinality of N is called aleph null and is written |N | = ℵ0. (We will wirte |R| = ℵ or c
(continuum).

Definition 8.2 A set A is called denumerable if |A| = |N |. A denumerable set is also called countably
infinite (可算無限). A set is countable (可算) if it is either finite or denumerable. A set is called uncountable
(非可算) if it is not countable.

Example 8.1 1. |2Z| = |Z|.

2. |N | = |Z≥0| = |Z<0|.

3. |Z| = |N |.

f : N → Z

(
n 8→ 1 + (−1)n(2n − 1)

4

)

f(1) = 0, f(2) = 1, f(3) = −1, f(2n) = n, f(2n + 1) = −n.

4. |N | = |N × N |. If |A| = |B| = ℵ0 then |A × B| = ℵ0. (10.5)

h(m,n) =
(m + n − 1)(m + n − 2)

2
+ n.

h(1, 1) = 1, h(2, 1) = 2, h(1, 2) = 3, h(3, 1) = 4, h(2, 2) = 5, h(1, 3) = 6, . . ..

5. |Q>0| = |N |, |Q| = |N |. (10.6), (10.7)

6. |[a, b]| = |[0, 1]| and |(a, b)| = |(0, 1)| for all a < b. Hence |[a, b]| = |[c, d]|.

7. |(0, 1)| = |R|.

g : (0, 1) → R

(
x 8→ 1 − 2x

x2 − x
= − 1

x
− 1

x − 1

)

h : (0, 1) → R

(
x 8→ tanπ

(
x − 1

2

))

Proposition 8.2 Suppose A, B, C, D be sets with A ∼ C and B ∼ D. Then the following hold.

(i) If A ∩ B = ∅ = C ∩ D, then A ∪ B ∼ C ∪ D.

(ii) A × B ∼ C × D.

(iii) P (A) ∼ P (C).

(iv) Map(A,B) ∼ Map(C, D).

8–1



Proposition 8.3 The following hold.

(i) Every infinite subset of a denumerable set is denumerable.
If there is a one-to-one function from an infinite set A to a denumerable set B, then |A| = ℵ0.

(ii) If there is an onto function from a denumerable set B to an infinite set A, then |A| = ℵ0.

(iii) If A and B are denumerable, then A × B is denumerable.

Proposition 8.4 P (A) ∼ Map(A, {0, 1}).

Proposition 8.5 The open interval (0, 1) of real numbers is uncountable.

Proof. Let f : N → (0, 1) be a bijection and write f(n) = an = 0.an1an2 . . .. Write 0.40 . . . rather
than 0.399 . . .. b = 0.b1b2 . . . ,

bi =

{
4 if aii = 5
5 if aii ̸= 5.

Then b ̸∈ f(N).

8.2 Comparing Cardinality of Sets

Definition 8.3 Let A and B be set. We write |A| ≤ |B| if A = ∅ or there is a one-to-one function from
A to B. If |A| ≤ |B| and there is not bijective function from A to B we write |A| < |B|.

Theorem 8.6 (Cantor) If X be a set, then |X| < |P(X)|.

Proof. The fact that |X| ≤ |P (X)| is clear.
Let ϕ be a function from X to P (X). For each x ∈ X, ϕ(x) = Ax ⊆ X. Set B = {x | (x ∈ X) ∧ (x ̸∈

Ax)}. Then B ⊂ X. Let z ∈ X. Then either z ∈ Az or z ∈ B. So ϕ(z) = Az ̸= B. Thus there is no
z ∈ X such that ϕ(z) = B. In particular, there is not bijective function from X to P (X). Since there is
a one-to-one function from X to P (X), |X| < |P (X)|.

8.3 Schröder Bernstein Theorem

Theorem 8.7 (Schröder Bernstein Theorem) If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

8–2



8.4 Exercises from Chapter 11

Homework: 11.3, 7, 10, 12, 14, 16, 22, 26, 27, 33

Recitation Problems: 11.4, 6, 8, 11, 15, 17, 18, 19, 20, 23, 24, 25, 28, 30, 32, 34, 35, 36, 37, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49

Challenge Problem

Let X, Y , Z be sets. Then
Map(X,Map(Y,Z)) ∼ Map(X × Y, Z).
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9 Three Topics of Set Theory

Review

Comparison of Cardinalities: Let A and B be set. We write |A| ≤ |B| if A = ∅ or there is a one-
to-one function from A to B. If |A| ≤ |B| and there is not bijective function from A to B we write
|A| < |B|.

There is a Set with Greater Cardinality: |X| < |P(X)|.

|R| > ℵ0: |R| = |(0, 1)| > |N |.

