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BCM I : Final 2017 June 21, 2017

ID#: Name:

1. Let P , Q, R be statements.

(a) Complete the following truth table. (5 pts)

P Q R ∼ ((P ∧ ∼ Q) ∧ ∼ R) P ⇒ (Q ∨ R)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

(b) Show ∼ ((P∧ ∼ Q)∧ ∼ R) ≡ P ⇒ (Q ∨R) by using formulas. (5 pts)

2. Let n be a (fixed) positive integer. For a, b ∈ Z, we write a ≡ b (mod n), whenever there
is an integer c such that b− a = cn. Show the following.

(a) Let a, b, c, d ∈ Z. If a ≡ b (mod n) and c ≡ d (mod n), then

(i) a+ c ≡ b+ d (mod n), and (5 pts)

(ii) ac ≡ bd (mod n). (5 pts)
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(b) For every positive integer n, 33n+1 + 2n+1 ≡ 0 (mod 5). (5 pts)

(c) For any integer n, there are integers x and y such that n = 5x+ 7y. (5 pts)

3. Show that there is an integer m such that for each integer n ≥ m, there are nonnegative
integers a and b such that n = 5a+ 7b. (10 pts)
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4. Let f : X → Y , g : Y → Z and h = g ◦ f : X → Z (x 7→ g(f(x))) be functions. Prove or
disprove the following.

(a) If f is bijective and g is onto, then h is onto. (5 pts)

(b) If h is onto, then f is onto. (5 pts)

(c) If f and g are one-to-one, then h is one-to-one. (5 pts)

(d) f−1(A ∩B) = f−1(A) ∩ f−1(B) for all subsets A,B in Y . (5 pts)
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5. For a, b ∈ R with a < b, let (a, b) = {x ∈ R : a < x < b} and [a, b] = {x ∈ R : a ≤ x ≤ b}.
Show the following.

(a) For any a, b ∈ R with a < b, open intervals (0, 1) and (a, b) are numerically equivalent,
and closed intervals [0, 1] and [a, b] are numerically equivalent. (5 pts)

(b) For any a, b, c, d ∈ R with a < b and c < d, open intervals (a, b) and (c, d) are
numerically equivalent. (5 pts)

(c) An open interval (0, 1) and a closed interval [0, 1] are numerically equivalent. (5 pts)

(d) For any a, b, c, d ∈ R with a < b and c < d, an open interval (a, b) and a closed
interval [c, d] are numerically equivalent. (5 pts)
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6. A set A is denumerable if there is a bijection from N , the set of positive integers, to A.
Let

f : N ×N → N ((ℓ,m) 7→ 2ℓ−1(2m− 1)).

and show the following.

(a) The function f is one-to-one and onto. (5 pts)

(b) If A and B are denumerable, then A×B is denumerable. (5 pts)

(c) Let Q+ be the set of positive rational numbers. Then Q+ is denumerable. (10 pts)

Please write your comments:
(1) About this course, especially suggestions for improvements.
(2) Topics in Mathematics or in other subjects you want to study.
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1. Let P , Q, R be statements.

(a) Complete the following truth table.

P Q R ∼ ((P ∧ ∼ Q) ∧ ∼ R) P ⇒ (Q ∨ R)

T T T T T F F F F T T T T T

T T F T T F F F T T T T T F

T F T T T T T F F T T F T T

T F F F T T T T T T F F F F

F T T T F F F F F F T T T T

F T F T F F F F T F T T T F

F F T T F F T F F F T F T T

F F F T F F T F T F T F F F

(b) Show ∼ ((P∧ ∼ Q)∧ ∼ R) ≡ P ⇒ (Q ∨R) by using formulas.

Soln.

∼ ((P∧ ∼ Q)∧ ∼ R) ≡ ∼ (P∧ ∼ Q) ∨ (∼ (∼ R)) (de Morgan)

≡ (∼ P∨ ∼ (∼ Q)) ∨R (de Morgan and ∼ (∼ X) ≡ X)

≡ ∼ P ∨ (Q ∨R) (∼ (∼ X) ≡ X and a property of ∨)
≡ P ⇒ (Q ∨R) (∼ X ∨ Y ≡ X ⇒ Y )

2. Let n be a (fixed) positive integer. For a, b ∈ Z, we write a ≡ b (mod n), whenever there
is an integer c such that b− a = cn. Show the following.

(a) Let a, b, c, d ∈ Z. If a ≡ b (mod n) and c ≡ d (mod n), then

(i) a+ c ≡ b+ d (mod n), and
Soln. Since a ≡ b (mod n) and c ≡ d (mod n), there exist s, t ∈ Z such that
b− a = sn, d− c = tn. Therefore,

(b+ d)− (a+ c) = (b− a) + (d− c) = sn+ tn = (s+ t)n.

Hence a+ c ≡ b+ d (mod n).

(ii) ac ≡ bd (mod n).
Soln. Using the notation in (i),

bd− ac = b(d− c) + (b− a)c = tnb+ snc = (tb+ sc)n.

