BCM I : Final 2017

ID#:

Name:

- 1. Let P, Q, R be statements.
 - (a) Complete the following truth table.

P	Q	R	\sim	((P	\wedge	$\sim Q)$	\wedge	$\sim R)$	P	\Rightarrow	(Q	V	R)
T	T	T											
Т	T	F											
Т	F	Т											
T	F	F											
F	T	T											
F	T	F											
F	F	T											
F	F	F											

(b) Show $\sim ((P \land \sim Q) \land \sim R) \equiv P \Rightarrow (Q \lor R)$ by using formulas. (5 pts)

- 2. Let n be a (fixed) positive integer. For $a, b \in \mathbb{Z}$, we write $a \equiv b \pmod{n}$, whenever there is an integer c such that b a = cn. Show the following.
 - (a) Let $a, b, c, d \in \mathbb{Z}$. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then (i) $a + c \equiv b + d \pmod{n}$, and
 (5 pts)

(ii)
$$ac \equiv bd \pmod{n}$$
. (5 pts)

1. (10)	2.(20)	3. (10)	4.(20)	5.(20)	6. (20)	Total

(5 pts)

June 21, 2017

(b) For every positive integer $n, 3^{3n+1} + 2^{n+1} \equiv 0 \pmod{5}$. (5 pts)

(c) For any integer n, there are integers x and y such that n = 5x + 7y. (5 pts)

3. Show that there is an integer m such that for each integer $n \ge m$, there are nonnegative integers a and b such that n = 5a + 7b. (10 pts)

Name:

- 4. Let $f: X \to Y, g: Y \to Z$ and $h = g \circ f: X \to Z$ $(x \mapsto g(f(x)))$ be functions. Prove or disprove the following.
 - (a) If f is bijective and g is onto, then h is onto. (5 pts)

(b) If h is onto, then f is onto.

ID#:

(c) If f and g are one-to-one, then h is one-to-one.

(d) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ for all subsets A, B in Y. (5 pts)

(5 pts)

(5 pts)

ID#:

Name:

- 5. For $a, b \in \mathbf{R}$ with a < b, let $(a, b) = \{x \in \mathbf{R} : a < x < b\}$ and $[a, b] = \{x \in \mathbf{R} : a \le x \le b\}$. Show the following.
 - (a) For any $a, b \in \mathbf{R}$ with a < b, open intervals (0, 1) and (a, b) are numerically equivalent, and closed intervals [0, 1] and [a, b] are numerically equivalent. (5 pts)

(b) For any $a, b, c, d \in \mathbf{R}$ with a < b and c < d, open intervals (a, b) and (c, d) are numerically equivalent. (5 pts)

(c) An open interval (0,1) and a closed interval [0,1] are numerically equivalent. (5 pts)

(d) For any $a, b, c, d \in \mathbf{R}$ with a < b and c < d, an open interval (a, b) and a closed interval [c, d] are numerically equivalent. (5 pts)

(5 pts)

ID#:

Name:

6. A set A is denumerable if there is a bijection from N, the set of positive integers, to A. Let

$$f: \mathbf{N} \times \mathbf{N} \to \mathbf{N} \ ((\ell, m) \mapsto 2^{\ell-1}(2m-1)).$$

and show the following.

(a) The function f is one-to-one and onto.

(b) If A and B are denumerable, then $A \times B$ is denumerable. (5 pts)

(c) Let Q^+ be the set of positive rational numbers. Then Q^+ is denumerable. (10 pts)

Please write your comments:

- (1) About this course, especially suggestions for improvements.
- (2) Topics in Mathematics or in other subjects you want to study.

June 21, 2017

BCM I: Solutions to Final 2017

- 1. Let P, Q, R be statements.
 - (a) Complete the following truth table.

