BCM I : Final 2018

ID\#:

Name:

1. Let P, Q, R be statements.
(a) Complete the following truth table.
$\left.\begin{array}{|c|c|c||ccccc|ccccccc|}\hline P & Q & R & (P & \vee & \sim Q) & \Rightarrow & R & (\sim P & \vee & R) & \wedge & (Q & \vee & R\end{array}\right)$
(b) Show $(P \vee \sim Q) \Rightarrow R \equiv(\sim P \vee R) \wedge(Q \vee R)$ by using formulas.
2. Show that there is an integer m such that for each integer $n \geq m$, there are positive integers a and b such that $n=4 a+5 b$.

$1 .(10)$	$2 .(10)$	$3 .(20)$	$4 .(20)$	$5 .(20)$	$6 .(20)$	Total

3. Let p be a prime number, let x, y and z be integers such that $x^{2}+y^{2}=p z^{2}$. Prove or disprove each of the following statements.
(a) If p divides both x and y, then p divides z.
(b) If p does not divide y, there exists an integer w such that $w^{2}+1 \equiv 0 \quad(\bmod p)$.
(c) If $p=5$, i.e., $x^{2}+y^{2}=5 z^{2}$, then $x=y=z=0$.
(d) If $p=7$, i.e., $x^{2}+y^{2}=7 z^{2}$, then $x=y=z=0$.

ID\#: Name:
4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h=g \circ f: X \rightarrow Z(x \mapsto g(f(x)))$ be functions. Prove or disprove the following.
(a) If f is onto and g is onto, then h is onto.
(b) If h is one-to-one, then g is one-to-one.
(c) If h is one-to-one, then f is one-to-one.
(d) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$ for all subsets A, B in Y.

ID\#: Name:
5. For $a, b \in \boldsymbol{R}$ with $a<b$, let $(a, b)=\{x \in \boldsymbol{R}: a<x<b\}$ and $[a, b]=\{x \in \boldsymbol{R}: a \leq x \leq b\}$. Let $f:(-1,1) \rightarrow \boldsymbol{R}\left(x \mapsto \frac{x}{1-x^{2}}\right)$, i.e., $f(x)=x /\left(1-x^{2}\right)$ on the domain $(-1,1)$. Show the following.
(a) The function f is one-to-one.
(b) The function f is onto.
(c) An open interval $(-1,1)$ and a closed interval $[-1,1]$ are numerically equivalent.
(d) For any $a, b \in \boldsymbol{R}$ with $a<b$, a closed interval $[a, b]$ and \boldsymbol{R} are numerically equivalent.
ID\#:
Name:
6. Let $X=\boldsymbol{N} \times \boldsymbol{N}$ and $R=\{((a, b),(c, d)) \mid(a, b),(c, d) \in X,(a, b) \sim(c, d)\}$, where $(a, b) \sim(c, d) \Leftrightarrow a d=b c$.
(a) State the definition of equivalence relation on a set A.
(b) Show that R is an equivalence relation on X.
(c) Let $Y=\{[(a, b)] \mid(a, b) \in X\}$ be the set of all distinct equivalence classes, where $[(a, b)]$ denotes the equivalence class containing (a, b), and let \boldsymbol{Q}^{+}be the set of positive rational numbers. Then $f: Y \rightarrow \boldsymbol{Q}^{+}([(a, b)] \mapsto a / b)$ is a bijection.
(5 pts)

Please write your comments:

(1) About this course, especially suggestions for improvements.
(2) Topics in Mathematics or in other subjects you want to study.

