BCM I : Final 2018

ID#:

Name:

1. Let P, Q, R be statements.

(5 pts x 2 = 10 pts)

June 20, 2018

(a) Complete the following truth table.

P	Q	R	(P	\vee	$\sim Q)$	\Rightarrow	R	$(\sim P$	\vee	R)	\wedge	(Q	\vee	R)
T	T	T												
T	T	F												
T	F	Т												
T	F	F												
F	T	Т												
F	T	F												
F	F	Т												
F	F	F												

(b) Show $(P \lor \sim Q) \Rightarrow R \equiv (\sim P \lor R) \land (Q \lor R)$ by using formulas.

2. Show that there is an integer m such that for each integer $n \ge m$, there are positive integers a and b such that n = 4a + 5b. (10 pts)

1. (10)	2.(10)	3.(20)	4. (20)	5.(20)	6.(20)	Total

1

Name:

- 3. Let p be a prime number, let x, y and z be integers such that $x^2 + y^2 = pz^2$. Prove or disprove each of the following statements. (5 pts x 4 = 20 pts)
 - (a) If p divides both x and y, then p divides z.

(b) If p does not divide y, there exists an integer w such that $w^2 + 1 \equiv 0 \pmod{p}$.

(c) If p = 5, i.e., $x^2 + y^2 = 5z^2$, then x = y = z = 0.

(d) If p = 7, i.e., $x^2 + y^2 = 7z^2$, then x = y = z = 0.

Name:

- 4. Let $f: X \to Y$, $g: Y \to Z$ and $h = g \circ f: X \to Z$ $(x \mapsto g(f(x)))$ be functions. Prove or disprove the following. (5 pts x 4 = 20 pts)
 - (a) If f is onto and g is onto, then h is onto.

(b) If h is one-to-one, then g is one-to-one.

(c) If h is one-to-one, then f is one-to-one.

(d) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ for all subsets A, B in Y.

Name:

- 5. For $a, b \in \mathbf{R}$ with a < b, let $(a, b) = \{x \in \mathbf{R} : a < x < b\}$ and $[a, b] = \{x \in \mathbf{R} : a \le x \le b\}$. Let $f : (-1, 1) \to \mathbf{R} (x \mapsto \frac{x}{1-x^2})$, i.e., $f(x) = x/(1-x^2)$ on the domain (-1, 1). Show the following. (5 pts x 4 = 20 pts)
 - (a) The function f is one-to-one.

(b) The function f is onto.

(c) An open interval (-1, 1) and a closed interval [-1, 1] are numerically equivalent.

(d) For any $a, b \in \mathbf{R}$ with a < b, a closed interval [a, b] and \mathbf{R} are numerically equivalent.

Name:

- 6. Let $X = \mathbf{N} \times \mathbf{N}$ and $R = \{((a, b), (c, d)) \mid (a, b), (c, d) \in X, (a, b) \sim (c, d)\}$, where $(a, b) \sim (c, d) \Leftrightarrow ad = bc$.
 - (a) State the definition of equivalence relation on a set A. (5 pts)

(b) Show that R is an equivalence relation on X. (10 pts)

(c) Let $Y = \{[(a,b)] \mid (a,b) \in X\}$ be the set of all distinct equivalence classes, where [(a,b)] denotes the equivalence class containing (a,b), and let Q^+ be the set of positive rational numbers. Then $f: Y \to Q^+([(a,b)] \mapsto a/b)$ is a bijection. (5 pts)

Please write your comments:

- (1) About this course, especially suggestions for improvements.
- (2) Topics in Mathematics or in other subjects you want to study.

BCM I: Solutions to Final 2018

1. Let P, Q, R be statements.

(5 pts x 2 = 10 pts)

(a) Complete the following truth table.

P	Q	R	(P	\vee	$\sim Q)$	\Rightarrow	R	$(\sim P$	\vee	R)	\wedge	(Q	\vee	R)
T	T	T				T					T			
T	T	F				\boldsymbol{F}			F		F			
T	F	T				T					T			
T	F	F				\boldsymbol{F}			F		\boldsymbol{F}		F	
F	T	T		F		T					T			
F	T	F		F		T					T			
F	F	T				T					T			
F	F	F				$oldsymbol{F}$					$m{F}$		\overline{F}	

(b) Show $(P \lor \sim Q) \Rightarrow R \equiv (\sim P \lor R) \land (Q \lor R)$ by using formulas.

$$(P \lor \sim Q) \Rightarrow R \equiv \sim (P \lor \sim Q) \lor R \equiv (\sim P \land Q) \lor R \equiv (\sim P \lor R) \land (Q \lor R).$$

2. Show that there is an integer m such that for each integer $n \ge m$, there are positive integers a and b such that n = 4a + 5b. (10 pts)

We apply 'Strong Form of Mathematical Induction'. Set m = 21. For n =Soln. 21, 22, 23, 24, we have

$$21 = 4 \cdot 4 + 5, 22 = 4 \cdot 3 + 5 \cdot 2, 23 = 4 \cdot 2 + 5 \cdot 3, 24 = 4 + 5 \cdot 4.$$

Hence assume that $n \ge 25$. Then $n-4 \ge 21 = m$, by induction hypothesis, there exist positive integers a' and b' such that n - 4 = 4a' + 5b'. Hence n = 4(a' + 1) + 5b'. Since a = a' + 1 and b = b' are positive integers, n = 4a + 5b, as desired.