P	Q	R	\sim	((P	\wedge	$\sim Q)$	\wedge	$\sim R)$	P	\Rightarrow	(Q	\vee	R)
T	T	T		Т	F	F	F	F	T	T	T	Т	Т
T	Т	F	T	T	F	F	F	T	Т	T	T	T	F
T	F	T	T	T	T	Т	F	F	Т	T	F	T	T
T	F	F	F	T	T	T	T	T	Т	\boldsymbol{F}	F	F	F
F	T	Т		F	F	F	F	F	F	T	T	T	T
F	Т	F		F	F	F	F	T	F	T	T	Т	F
F	F	Т		F	F	T	F	F	F	T	F	T	T
F	F	F		F	F	T	F	T	F	T	F	F	F

(b) Show ~ $((P \land \sim Q) \land \sim R) \equiv P \Rightarrow (Q \lor R)$ by using formulas. Soln.

$$\begin{array}{lll} \sim ((P \wedge \sim Q) \wedge \sim R) & \equiv & \sim (P \wedge \sim Q) \lor (\sim (\sim R)) & (\text{de Morgan}) \\ & \equiv & (\sim P \lor \sim (\sim Q)) \lor R & (\text{de Morgan and} \sim (\sim X) \equiv X) \\ & \equiv & \sim P \lor (Q \lor R) & (\sim (\sim X) \equiv X \text{ and a property of } \lor) \\ & \equiv & P \Rightarrow (Q \lor R) & (\sim X \lor Y \equiv X \Rightarrow Y) \end{array}$$

- 2. Let n be a (fixed) positive integer. For $a, b \in \mathbb{Z}$, we write $a \equiv b \pmod{n}$, whenever there is an integer c such that b a = cn. Show the following.
 - (a) Let $a, b, c, d \in \mathbb{Z}$. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then
 - (i) $a + c \equiv b + d \pmod{n}$, and Soln. Since $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, there exist $s, t \in \mathbb{Z}$ such that b - a = sn, d - c = tn. Therefore,

$$(b+d) - (a+c) = (b-a) + (d-c) = sn + tn = (s+t)n.$$

Hence $a + c \equiv b + d \pmod{n}$.

(ii) $ac \equiv bd \pmod{n}$. Soln. Using the notation in (i),

$$bd - ac = b(d - c) + (b - a)c = tnb + snc = (tb + sc)n.$$

Hence $ac \equiv bd \pmod{n}$.

(b) For every positive integer n, $3^{3n+1} + 2^{n+1} \equiv 0 \pmod{5}$. Soln. We use (a) repeatedly. Congruences are in modulo 5. Since $3^3 \equiv 2$,

$$3^{3n+1} + 2^{n+1} \equiv 3 \cdot (3^3)^n + 2 \cdot 2^n \equiv 3 \cdot 2^n + 2 \cdot 2^n \equiv 5 \cdot 2^n \equiv 0.$$

(c) For any integer n, there are integers x and y such that n = 5x + 7y. **Soln.** Since gcd(5,7) = 1, there are $s, t \in \mathbb{Z}$ such that 1 = 5s + 7t. By multiplying n, n = 5ns + 7nt. By setting x = ns and y = nt, we have n = 5x + 7y. For example, s = 3, t = -2 and $n = 5 \cdot 3 \cdot n + 7 \cdot (-2) \cdot n$. 3. Show that there is an integer m such that for each integer $n \ge m$, there are <u>nonnegative</u> integers a and b such that n = 5a + 7b.

Soln. There are no $a \ge 0$ and $b \ge 0$ satisfying 23 = 5a + 7b. We know this fact by checking cases b = 0, 1, 2. However, $24 = 5 \cdot 2 + 7 \cdot 2, 25 = 5 \cdot 5 + 7 \cdot 0, 26 = 5 \cdot 1 + 7 \cdot 3, 27 = 5 \cdot 4 + 7 \cdot 1$ and $28 = 5 \cdot 0 + 7 \cdot 4$. Let m = 24. We claim that for each integer $n \ge m$, there are nonnegative integers a and b such that n = 5a + 7b. By our observation above, we may assume that $n \ge 29$. Then $n > n - 5 \ge 24$. Hence by induction hypothesis, there are nonnegative integers a_1 and b_1 such that $n - 5 = 5a_1 + 7b_1$. Let $a = a_1 + 1$ and $b = b_1$. Then $n = 5(a_1 + 1) + 7b_1 = 5a + 7b$. This proves our claim.