1. Let P, Q, R be statements.
(a) Complete the following truth table.

P	Q	R	(P	$\vee \sim Q)$	$\Rightarrow \quad R$	$(\sim P \quad \vee \quad R)$	$\wedge \quad(Q$	$\vee R)$
T	T	T			T		T	
T	T	F			F	F	F	
T	F	T			T		T	
T	F	F			F	F	F	F
F	T	T		F	T		T	
F	T	F		F	T		T	
F	F	T			T		T	
F	F	F			F		F	F

(b) Show $(P \vee \sim Q) \Rightarrow R \equiv(\sim P \vee R) \wedge(Q \vee R)$ by using formulas.

$$
(P \vee \sim Q) \Rightarrow R \equiv \sim(P \vee \sim Q) \vee R \equiv(\sim P \wedge Q) \vee R \equiv(\sim P \vee R) \wedge(Q \vee R) .
$$

2. Show that there is an integer m such that for each integer $n \geq m$, there are positive integers a and b such that $n=4 a+5 b$.
(10 pts)
Soln. We apply 'Strong Form of Mathematical Induction'. Set $m=21$. For $n=$ $21,22,23,24$, we have

$$
21=4 \cdot 4+5,22=4 \cdot 3+5 \cdot 2,23=4 \cdot 2+5 \cdot 3,24=4+5 \cdot 4 .
$$

Hence assume that $n \geq 25$. Then $n-4 \geq 21=m$, by induction hypothesis, there exist positive integers a^{\prime} and b^{\prime} such that $n-4=4 a^{\prime}+5 b^{\prime}$. Hence $n=4\left(a^{\prime}+1\right)+5 b^{\prime}$. Since $a=a^{\prime}+1$ and $b=b^{\prime}$ are positive integers, $n=4 a+5 b$, as desired.
3. Let p be a prime number, let x, y and z be integers such that $x^{2}+y^{2}=p z^{2}$. Prove or disprove each of the following statements.
(5 pts x $4=20 \mathrm{pts}$)
(a) If p divides both x and y, then p divides z.

Soln. [True] Suppose both x and y are divisible by p, then $x^{2}+y^{2}=p z^{2}$ is divisible by p^{2}. Hence z^{2} is divisible by p. Since p is a prime number, p divides z.
(b) If p does not divide y, there exists an integer w such that $w^{2}+1 \equiv 0(\bmod p)$.

Soln. [True] If y is not divisible by $p, \operatorname{gcd}(y, p)=1$ and there are integers u, v such that $u y+v p=1$. In particular, $u y \equiv 1(\bmod p)$. Let $w=u x$. Then

$$
w^{2}+1 \equiv(u x)^{2}+1 \equiv u^{2} x^{2}+(u y)^{2} \equiv u^{2}\left(x^{2}+y^{2}\right) \equiv u^{2} \cdot 0 \equiv 0 \quad(\bmod p) .
$$

This proves the assertion.
(c) If $p=5$, i.e., $x^{2}+y^{2}=5 z^{2}$, then $x=y=z=0$.

Soln. [False] Let $x=1, y=2$ and $z=1$. Then $x^{2}+y^{2}=1^{2}+2^{2}=5=5 z^{2}$.
(d) If $p=7$, i.e., $x^{2}+y^{2}=7 z^{2}$, then $x=y=z=0$.

Soln. [True] Consider the general case. Suppose not. Let $(x, y, z) \neq(0,0,0)$ be the solution such that $|z|$ is the smallest. If $z=0$, then $x^{2}+y^{2}=0$ and $x=y=z=0$. Hence $|z| \neq 0$. By (a), either x or y is not divisible by p, as otherwise all of x, y, z are divisible by p and $(x / p, y / p, z / p) \neq(0,0,0)$ satisfies $(x / p)^{2}+(y / p)^{2}=p(z / p)^{2}$ and that $|z / p|<|z|$, a contradiction. By symmetry, we may assume that y is not divisible by p. Then by (b), there exists an integer w such that $w^{2}+1 \equiv 0(\bmod p)$ or $w^{2} \equiv-1 \quad(\bmod p)$. Suppose $p=7$, then $1^{2} \equiv(-1)^{2} \equiv 1 \quad(\bmod 7), 2^{2} \equiv(-2)^{2} \equiv 4$ $(\bmod 7)$ and $3^{2} \equiv(-3)^{2} \equiv 2(\bmod 7)$, and there is no w satisfying $w^{2} \equiv-1 \equiv 6$ $(\bmod 7)$.
4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h=g \circ f: X \rightarrow Z(x \mapsto g(f(x)))$ be functions. Prove or disprove the following.
($5 \mathrm{pts} \times 4=20 \mathrm{pts}$)
(a) If f is onto and g is onto, then h is onto.

