BCM I : Final 2017

ID\#:

Name:

1. Let P, Q, R be statements.
(a) Complete the following truth table.
$\left.\begin{array}{|l|l|l||llllllll|}\hline P & Q & R & \sim & \left(\begin{array}{lllllllll|}(P & \wedge & \sim Q) & \wedge & \sim R\end{array}\right) & P & \Rightarrow & (Q & \vee & R\end{array}\right)$
(b) Show $\sim((P \wedge \sim Q) \wedge \sim R) \equiv P \Rightarrow(Q \vee R)$ by using formulas.
2. Let n be a (fixed) positive integer. For $a, b \in \boldsymbol{Z}$, we write $a \equiv b(\bmod n)$, whenever there is an integer c such that $b-a=c n$. Show the following.
(a) Let $a, b, c, d \in \boldsymbol{Z}$. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then
(i) $a+c \equiv b+d(\bmod n)$, and
(ii) $a c \equiv b d(\bmod n)$.

$1 .(10)$	$2 .(20)$	$3 .(10)$	$4 .(20)$	$5 .(20)$	$6 .(20)$	Total

ID\#: Name:
(b) For every positive integer $n, 3^{3 n+1}+2^{n+1} \equiv 0(\bmod 5)$.
(c) For any integer n, there are integers x and y such that $n=5 x+7 y$.
3. Show that there is an integer m such that for each integer $n \geq m$, there are nonnegative integers a and b such that $n=5 a+7 b$.

ID\#:
Name:
4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h=g \circ f: X \rightarrow Z(x \mapsto g(f(x)))$ be functions. Prove or disprove the following.
(a) If f is bijective and g is onto, then h is onto.
(b) If h is onto, then f is onto.
(c) If f and g are one-to-one, then h is one-to-one.
(d) $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ for all subsets A, B in Y.
ID\#:
Name:
5. For $a, b \in \boldsymbol{R}$ with $a<b$, let $(a, b)=\{x \in \boldsymbol{R}: a<x<b\}$ and $[a, b]=\{x \in \boldsymbol{R}: a \leq x \leq b\}$. Show the following.
(a) For any $a, b \in \boldsymbol{R}$ with $a<b$, open intervals $(0,1)$ and (a, b) are numerically equivalent, and closed intervals $[0,1]$ and $[a, b]$ are numerically equivalent.
(5 pts)
(b) For any $a, b, c, d \in \boldsymbol{R}$ with $a<b$ and $c<d$, open intervals (a, b) and (c, d) are numerically equivalent.
(c) An open interval $(0,1)$ and a closed interval $[0,1]$ are numerically equivalent. (5 pts)
(d) For any $a, b, c, d \in \boldsymbol{R}$ with $a<b$ and $c<d$, an open interval (a, b) and a closed interval $[c, d]$ are numerically equivalent.
(5 pts)
ID\#:
Name:
6. A set A is denumerable if there is a bijection from N, the set of positive integers, to A. Let

$$
f: \boldsymbol{N} \times \boldsymbol{N} \rightarrow \boldsymbol{N}\left((\ell, m) \mapsto 2^{\ell-1}(2 m-1)\right) .
$$

and show the following.
(a) The function f is one-to-one and onto.
(b) If A and B are denumerable, then $A \times B$ is denumerable.
(c) Let \boldsymbol{Q}^{+}be the set of positive rational numbers. Then \boldsymbol{Q}^{+}is denumerable. (10 pts)

Please write your comments:

(1) About this course, especially suggestions for improvements.
(2) Topics in Mathematics or in other subjects you want to study.