- 4. Let $f: X \to Y$, $g: Y \to Z$ and $h = g \circ f: X \to Z$ $(x \mapsto g(f(x)))$ be functions. Prove or disprove the following.
 - (a) If f is bijective and g is onto, then h is onto.

Soln. True. Let $z \in Z$. Since g is onto, there is $y \in Y$ such that g(y) = z. Since f is bijective, f is onto. Hence there is $x \in X$ such that f(x) = y. Now h(x) = g(f(x)) = g(y) = z. Therefore for every $z \in Z$, there is $x \in X$ such that h(x) = z and h is onto. Or, since f(X) = Y and g(Y) = Z, h(X) = g(f(X)) = g(Y) = Z.

- (b) If h is onto, then f is onto.
 Soln. False. Let X = {1}, Y = {1,2}, Z = {1}, f(1) = 1, g(1) = g(2) = 1. Then h(1) = 1 and h is onto. However, f is not onto, as there is no x ∈ X such that f(x) = 2.
- (c) If f and g are one-to-one, then h is one-to-one.

Soln. True. Suppose h(x) = h(x'). Then g(f(x)) = h(x) = h(x') = g(f(x')). Since g is one-to-one, f(x) = f(x'). Similarly, since f is one-to-one, x = x'. Hence h(x) = h(x') implies x = x' and h is one-to-one. Or, if $x \neq x'$, since f is one-to-one $f(x) \neq f(x')$. Since g is one-to-one, $h(x) = g(f(x)) \neq g(f(x')) = h(x')$.

- (d) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ for all subsets A, B in Y.
 - **Soln.** True. Let $x \in f^{-1}(A \cap B)$. Then $f(x) \in A \cap B$. Since $f(x) \in A$, $x \in f^{-1}(A)$. Since $f(x) \in B$, $x \in f^{-1}(B)$. Thus $x \in f^{-1}(A) \cap f^{-1}(B)$. Hence, $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$. Conversely, if $x \in f^{-1}(A) \cap f^{-1}(B)$. Then $x \in f^{-1}(A)$ and hence $f(x) \in A$. Similarly, $x \in f^{-1}(B)$ and hence $f(x) \in B$. Thus $f(x) \in A \cap B$ and $x \in f^{-1}(A \cap B)$. Hence, $f^{-1}(A \cap B) \supseteq f^{-1}(A) \cap f^{-1}(B)$. Therefore, $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
- 5. For $a, b \in \mathbb{R}$ with a < b, let $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ and $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$. Show the following.
 - (a) For any $a, b \in \mathbf{R}$ with a < b, open intervals (0, 1) and (a, b) are numerically equivalent, and closed intervals [0, 1] and [a, b] are numerically equivalent. **Soln.** Let $f : (0, 1) \to (a, b)$ $(x \mapsto (b - a)x + a)$. Then f is strictly increasing and onto. Hence f is bijective and open intervals (0, 1) and (a, b) are numerically equivalent. Similarly, Let $f : [0, 1] \to [a, b]$ $(x \mapsto (b - a)x + a)$. Then f is strictly increasing and onto. Hence f is bijective and open intervals [0, 1] and [a, b] are numerically equivalent.
 - (b) For any $a, b, c, d \in \mathbf{R}$ with a < b and c < d, open intervals (a, b) and (c, d) are numerically equivalent.

Soln. Since $a, b \in \mathbf{R}$ with a < b are arbitrary, (0, 1) and (c, d) are numerically equivalent. Since numerical equivalence is an equivalence relation, $(a, b) \sim (0, 1) \sim (c, d)$ implies $(a, b) \sim (c, d)$ and (a, b) and (c, d) are numerically equivalent.