Soln. [True] Since $h: X \rightarrow Z$ with $h(x)=g(f(x))$, let $z \in Z$. We show that there exists $x \in X$ such that $h(x)=z$. Since $g: Y \rightarrow Z$ is onto and $z \in Z$, there exists $y \in Y$ such that $g(y)=z$. Since $y \in Y$ and $f: X \rightarrow Y$ is onto, there exists $x \in X$ such that $f(x)=y$. Hence $h(x)=g(f(x))=g(y)=z$.
(b) If h is one-to-one, then g is one-to-one.

Soln. [False] $X=Z=\{1\}$ and $Y=\{1,2\}, f: X \rightarrow Y$ is defined by $f(1)=1$ and $g: Y \rightarrow Z$ is defined by $g(1)=g(2)=1$. Then $h: X \rightarrow Z$ satisfies $h(1)=1$ and it is one-to-one. However, g is not one-to-one as $g(1)=g(2)$.
(c) If h is one-to-one, then f is one-to-one.

Soln. [True] Since $f: X \rightarrow Y$, suppose $f(x)=f\left(x^{\prime}\right)$ with $x, x^{\prime} \in X$. Then $h(x)=g(f(x))=g\left(f\left(x^{\prime}\right)\right)=h\left(x^{\prime}\right)$. Since h is one-to-one by assumption, $x=x^{\prime}$ and f is one-to-one.
(d) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$ for all subsets A, B in Y.

Soln. [True] The following are all biconditional and $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$ for all subsets A, B in Y.

$$
x \in f^{-1}(A \cup B) \Leftrightarrow f(x) \in A \cup B \Leftrightarrow f(x) \in A \text { or } f(x) \in B \Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B) .
$$

Therefore, $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$.
5. For $a, b \in \boldsymbol{R}$ with $a<b$, let $(a, b)=\{x \in \boldsymbol{R}: a<x<b\}$ and $[a, b]=\{x \in \boldsymbol{R}: a \leq x \leq b\}$. Let $f:(-1,1) \rightarrow \boldsymbol{R}\left(x \mapsto \frac{x}{1-x^{2}}\right)$, i.e., $f(x)=x /\left(1-x^{2}\right)$ on the domain $(-1,1)$. Show the following.
($5 \mathrm{pts} \mathrm{x} 4=20 \mathrm{pts}$)
(a) The function f is one-to-one.

Soln.

$$
f^{\prime}(x)=\frac{\left(1-x^{2}\right)-x(-2 x)}{\left(1-x^{2}\right)^{2}}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}>0 \quad \text { for all } x \in(-1,1) .
$$

Hence $f(x)$ is strictly increasing and $f(x)$ is one-to-one.
You can show it without using Calculus. If $x>y$, then

$$
f(x)-f(y)=\frac{x}{1-x^{2}}-\frac{y}{1-y^{2}}=\frac{x\left(1-y^{2}\right)-y\left(1-x^{2}\right)}{\left(1-x^{2}\right)\left(1-y^{2}\right)}=\frac{(x-y)(1+x y)}{\left(1-x^{2}\right)\left(1-y^{2}\right)}>0
$$

as $-1<y<x<1$ and $|x y|<1$.
(b) The function f is onto.