BCM I: Solutions to Final 2017

1. Let P, Q, R be statements.
(a) Complete the following truth table.

P	Q	R	\sim	$((P$	\wedge	$\sim Q)$	\wedge	$\sim R)$	P	\Rightarrow	$(Q$	\vee	$R)$
T	T	T	\boldsymbol{T}	T	F	F	F	F	T	\boldsymbol{T}	T	T	T
T	T	F	\boldsymbol{T}	T	F	F	F	T	T	\boldsymbol{T}	T	T	F
T	F	T	\boldsymbol{T}	T	T	T	F	F	T	\boldsymbol{T}	F	T	T
T	F	F	\boldsymbol{F}	T	T	T	T	T	T	\boldsymbol{F}	F	F	F
F	T	T	\boldsymbol{T}	F	F	F	F	F	F	\boldsymbol{T}	T	T	T
F	T	F	\boldsymbol{T}	F	F	F	F	T	F	\boldsymbol{T}	T	T	F
F	F	T	\boldsymbol{T}	F	F	T	F	F	F	\boldsymbol{T}	F	T	T
F	F	F	\boldsymbol{T}	F	F	T	F	T	F	\boldsymbol{T}	F	F	F

(b) Show $\sim((P \wedge \sim Q) \wedge \sim R) \equiv P \Rightarrow(Q \vee R)$ by using formulas.

Soln.

$$
\begin{aligned}
\sim((P \wedge \sim Q) \wedge \sim R) & \equiv \sim(P \wedge \sim Q) \vee(\sim(\sim R)) \quad \text { (de Morgan) } \\
& \equiv(\sim P \vee \sim(\sim Q)) \vee R \quad(\text { de Morgan and } \sim(\sim X) \equiv X) \\
& \equiv \sim P \vee(Q \vee R) \quad(\sim(\sim X) \equiv X \text { and a property of } \vee) \\
& \equiv P \Rightarrow(Q \vee R) \quad(\sim X \vee Y \equiv X \Rightarrow Y)
\end{aligned}
$$

2. Let n be a (fixed) positive integer. For $a, b \in \boldsymbol{Z}$, we write $a \equiv b \quad(\bmod n)$, whenever there is an integer c such that $b-a=c n$. Show the following.
(a) Let $a, b, c, d \in \boldsymbol{Z}$. If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then
(i) $a+c \equiv b+d(\bmod n)$, and

Soln. Since $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, there exist $s, t \in \boldsymbol{Z}$ such that $b-a=s n, d-c=t n$. Therefore,

$$
(b+d)-(a+c)=(b-a)+(d-c)=s n+t n=(s+t) n
$$

Hence $a+c \equiv b+d(\bmod n)$.
(ii) $a c \equiv b d(\bmod n)$.

Soln. Using the notation in (i),

$$
b d-a c=b(d-c)+(b-a) c=t n b+s n c=(t b+s c) n
$$

Hence $a c \equiv b d(\bmod n)$.
(b) For every positive integer $n, 3^{3 n+1}+2^{n+1} \equiv 0(\bmod 5)$.

Soln. We use (a) repeatedly. Congruences are in modulo 5 . Since $3^{3} \equiv 2$,

$$
3^{3 n+1}+2^{n+1} \equiv 3 \cdot\left(3^{3}\right)^{n}+2 \cdot 2^{n} \equiv 3 \cdot 2^{n}+2 \cdot 2^{n} \equiv 5 \cdot 2^{n} \equiv 0
$$

(c) For any integer n, there are integers x and y such that $n=5 x+7 y$.