9.1 Proof of Schröder(-Cantor)-Bernstein’s Theorem

Theorem 9.1 If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Proof. Let f : X → Y and g : Y → X be one-to-one functions. Assume that neither f nor g is onto.
Element of X \ g(Y ) and Y \ f(X) are called primitive

Fist Kind With finite steps of taking ascendants it reaches a primitive element of X.

Second Kind With finite steps of taking ascendants it reaches a primitive element of Y .

Third Kind There is an infinite sequence of taking parents.

The descendants of ith elements are ith elements.
f(X1) = Y1, g(Y2 ∪ Y3) = X2 ∪ X3, X = X1 ∪ X2 ∪ X3 (disjoint), Y = Y1 ∪ Y2 ∪ Y3 (disjoint). Now

we define a bijection from X = X1 ∪ X2 ∪ X3 to Y = Y1 ∪ Y2 ∪ Y3 as follows.

h : X = X1 ∪ X2 ∪ X3 → Y = Y1 ∪ Y2 ∪ Y3

(
x 8→ h(x) =

{
f(x) if x ∈ X1,
g−1(x) if x ∈ X2 ∪ X2.

)

This establishes the assertion.

9.2 Base-b Numeral System

Let b ≥ 2 be an integer. Let a be a nonnegative real number and write a = [a] + {a}, where [a] is the
largest integer at most a, i.e., [a] ≤ a < [a] + 1, and {a} = a − [a]. Then 0 ≤ {a} < 1.

For a nonnegative integer n, we define an recursively as follows. Let q0 = [a], qi = bqi+1 + ai. So if
bn ≤ [a] < bn+1,

[a] = bq1 + a0 = b(bq2 + a1) + a0 = b(b(bq3 + a2) + a1) + a0 = · · ·
= anbn + an−1b

n−1 + · · · + a1b
1 + a0b

0.

a = p0, ai = [bpi] and pi+1 = {bpi} < 1. Hence we have bpi = a−1−i + pi+1 and pi = a−1−ib−1 +
pi+1b−1. So

{a} = a−1b
−1 + p1b

−1

= a−1b
−1 + (a−2b

−1 + p2b
−1)b−1

= a−1b
−1 + (a−2b

−1 + (a−3b
−1 + p3b

−1)b−1)b−1

= a−1b
−1 + a−2b

−2 + a−3b
−3 + · · · + a−nb−n + pnb−n.

Thus by letting cm = a−1b−1 + a−2b−2 + a−3b−3 + · · · + a−mb−m

{a}− cm = {a}− (a−1b
−1 + a−2b

−2 + a−3b
−3 + · · · + a−mb−m) = pmb−m < b−m.

Therefore limm→∞ cm = {a} and we can write a as follows.

a = [a] + {a} =
n∑

i=0

aib
i +

∞∑

j=1

a−jb
−j .
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9.3 The Set of Real Numbers

Proposition 9.2 The set of reals R and P(N) are numerically equivalent.

Proof. Let I = (0.1) = {x ∈ R : 0 < x < 1}. It suffices to show that there are one-to-one mapping
from I to P(N) and from P(N) to I, (choosing terminating expression when applicable)

φ : I → P(N)

(
n∑

i=1

ai

2i
8→ {j ∈ N : aj = 1}

)
.

ψ : P(N) → I

(
S 8→

∑

i∈S

5
10i

)
.

Thus I ∼ P(N) and |R| = |P(N )|.

Note. The proposition above also shows that |R| > ℵ0.

9.4 Axiom of Choice

The following statement is called the Axiom of Choice (選択公理).

For every collection of of pairwise disjoint nonempty sets, there exists at least one set that
contains exactly one element of each of these nonempty set. (Equivalently, suppose {Sy : y ∈
Y } ⊂ P(X) is a collection of nonempty mutually disjoint subsets of X. Then there is a set
{sy : y ∈ Y }, such that each sy ∈ Sy.)
Let f : X → Y be an onto function. Then there is a function g : Y → X such that f ◦ g = iY .

Proposition 9.3 Suppose there is an onto function from a set X to a set Y . Then |Y | ≤ |X|.

Proof. We need Axiom of Choice.

Corollary 9.4 Suppose there is an onto function from a set X to a set Y . Then |Y | ≤ |X|.

Definition 9.1 Let (A,≤) be a (nonempty) partially ordered set. A subset S of A is called a chain if
a ≤ b or b ≤ a for all a, b ∈ A. A is said to be inductive if every nonempty chain in A has an upper bound
in A.

Zorn’s Lemma: Every inductive set has a maximal element.