- 3. Let p be a prime number, let x, y and z be integers such that $x^2 + y^2 = pz^2$. Prove or (5 pts x 4 = 20 pts)disprove each of the following statements.
 - (a) If p divides both x and y, then p divides z. **Soln.** [True] Suppose both x and y are divisible by p, then $x^2 + y^2 = pz^2$ is divisible by p^2 . Hence z^2 is divisible by p. Since p is a prime number, p divides z.
 - (b) If p does not divide y, there exists an integer w such that $w^2 + 1 \equiv 0 \pmod{p}$. [True] If y is not divisible by p, gcd(y, p) = 1 and there are integers u, v such Soln. that uy + vp = 1. In particular, $uy \equiv 1 \pmod{p}$. Let w = ux. Then

$$w^{2} + 1 \equiv (ux)^{2} + 1 \equiv u^{2}x^{2} + (uy)^{2} \equiv u^{2}(x^{2} + y^{2}) \equiv u^{2} \cdot 0 \equiv 0 \pmod{p}.$$

This proves the assertion.

(c) If
$$p = 5$$
, i.e., $x^2 + y^2 = 5z^2$, then $x = y = z = 0$.
Soln. [False] Let $x = 1$, $y = 2$ and $z = 1$. Then $x^2 + y^2 = 1^2 + 2^2 = 5 = 5z^2$.

June 20, 2018

- (d) If p = 7, i.e., $x^2 + y^2 = 7z^2$, then x = y = z = 0.
 - **Soln.** [True] Consider the general case. Suppose not. Let $(x, y, z) \neq (0, 0, 0)$ be the solution such that |z| is the smallest. If z = 0, then $x^2 + y^2 = 0$ and x = y = z = 0. Hence $|z| \neq 0$. By (a), either x or y is not divisible by p, as otherwise all of x, y, z are divisible by p and $(x/p, y/p, z/p) \neq (0, 0, 0)$ satisfies $(x/p)^2 + (y/p)^2 = p(z/p)^2$ and that |z/p| < |z|, a contradiction. By symmetry, we may assume that y is not divisible by p. Then by (b), there exists an integer w such that $w^2 + 1 \equiv 0 \pmod{p}$ or $w^2 \equiv -1 \pmod{p}$. Suppose p = 7, then $1^2 \equiv (-1)^2 \equiv 1 \pmod{7}$, $2^2 \equiv (-2)^2 \equiv 4 \pmod{7}$, and $3^2 \equiv (-3)^2 \equiv 2 \pmod{7}$, and there is no w satisfying $w^2 \equiv -1 \equiv 6 \pmod{7}$.
- 4. Let $f: X \to Y$, $g: Y \to Z$ and $h = g \circ f: X \to Z$ $(x \mapsto g(f(x)))$ be functions. Prove or disprove the following. (5 pts x 4 = 20 pts)
 - (a) If f is onto and g is onto, then h is onto. **Soln.** [True] Since $h: X \to Z$ with h(x) = g(f(x)), let $z \in Z$. We show that there exists $x \in X$ such that h(x) = z. Since $g: Y \to Z$ is onto and $z \in Z$, there exists $y \in Y$ such that g(y) = z. Since $y \in Y$ and $f: X \to Y$ is onto, there exists $x \in X$ such that f(x) = y. Hence h(x) = g(f(x)) = g(y) = z.
 - (b) If h is one-to-one, then g is one-to-one. **Soln.** [False] $X = Z = \{1\}$ and $Y = \{1, 2\}$, $f : X \to Y$ is defined by f(1) = 1 and $g : Y \to Z$ is defined by g(1) = g(2) = 1. Then $h : X \to Z$ satisfies h(1) = 1 and it is one-to-one. However, g is not one-to-one as g(1) = g(2).
 - (c) If h is one-to-one, then f is one-to-one. **Soln.** [True] Since $f : X \to Y$, suppose f(x) = f(x') with $x, x' \in X$. Then h(x) = g(f(x)) = g(f(x')) = h(x'). Since h is one-to-one by assumption, x = x' and f is one-to-one.
 - (d) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ for all subsets A, B in Y. **Soln.** [True] The following are all biconditional and $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ for all subsets A, B in Y.

$$x \in f^{-1}(A \cup B) \Leftrightarrow f(x) \in A \cup B \Leftrightarrow f(x) \in A \text{ or } f(x) \in B \Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B).$$

Therefore, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$.