Soln. Since $\operatorname{gcd}(5,7)=1$, there are $s, t \in \boldsymbol{Z}$ such that $1=5 s+7 t$. By multiplying $n, n=5 n s+7 n t$. By setting $x=n s$ and $y=n t$, we have $n=5 x+7 y$. For example, $s=3, t=-2$ and $n=5 \cdot 3 \cdot n+7 \cdot(-2) \cdot n$.
3. Show that there is an integer m such that for each integer $n \geq m$, there are nonnegative integers a and b such that $n=5 a+7 b$.
Soln. There are no $a \geq 0$ and $b \geq 0$ satisfying $23=5 a+7 b$. We know this fact by checking cases $b=0,1,2$. However, $24=5 \cdot 2+7 \cdot 2,25=5 \cdot 5+7 \cdot 0,26=5 \cdot 1+7 \cdot 3$, $27=5 \cdot 4+7 \cdot 1$ and $28=5 \cdot 0+7 \cdot 4$. Let $m=24$. We claim that for each integer $n \geq m$, there are nonnegative integers a and b such that $n=5 a+7 b$. By our observation above, we may assume that $n \geq 29$. Then $n>n-5 \geq 24$. Hence by induction hypothesis, there are nonnegative integers a_{1} and b_{1} such that $n-5=5 a_{1}+7 b_{1}$. Let $a=a_{1}+1$ and $b=b_{1}$. Then $n=5\left(a_{1}+1\right)+7 b_{1}=5 a+7 b$. This proves our claim.
4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ and $h=g \circ f: X \rightarrow Z(x \mapsto g(f(x)))$ be functions. Prove or disprove the following.
(a) If f is bijective and g is onto, then h is onto.

Soln. True. Let $z \in Z$. Since g is onto, there is $y \in Y$ such that $g(y)=z$. Since f is bijective, f is onto. Hence there is $x \in X$ such that $f(x)=y$. Now $h(x)=$ $g(f(x))=g(y)=z$. Therefore for every $z \in Z$, there is $x \in X$ such that $h(x)=z$ and h is onto. Or, since $f(X)=Y$ and $g(Y)=Z, h(X)=g(f(X))=g(Y)=Z$.
(b) If h is onto, then f is onto.

Soln. False. Let $X=\{1\}, Y=\{1,2\}, Z=\{1\}, f(1)=1, g(1)=g(2)=1$. Then $h(1)=1$ and h is onto. However, f is not onto, as there is no $x \in X$ such that $f(x)=2$.
(c) If f and g are one-to-one, then h is one-to-one.

Soln. True. Suppose $h(x)=h\left(x^{\prime}\right)$. Then $g(f(x))=h(x)=h\left(x^{\prime}\right)=g\left(f\left(x^{\prime}\right)\right)$. Since g is one-to-one, $f(x)=f\left(x^{\prime}\right)$. Similarly, since f is one-to-one, $x=x^{\prime}$. Hence $h(x)=h\left(x^{\prime}\right)$ implies $x=x^{\prime}$ and h is one-to-one. Or, if $x \neq x^{\prime}$, since f is one-to-one $f(x) \neq f\left(x^{\prime}\right)$. Since g is one-to-one, $h(x)=g(f(x)) \neq g\left(f\left(x^{\prime}\right)\right)=h\left(x^{\prime}\right)$.
(d) $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$ for all subsets A, B in Y.

Soln. True. Let $x \in f^{-1}(A \cap B)$. Then $f(x) \in A \cap B$. Since $f(x) \in A, x \in f^{-1}(A)$. Since $f(x) \in B, x \in f^{-1}(B)$. Thus $x \in f^{-1}(A) \cap f^{-1}(B)$. Hence, $f^{-1}(A \cap B) \subseteq$ $f^{-1}(A) \cap f^{-1}(B)$. Conversely, if $x \in f^{-1}(A) \cap f^{-1}(B)$. Then $x \in f^{-1}(A)$ and hence $f(x) \in A$. Similarly, $x \in f^{-1}(B)$ and hence $f(x) \in B$. Thus $f(x) \in A \cap B$ and $x \in f^{-1}(A \cap B)$. Hence, $f^{-1}(A \cap B) \supseteq f^{-1}(A) \cap f^{-1}(B)$. Therefore, $f^{-1}(A \cap B)=$ $f^{-1}(A) \cap f^{-1}(B)$.
5. For $a, b \in \boldsymbol{R}$ with $a<b$, let $(a, b)=\{x \in \boldsymbol{R}: a<x<b\}$ and $[a, b]=\{x \in \boldsymbol{R}: a \leq x \leq b\}$. Show the following.
(a) For any $a, b \in \boldsymbol{R}$ with $a<b$, open intervals $(0,1)$ and (a, b) are numerically equivalent, and closed intervals $[0,1]$ and $[a, b]$ are numerically equivalent.
Soln. Let $f:(0,1) \rightarrow(a, b)(x \mapsto(b-a) x+a)$. Then f is strictly increasing and onto. Hence f is bijective and open intervals $(0,1)$ and (a, b) are numerically equivalent. Similarly, Let $f:[0,1] \rightarrow[a, b](x \mapsto(b-a) x+a)$. Then f is strictly increasing and onto. Hence f is bijective and open intervals $[0,1]$ and $[a, b]$ are numerically equivalent.
(b) For any $a, b, c, d \in \boldsymbol{R}$ with $a<b$ and $c<d$, open intervals (a, b) and (c, d) are numerically equivalent.
Soln. Since $a, b \in \boldsymbol{R}$ with $a<b$ are arbitrary, $(0,1)$ and (c, d) are numerically equivalent. Since numerical equivalence is an equivalence relation, $(a, b) \sim(0,1) \sim$ (c, d) implies $(a, b) \sim(c, d)$ and (a, b) and (c, d) are numerically equivalent.
(c) An open interval $(0,1)$ and a closed interval $[0,1]$ are numerically equivalent.