9.5 Exercises from Chapter 12

Homework: 12.1, 9, 11, 15, 21, 30, 37, 38, 40, 65

Recitation Problems: 12.29, 36, 41, 43, 54, 58, 60, 64, 66, 70, 73, 78, 81, 83, 84
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10 Proofs in Number Theory (整数論の証明)

10.1 Review: Divisibility Properties of Integers

Let a, b ∈ Z. The integer a divides b If there exists c ∈ Z such that b = ac. When a divides b, we write
a | b. If a does not divide b, we write a ! b.

∀a ∈ Z,∀b ∈ Z, a | b ⇔ ∃c ∈ Z, b = ac.

Note that if a | b, then |b| = |a||c| and |a| ≤ |b| unless b = 0.

Proposition. Let a, b, c ∈ Z.

(i) Always 1 | a, a | 0 and 0 | a ⇔ a = 0.

(ii) (a | b) ∧ (b | c) ⇒ a | c。

(iii) (a | b) ∧ (b | a) ⇔ a = ±b.

(iv) (a | b) ∧ (a | c) ⇔ a | bx + cy for all integers x, y.

Congruence of Integers Let m be positive integer. For a, b ∈ Z, a is congruent to b modulo m if
m | a − b. In this case we write a ≡ b (mod m).

Lemma. The following hold, i.e., the relation of integers a ≡ b (mod m) defined by m | a − b is an
equivalence relation.

(i) a ≡ a (mod m).

(ii) a ≡ b (mod m) ⇒ b ≡ a (mod m).

(iii) (a ≡ b (mod m)) ∧ (b ≡ c (mod m)) ⇒ a ≡ c (mod m).

Proposition. For integers a, b, c, d and a positive integer n, suppose a ≡ b (mod n) and c ≡ d
(mod n). Then the following hold.

(i) a + c ≡ b + d (mod n). (ii) ac ≡ bd (mod n).

Proposition. Let [a] = {x ∈ Z : x ≡ a (mod n)} for a ∈ Z. The the following are well-defined.

(i) [a] + [b] = [a + b]. (ii) [a][b] = [ab].

Let Zn = {[a] : a ∈ Z}. Then the following functions are well-defined.

φ : Zn × Zn → Zn (([a], [b]) 8→ [a + b]), ψ : Zn × Zn → Zn (([a], [b]) 8→ [ab]),

Well-ordered Property and Mathematical Induction
Definition. [Review] An nonempty set S of real numbers is said to be well-ordered if every nonempty
subset of S has a least element minS, i.e.,

m = minS ⇔ m ∈ S, and ∀x ∈ S, m ≤ x.

For each integer m ∈ Z, the set S = {i ∈ Z : i ≥ m}. is well-ordered.

Principle of Mathematical Induction: (P (m) ∧ (∀k > m,P (k − 1) ⇒ P (k)) ⇒ (∀n ≥ m,P (n)).

Strong Principle of Mathematical Induction: (P (m) ∧ (∀k > m, (m ≤ ∀i < k, P (i)) ⇒ P (k))) ⇒
(∀n ≥ m,P (n)).
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Example. Every positive number n ≥ 2 is either a prime2 or a product of primes.

Example. Let a, b ∈ Z. Then there is an integer d satisfying the following three conditions.

(i) d ≥ 0, (ii) d | a and d | b, (iii) c | a and c | b implies c | d.

The integer d is uniquely determined and it is called the greatest common divisor of a and b. The greatest
common divisor d of a and b is denoted by d = gcd{a, b}. In this case, there are x, y ∈ Z such that
d = ax + by.

10.2 Division Algorithm

Proposition 10.1 For integers a and b with a ̸= 0, there exist unique integers q and r such that b = aq+r
with 0 ≤ r < |a|.

Proof. We assume a, b > 0. For general case, see Exercise 11.12. Consider the set S = {b − ax : x ∈
Z and b − ax ≥ 0}.

By letting x = 0, we find b ∈ S and S ̸= ∅. Since Z≥0 is a well-ordered set, S has a smallest element,
say r ≥ 0. Since r ∈ S, there is some integer q ∈ Z such that b = aq + r. If r ≥ a, then

0 ≤ r − a = b − aq − a = b − a(q + 1) ∈ S,

while r − a < r. A contradiction. Thus 0 ≤ r < a.
Assume that b = aq + r = aq′ + r′ with 0 ≤ r ≤ r′ < a. Then a(q − q′) = r′ − r. So a | r − r′ and

0 ≤ r′ − r < a. Thus r′ = r. Therefore q = q′ as a ̸= 0.