Hence ac ≡ bd (mod n).

(b) For every positive integer n, 33n+1 + 2n+1 ≡ 0 (mod 5).

Soln. We use (a) repeatedly. Congruences are in modulo 5. Since 33 ≡ 2,

33n+1 + 2n+1 ≡ 3 · (33)n + 2 · 2n ≡ 3 · 2n + 2 · 2n ≡ 5 · 2n ≡ 0.

(c) For any integer n, there are integers x and y such that n = 5x+ 7y.

Soln. Since gcd(5, 7) = 1, there are s, t ∈ Z such that 1 = 5s+ 7t. By multiplying
n, n = 5ns+ 7nt. By setting x = ns and y = nt, we have n = 5x+ 7y. For example,
s = 3, t = −2 and n = 5 · 3 · n+ 7 · (−2) · n.
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3. Show that there is an integer m such that for each integer n ≥ m, there are nonnegative
integers a and b such that n = 5a+ 7b.

Soln. There are no a ≥ 0 and b ≥ 0 satisfying 23 = 5a + 7b. We know this fact by
checking cases b = 0, 1, 2. However, 24 = 5 · 2 + 7 · 2, 25 = 5 · 5 + 7 · 0, 26 = 5 · 1 + 7 · 3,
27 = 5 · 4 + 7 · 1 and 28 = 5 · 0 + 7 · 4. Let m = 24. We claim that for each integer n ≥ m,
there are nonnegative integers a and b such that n = 5a+ 7b. By our observation above,
we may assume that n ≥ 29. Then n > n− 5 ≥ 24. Hence by induction hypothesis, there
are nonnegative integers a1 and b1 such that n− 5 = 5a1+7b1. Let a = a1+1 and b = b1.
Then n = 5(a1 + 1) + 7b1 = 5a+ 7b. This proves our claim.

4. Let f : X → Y , g : Y → Z and h = g ◦ f : X → Z (x 7→ g(f(x))) be functions. Prove or
disprove the following.

(a) If f is bijective and g is onto, then h is onto.

Soln. True. Let z ∈ Z. Since g is onto, there is y ∈ Y such that g(y) = z. Since
f is bijective, f is onto. Hence there is x ∈ X such that f(x) = y. Now h(x) =
g(f(x)) = g(y) = z. Therefore for every z ∈ Z, there is x ∈ X such that h(x) = z
and h is onto. Or, since f(X) = Y and g(Y ) = Z, h(X) = g(f(X)) = g(Y ) = Z.

(b) If h is onto, then f is onto.

Soln. False. Let X = {1}, Y = {1, 2}, Z = {1}, f(1) = 1, g(1) = g(2) = 1. Then
h(1) = 1 and h is onto. However, f is not onto, as there is no x ∈ X such that
f(x) = 2.

(c) If f and g are one-to-one, then h is one-to-one.

Soln. True. Suppose h(x) = h(x′). Then g(f(x)) = h(x) = h(x′) = g(f(x′)).
Since g is one-to-one, f(x) = f(x′). Similarly, since f is one-to-one, x = x′. Hence
h(x) = h(x′) implies x = x′ and h is one-to-one. Or, if x ̸= x′, since f is one-to-one
f(x) ̸= f(x′). Since g is one-to-one, h(x) = g(f(x)) ̸= g(f(x′)) = h(x′).

(d) f−1(A ∩B) = f−1(A) ∩ f−1(B) for all subsets A,B in Y .

Soln. True. Let x ∈ f−1(A∩B). Then f(x) ∈ A∩B. Since f(x) ∈ A, x ∈ f−1(A).
Since f(x) ∈ B, x ∈ f−1(B). Thus x ∈ f−1(A) ∩ f−1(B). Hence, f−1(A ∩ B) ⊆
f−1(A) ∩ f−1(B). Conversely, if x ∈ f−1(A) ∩ f−1(B). Then x ∈ f−1(A) and hence
f(x) ∈ A. Similarly, x ∈ f−1(B) and hence f(x) ∈ B. Thus f(x) ∈ A ∩ B and
x ∈ f−1(A ∩ B). Hence, f−1(A ∩ B) ⊇ f−1(A) ∩ f−1(B). Therefore, f−1(A ∩ B) =
f−1(A) ∩ f−1(B).

5. For a, b ∈ R with a < b, let (a, b) = {x ∈ R : a < x < b} and [a, b] = {x ∈ R : a ≤ x ≤ b}.
Show the following.

(a) For any a, b ∈ R with a < b, open intervals (0, 1) and (a, b) are numerically equivalent,
and closed intervals [0, 1] and [a, b] are numerically equivalent.

Soln. Let f : (0, 1) → (a, b) (x 7→ (b − a)x + a). Then f is strictly increasing
and onto. Hence f is bijective and open intervals (0, 1) and (a, b) are numerically
equivalent. Similarly, Let f : [0, 1] → [a, b] (x 7→ (b − a)x + a). Then f is strictly
increasing and onto. Hence f is bijective and open intervals [0, 1] and [a, b] are
numerically equivalent.