Soln. $\quad f:(0,1) \rightarrow[0,1](x \mapsto x)$ is one-to-one. Hence $|(0,1)| \leq|[0,1]|$. By (a), $[0,1]$ and $[1 / 4,3 / 4]$ are numerical equivalent. Let g be a bijection from $[0,1]$ to $[1 / 4,3 / 4]$. Then $h:[0,1] \rightarrow(0,1)(x \mapsto g(x))$ is one-to-one. Note that $g([0,1])=[1 / 4,3 / 4] \subseteq$ $(0,1)$. Hence $|[0,1]| \leq|(0,1)|$. Therefore, by Schröder-Bernstein's Theorem, $(0,1)$ and $[0,1]$ are numerically equivalent.
(d) For any $a, b, c, d \in \boldsymbol{R}$ with $a<b$ and $c<d$, an open interval (a, b) and a closed interval $[c, d]$ are numerically equivalent.
Soln. By (a), (a, b) is numerically equivalent to $(0,1)$. By (c), $(0,1)$ is numerically equivalent to $[0,1]$. By (a), $[0,1]$ is numerically equivalent to $[c, d]$. Since numerical equivalence is an equivalence relation, (a, b) is numerically equivalent to $[c, d]$.
6. A set A is denumerable if there is a bijection from \boldsymbol{N}, the set of positive integers, to A. Let

$$
f: \boldsymbol{N} \times \boldsymbol{N} \rightarrow \boldsymbol{N}\left((\ell, m) \mapsto 2^{\ell-1}(2 m-1)\right) .
$$

and show the following.
(a) The function f is one-to-one and onto.

Soln. Suppose $f(\ell, m)=f\left(\ell^{\prime}, m^{\prime}\right)$. Then by definition, $2^{\ell-1}(2 m-1)=2^{\ell^{\prime}-1}\left(2 m^{\prime}-\right.$ 1). Suppose $\ell<\ell^{\prime}$. Then $2 m-1=2^{\ell^{\prime}-\ell}\left(2 m^{\prime}-1\right)$ and the left hand side is odd and the right hand side is even, which is absurd. Hence $\ell=\ell^{\prime}$ and $2 m-1=2 m^{\prime}-1$. Now $m=m^{\prime}$. Therefore, if $f(\ell, m)=f\left(\ell^{\prime}, m^{\prime}\right)$, then $(\ell, m)=\left(\ell^{\prime}, m^{\prime}\right)$ and f is one-to-one. Let n be a positive integer. Let $2^{\ell-1}$ is the highest power of 2 dividing n. Then ℓ is a positive integer, $n=2^{\ell-1} n^{\prime}$ and n^{\prime} is a nonnegative odd integer. Hence there is a positive integer m such that $n^{\prime}=2 m-1$. Hence $n=2^{\ell-1}(2 m-1)=f(\ell, m)$ and f is onto.
(b) If A and B are denumerable, then $A \times B$ is denumerable.