- 5. For $a, b \in \mathbf{R}$ with a < b, let $(a, b) = \{x \in \mathbf{R} : a < x < b\}$ and $[a, b] = \{x \in \mathbf{R} : a \le x \le b\}$. Let $f : (-1, 1) \to \mathbf{R} (x \mapsto \frac{x}{1-x^2})$, i.e., $f(x) = x/(1-x^2)$ on the domain (-1, 1). Show the following. (5 pts x 4 = 20 pts)
 - (a) The function f is one-to-one. Soln.

$$f'(x) = \frac{(1-x^2) - x(-2x)}{(1-x^2)^2} = \frac{1+x^2}{(1-x^2)^2} > 0 \quad \text{for all } x \in (-1,1)$$

Hence f(x) is strictly increasing and f(x) is one-to-one. You can show it without using Calculus. If x > y, then

$$f(x) - f(y) = \frac{x}{1 - x^2} - \frac{y}{1 - y^2} = \frac{x(1 - y^2) - y(1 - x^2)}{(1 - x^2)(1 - y^2)} = \frac{(x - y)(1 + xy)}{(1 - x^2)(1 - y^2)} > 0$$

as -1 < y < x < 1 and |xy| < 1.

(b) The function f is onto.

Soln. Since the domain is (-1, 1), f is continuous and

$$\lim_{x \to -1+0} f(x) = -\infty, \ \lim_{x \to 1-0} f(x) = \infty,$$

By the Intermediate Value Theorem, for every $y \in \mathbf{R}$, there exists $x \in (-1, 1)$ such that f(x) = y.

- (c) An open interval (-1, 1) and a closed interval [-1, 1] are numerically equivalent. **Soln.** Let $h : [-1, 1] \to (-1, 1)$ $(x \mapsto x/2)$ is one-to-one. Since $i : (-1, 1) \to [-1, 1] (x \mapsto x)$ is one-to-one, by the Schröder-Bernstein Theorem, there is a bijection between (-1, 1) and [-1, 1] and these sets are numerically equivalent.
- (d) For any $a, b \in \mathbf{R}$ with a < b, a closed interval [a, b] and \mathbf{R} are numerically equivalent. **Soln.** Let $g: [a, b] \to [-1, 1]$ $\left(x \mapsto -\frac{x-b}{a-b} + \frac{x-a}{b-a}\right)$. Then g is a bijection from [a, b] to [-1, 1]. Hence [a, b] and [-1, 1] are numerically equivalent, [-1, 1] and (-1, 1) are numerically equivalent by (c) and (-1, 1) and \mathbf{R} are numerically equivalent by (a) and (b). Since numerical equivalence is an equivalence relation, it is transitive, and [a, b] and \mathbf{R} are numerically equivalent.
- 6. Let $X = \mathbf{N} \times \mathbf{N}$ and $R = \{((a,b), (c,d)) \mid (a,b), (c,d) \in X, (a,b) \sim (c,d)\}$, where $(a,b) \sim (c,d) \Leftrightarrow ad = bc$.
 - (a) State the definition of equivalence relation on a set A. (5 pts)
 Soln. An equivalence relation R on A is a subset of A × A satisfying the following three conditions. (i) (a, a) ∈ R for all a ∈ A, (i) if (a, b) ∈ R, then (b, a) ∈ R, (iii) if (a, b) and (c, d) are in R, then (a, d) is in R.
 - (b) Show that R is an equivalence relation on X. (10 pts) Soln. $X = N \times N$.
 - (i) For all $(a, b) \in X$, ab = ba and $(a, b) \sim (a, b)$.
 - (ii) If $(a, b) \sim (c, d)$, then ad = bc. Hence cb = da and $(c, d) \sim (a, b)$.
 - (iii) If $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$, then ad = bc and cf = de. Hence adcf = bcde. Since all factors are in N and nonzero, af = be and $(a, b) \sim (ef)$.

Therefore, R is an equivalence relation on X.

(c) Let $Y = \{[(a, b)] \mid (a, b) \in X\}$ be the set of all distinct equivalence classes, where [(a, b)] denotes the equivalence class containing (a, b), and let Q^+ be the set of positive rational numbers. Then $f: Y \to Q^+([(a, b)] \mapsto a/b)$ is a bijection. (5 pts) **Soln.** Note that $(a, b) \sim (c, d) \Leftrightarrow ad = bc \Leftrightarrow a/b = c/d \in Q^+$. Hence (I) the function, $f: Y \to Q^+([(a, b)] \mapsto a/b)$ is well-defined, i.e., if [(a, b)] = [(c, d)], then a/b = c/d. (ii) It is one-to-one as f([a, b]) = a/b = c/d = f([(c, d])), then [(a, b)] = [(c, d)] as $(a, b) \sim (c, d)$. (iii) It is onto, as every element in Q^+ can be expressed as a/b with $(a, b) \in \mathbf{N} \times \mathbf{N}$.