Soln. Since the domain is $(-1,1), f$ is continuous and

$$
\lim _{x \rightarrow-1+0} f(x)=-\infty, \lim _{x \rightarrow 1-0} f(x)=\infty
$$

By the Intermediate Value Theorem, for every $y \in \boldsymbol{R}$, there exists $x \in(-1,1)$ such that $f(x)=y$.
(c) An open interval $(-1,1)$ and a closed interval $[-1,1]$ are numerically equivalent.

Soln. Let $h:[-1,1] \rightarrow(-1,1)(x \mapsto x / 2)$ is one-to-one. Since $i:(-1,1) \rightarrow$ $[-1,1](x \mapsto x)$ is one-to-one, by the Schröder-Bernstein Theorem, there is a bijection between $(-1,1)$ and $[-1,1]$ and these sets are numerically equivalent.
(d) For any $a, b \in \boldsymbol{R}$ with $a<b$, a closed interval $[a, b]$ and \boldsymbol{R} are numerically equivalent. Soln. Let $g:[a, b] \rightarrow[-1,1]\left(x \mapsto-\frac{x-b}{a-b}+\frac{x-a}{b-a}\right)$. Then g is a bijection from $[a, b]$ to $[-1,1]$. Hence $[a, b]$ and $[-1,1]$ are numerically equivalent, $[-1,1]$ and $(-1,1)$ are numerically equivalent by (c) and $(-1,1)$ and \boldsymbol{R} are numerically equivalent by (a) and (b). Since numerical equivalence is an equivalence relation, it is transitive, and $[a, b]$ and \boldsymbol{R} are numerically equivalent.
6. Let $X=\boldsymbol{N} \times \boldsymbol{N}$ and $R=\{((a, b),(c, d)) \mid(a, b),(c, d) \in X,(a, b) \sim(c, d)\}$, where $(a, b) \sim(c, d) \Leftrightarrow a d=b c$.
(a) State the definition of equivalence relation on a set A.

Soln. An equivalence relation R on A is a subset of $A \times A$ satisfying the following three conditions. (i) $(a, a) \in R$ for all $a \in A$, (i) if $(a, b) \in R$, then $(b, a) \in R$, (iii) if (a, b) and (c, d) are in R, then (a, d) is in R.
(b) Show that R is an equivalence relation on X.
(10 pts)
Soln. $\quad X=\boldsymbol{N} \times \boldsymbol{N}$.
(i) For all $(a, b) \in X, a b=b a$ and $(a, b) \sim(a, b)$.
(ii) If $(a, b) \sim(c, d)$, then $a d=b c$. Hence $c b=d a$ and $(c, d) \sim(a, b)$.
(iii) If $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$, then $a d=b c$ and $c f=d e$. Hence $a d c f=b c d e$. Since all factors are in \boldsymbol{N} and nonzero, $a f=b e$ and $(a, b) \sim(e f)$.
Therefore, R is an equivalence relation on X.
(c) Let $Y=\{[(a, b)] \mid(a, b) \in X\}$ be the set of all distinct equivalence classes, where $[(a, b)]$ denotes the equivalence class containing (a, b), and let \boldsymbol{Q}^{+}be the set of positive rational numbers. Then $f: Y \rightarrow \boldsymbol{Q}^{+}([(a, b)] \mapsto a / b)$ is a bijection.
(5 pts)
Soln. Note that $(a, b) \sim(c, d) \Leftrightarrow a d=b c \Leftrightarrow a / b=c / d \in \boldsymbol{Q}^{+}$. Hence (I) the function, $f: Y \rightarrow \boldsymbol{Q}^{+}([(a, b)] \mapsto a / b)$ is well-defined, i.e., if $[(a, b)]=[(c, d)]$, then $a / b=c / d$. (ii) It is one-to-one as $f([a, b])=a / b=c / d=f([(c, d])$, then $[(a, b)]=$ $[(c, d)]$ as $(a, b) \sim(c, d)$. (iii) It is onto, as every element in \boldsymbol{Q}^{+}can be expressed as a / b with $(a, b) \in \boldsymbol{N} \times \boldsymbol{N}$.