Soln. Let $f^{-1}: \boldsymbol{N} \rightarrow \boldsymbol{N} \times \boldsymbol{N}\left(n \mapsto f^{-1}(n)=\left(f_{1}(n), f_{2}(n)\right)\right)$ be the inverse function of f in (a). Since both A and B are denumerable, there are bijections $g: N \rightarrow A$ and $h: \boldsymbol{N} \rightarrow B$. Let

$$
k: N \rightarrow A \times B\left(n \mapsto\left(g\left(f_{1}(n)\right), h\left(f_{2}(n)\right)\right) .\right.
$$

We claim that k is bijective. If

$$
\left(g\left(f_{1}(n)\right), h\left(f_{2}(n)\right)\right)=k(n)=k\left(n^{\prime}\right)=\left(g\left(f_{1}\left(n^{\prime}\right)\right), h\left(f_{2}\left(n^{\prime}\right)\right)\right),
$$

then $g\left(f_{1}(n)\right)=g\left(f_{1}\left(n^{\prime}\right)\right)$ and $h\left(f_{2}(n)\right)=h\left(f_{2}\left(n^{\prime}\right)\right)$. Since g and h are one-to-one, $\left(f_{1}(n), f_{2}(n)\right)=\left(f_{1}\left(n^{\prime}\right), f_{2}\left(n^{\prime}\right)\right)$. Since f^{-1} is bijective and $f^{-1}(n)=\left(f_{1}(n), f_{2}(n)\right)=$ $\left(f_{1}\left(n^{\prime}\right), f_{2}\left(n^{\prime}\right)\right)=f^{-1}\left(n^{\prime}\right), n=n^{\prime}$. Hence k is one-to-one. Let $(a, b) \in A \times B$. Since g and h are bijective, there are $m, m^{\prime} \in \boldsymbol{N}$ such that $g(m)=a$ and $h\left(m^{\prime}\right)=b$. Since f^{-1} is bijective, there is $n \in \boldsymbol{N}$ such that $f^{-1}(n)=\left(f_{1}(n), f_{2}(n)\right)=\left(m, m^{\prime}\right)$. Now $k(n)=\left(g\left(f_{1}(m)\right), h\left(f_{2}\left(m^{\prime}\right)\right)\right)=\left(g(m), h\left(m^{\prime}\right)\right)=(a, b)$ and k is onto. Therefore, $A \times B$ is denumerable.
(c) Let \boldsymbol{Q}^{+}be the set of positive rational numbers. Then \boldsymbol{Q}^{+}is denumerable.

Soln. Since $\boldsymbol{N} \subseteq \boldsymbol{Q}^{+}, j: \boldsymbol{N} \rightarrow \boldsymbol{Q}^{+}(x \mapsto x)$ is one-to-one and $|\boldsymbol{N}| \leq\left|\boldsymbol{Q}^{+}\right|$. For each $x \in \boldsymbol{Q}^{+}$, write $x=m / n$ with $m, n \in \boldsymbol{N}$ and $\operatorname{gcd}(m, n)=1$. Then (m, n) is uniquely determined. Since m and n are determined uniquely from x, write $m=m(x)$ and $n=n(x)$. Then $p: \boldsymbol{Q}^{+} \rightarrow \boldsymbol{N} \times \boldsymbol{N}(x \mapsto(m(x), n(x)))$ is a one-to-one function. Hence $f \circ p: \boldsymbol{Q}^{+} \rightarrow \boldsymbol{N}(x \mapsto f(m(x), n(x)))$ is a composition of two one-to-one functions, it is one-to-one by 4 (c). Thus $\left|\boldsymbol{Q}^{+}\right| \leq|\boldsymbol{N}|$. By Schröder-Bernstein's Theorem, $\left|\boldsymbol{Q}^{+}\right|=|\boldsymbol{N}|$, and \boldsymbol{Q}^{+}is denumerable.