Lemma 10.2 Let a and b be positive integers. If b = aq + r for some integers q and r, then gcd(a, b) =
gcd(r, a). Moreover if d = rx + ay, then d = a(y − qx) + bx.

Example 10.1 d = gcd(374, 946) = 22 and 22 = 374 · (−5) + 946 · 2.

Proposition 10.3 Let a and b be integers not both zero. Then gcd(a, b) = 1 if and only if there exist
integers s and t such that 1 = as + bt.

Corollary 10.4 (Euclid’s Lemma) Let a, b and c be integers. If a | bc and gcd(a, b) = 1, then a | c.
In particular, if p is a prime, and p | bc, then p | b or p | c.

Corollary 10.5 Let a, b, c ∈ Z, where a and b are relatively prime. If a | c and b | c, then ab | c.

Proof. Let as + bt = 1. c = ax and c = by. Now c = c(as + bt) = absy + abtx = ab(sy + tx).

10.3 The Fundamental Theorem of Arithmetic

Theorem 10.6 Every integer n ≥ 2 is either prime or can be expressed as a product of primes, that is
n = p1p2 · · · pm, where p1, p2, . . . , pm are primes.

Moreover, such expression is unique up to the ordering. That is if n = p1p2 · · · pm = q1q2 · · · qℓ are
both products of primes, then m = ℓ and there is a permutation j1, j2, . . . , jℓ of 1, 2, . . . , ℓ such that
p1 = qj1 , p2 = qj2 , . . . , pm = qjm .

10.4 Exercises from Chapter 12

Homework: 12.1, 9, 11, 15, 21, 30, 37, 38, 40, 65

Recitation Problems: 12.29, 36, 41, 43, 54, 58, 60, 64, 66, 70, 73, 78, 81, 83, 84

2A prime number p is a positive integer at least 2 such that 1 and p are the only positive divisors.
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11 Two Topics

11.1 Base-b Numeral System

Let b ≥ 2 be an integer. Let a be a nonnegative real number and write a = [a] + {a}, where [a] is the
largest integer at most a, i.e., [a] ≤ a < [a] + 1, and {a} = a − [a]. Then 0 ≤ {a} < 1.

For a nonnegative integer n, we define an recursively as follows. Let q0 = [a], qi = bqi+1 + ai. So if
bn ≤ [a] < bn+1,

[a] = bq1 + a0 = b(bq2 + a1) + a0 = b(b(bq3 + a2) + a1) + a0 = · · ·
= anbn + an−1b

n−1 + · · · + a1b
1 + a0b

0.

a = p0, ai = [bpi] and pi+1 = {bpi} < 1. Hence we have bpi = a−1−i + pi+1 and pi = a−1−ib−1 +
pi+1b−1. So

{a} = a−1b
−1 + p1b

−1 = a−1b
−1 + (a−2b

−1 + p2b
−1)b−1 = a−1b

−1 + (a−2b
−1 + (a−3b

−1 + p3b
−1)b−1)b−1

= a−1b
−1 + a−2b

−2 + a−3b
−3 + · · · + a−nb−n + pnb−n.

Thus by letting cm = a−1b−1 + a−2b−2 + a−3b−3 + · · · + a−mb−m

{a}− cm = {a}− (a−1b
−1 + a−2b

−2 + a−3b
−3 + · · · + a−mb−m) = pmb−m < b−m.

Therefore limm→∞ cm = {a} and we can write a as follows.

a = [a] + {a} =
n∑

i=0

aib
i +

∞∑

j=1

a−jb
−j .

11.2 Axiom of Choice and Zorn’s Lemma

The following statement is called the Axiom of Choice (選択公理).

Axiom of Choice: For every collection of of pairwise disjoint nonempty sets, there exists at least one
set that contains exactly one element of each of these nonempty set. (Equivalently, suppose {Sy : y ∈
Y } ⊂ P(X) is a collection of nonempty mutually disjoint subsets of X. Then there is a set {sy : y ∈ Y },
such that each sy ∈ Sy.)

Proposition 11.1 Let f : X → Y be an onto function. Then there is a function g : Y → X such that
f ◦ g = iY .

Proof. We need Axiom of Choice.

Corollary 11.2 Suppose there is an onto function from a set X to a set Y . Then |Y | ≤ |X|.

Definition 11.1 Let (A,≤) be a (nonempty) partially ordered set. A subset S of A is called a chain
if a ≤ b or b ≤ a for all a, b ∈ A. A is said to be inductive if every nonempty chain in A has an upper
bound in A.

Zorn’s Lemma: Every inductive set has a maximal element.
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