(b) For any a, b, c, d ∈ R with a < b and c < d, open intervals (a, b) and (c, d) are
numerically equivalent.

Soln. Since a, b ∈ R with a < b are arbitrary, (0, 1) and (c, d) are numerically
equivalent. Since numerical equivalence is an equivalence relation, (a, b) ∼ (0, 1) ∼
(c, d) implies (a, b) ∼ (c, d) and (a, b) and (c, d) are numerically equivalent.
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(c) An open interval (0, 1) and a closed interval [0, 1] are numerically equivalent.

Soln. f : (0, 1) → [0, 1] (x 7→ x) is one-to-one. Hence |(0, 1)| ≤ |[0, 1]|. By (a), [0, 1]
and [1/4, 3/4] are numerical equivalent. Let g be a bijection from [0, 1] to [1/4, 3/4].
Then h : [0, 1] → (0, 1) (x 7→ g(x)) is one-to-one. Note that g([0, 1]) = [1/4, 3/4] ⊆
(0, 1). Hence |[0, 1]| ≤ |(0, 1)|. Therefore, by Schröder-Bernstein’s Theorem, (0, 1)
and [0, 1] are numerically equivalent.

(d) For any a, b, c, d ∈ R with a < b and c < d, an open interval (a, b) and a closed
interval [c, d] are numerically equivalent.

Soln. By (a), (a, b) is numerically equivalent to (0, 1). By (c), (0, 1) is numerically
equivalent to [0, 1]. By (a), [0, 1] is numerically equivalent to [c, d]. Since numerical
equivalence is an equivalence relation, (a, b) is numerically equivalent to [c, d].

6. A set A is denumerable if there is a bijection from N , the set of positive integers, to A.
Let

f : N ×N → N ((ℓ,m) 7→ 2ℓ−1(2m− 1)).

and show the following.

(a) The function f is one-to-one and onto.

Soln. Suppose f(ℓ,m) = f(ℓ′,m′). Then by definition, 2ℓ−1(2m−1) = 2ℓ
′−1(2m′−

1). Suppose ℓ < ℓ′. Then 2m− 1 = 2ℓ
′−ℓ(2m′ − 1) and the left hand side is odd and

the right hand side is even, which is absurd. Hence ℓ = ℓ′ and 2m−1 = 2m′−1. Now
m = m′. Therefore, if f(ℓ,m) = f(ℓ′,m′), then (ℓ,m) = (ℓ′,m′) and f is one-to-one.
Let n be a positive integer. Let 2ℓ−1 is the highest power of 2 dividing n. Then ℓ is
a positive integer, n = 2ℓ−1n′ and n′ is a nonnegative odd integer. Hence there is a
positive integer m such that n′ = 2m− 1. Hence n = 2ℓ−1(2m− 1) = f(ℓ,m) and f
is onto.

(b) If A and B are denumerable, then A×B is denumerable.

Soln. Let f−1 : N → N×N (n 7→ f−1(n) = (f1(n), f2(n))) be the inverse function
of f in (a). Since both A and B are denumerable, there are bijections g : N → A
and h : N → B. Let

k : N → A×B (n 7→ (g(f1(n)), h(f2(n))).

We claim that k is bijective. If

(g(f1(n)), h(f2(n))) = k(n) = k(n′) = (g(f1(n
′)), h(f2(n

′))),

then g(f1(n)) = g(f1(n
′)) and h(f2(n)) = h(f2(n

′)). Since g and h are one-to-one,
(f1(n), f2(n)) = (f1(n

′), f2(n
′)). Since f−1 is bijective and f−1(n) = (f1(n), f2(n)) =

(f1(n
′), f2(n

′)) = f−1(n′), n = n′. Hence k is one-to-one. Let (a, b) ∈ A × B. Since
g and h are bijective, there are m,m′ ∈ N such that g(m) = a and h(m′) = b.
Since f−1 is bijective, there is n ∈ N such that f−1(n) = (f1(n), f2(n)) = (m,m′).
Now k(n) = (g(f1(m)), h(f2(m

′))) = (g(m), h(m′)) = (a, b) and k is onto. Therefore,
A×B is denumerable.

(c) Let Q+ be the set of positive rational numbers. Then Q+ is denumerable.

Soln. Since N ⊆ Q+, j : N → Q+ (x 7→ x) is one-to-one and |N | ≤ |Q+|. For
each x ∈ Q+, write x = m/n with m,n ∈ N and gcd(m,n) = 1. Then (m,n) is
uniquely determined. Sincem and n are determined uniquely from x, writem = m(x)
and n = n(x). Then p : Q+ → N ×N (x 7→ (m(x), n(x))) is a one-to-one function.
Hence f ◦ p : Q+ → N (x 7→ f(m(x), n(x))) is a composition of two one-to-one
functions, it is one-to-one by 4 (c). Thus |Q+| ≤ |N |. By Schröder-Bernstein’s
Theorem, |Q+| = |N |, and Q+ is denumerable.