- (c) An open interval (0, 1) and a closed interval [0, 1] are numerically equivalent. **Soln.** $f: (0, 1) \rightarrow [0, 1]$ $(x \mapsto x)$ is one-to-one. Hence $|(0, 1)| \leq |[0, 1]|$. By (a), [0, 1]and [1/4, 3/4] are numerical equivalent. Let g be a bijection from [0, 1] to [1/4, 3/4]. Then $h: [0, 1] \rightarrow (0, 1)$ $(x \mapsto g(x))$ is one-to-one. Note that $g([0, 1]) = [1/4, 3/4] \subseteq$ (0, 1). Hence $|[0, 1]| \leq |(0, 1)|$. Therefore, by Schröder-Bernstein's Theorem, (0, 1)and [0, 1] are numerically equivalent.
- (d) For any a, b, c, d ∈ R with a < b and c < d, an open interval (a, b) and a closed interval [c, d] are numerically equivalent.
 Soln. By (a), (a, b) is numerically equivalent to (0, 1). By (c), (0, 1) is numerically equivalent to [0, 1]. By (a), [0, 1] is numerically equivalent to [c, d]. Since numerical equivalence is an equivalence relation, (a, b) is numerically equivalent to [c, d].
- 6. A set A is denumerable if there is a bijection from N, the set of positive integers, to A. Let

$$f: \mathbf{N} \times \mathbf{N} \to \mathbf{N} \ ((\ell, m) \mapsto 2^{\ell-1}(2m-1)).$$

and show the following.

- (a) The function f is one-to-one and onto.
 - **Soln.** Suppose $f(\ell, m) = f(\ell', m')$. Then by definition, $2^{\ell-1}(2m-1) = 2^{\ell'-1}(2m'-1)$. 1). Suppose $\ell < \ell'$. Then $2m - 1 = 2^{\ell'-\ell}(2m'-1)$ and the left hand side is odd and the right hand side is even, which is absurd. Hence $\ell = \ell'$ and 2m - 1 = 2m' - 1. Now m = m'. Therefore, if $f(\ell, m) = f(\ell', m')$, then $(\ell, m) = (\ell', m')$ and f is one-to-one. Let n be a positive integer. Let $2^{\ell-1}$ is the highest power of 2 dividing n. Then ℓ is a positive integer, $n = 2^{\ell-1}n'$ and n' is a nonnegative odd integer. Hence there is a positive integer m such that n' = 2m - 1. Hence $n = 2^{\ell-1}(2m-1) = f(\ell, m)$ and f is onto.
- (b) If A and B are denumerable, then $A \times B$ is denumerable.

Soln. Let $f^{-1}: \mathbf{N} \to \mathbf{N} \times \mathbf{N}$ $(n \mapsto f^{-1}(n) = (f_1(n), f_2(n)))$ be the inverse function of f in (a). Since both A and B are denumerable, there are bijections $g: \mathbf{N} \to A$ and $h: \mathbf{N} \to B$. Let

$$k: N \to A \times B \ (n \mapsto (g(f_1(n)), h(f_2(n)))).$$

We claim that k is bijective. If

$$(g(f_1(n)), h(f_2(n))) = k(n) = k(n') = (g(f_1(n')), h(f_2(n'))),$$

then $g(f_1(n)) = g(f_1(n'))$ and $h(f_2(n)) = h(f_2(n'))$. Since g and h are one-to-one, $(f_1(n), f_2(n)) = (f_1(n'), f_2(n'))$. Since f^{-1} is bijective and $f^{-1}(n) = (f_1(n), f_2(n)) =$ $(f_1(n'), f_2(n')) = f^{-1}(n'), n = n'$. Hence k is one-to-one. Let $(a, b) \in A \times B$. Since g and h are bijective, there are $m, m' \in \mathbb{N}$ such that g(m) = a and h(m') = b. Since f^{-1} is bijective, there is $n \in \mathbb{N}$ such that $f^{-1}(n) = (f_1(n), f_2(n)) = (m, m')$. Now $k(n) = (g(f_1(m)), h(f_2(m'))) = (g(m), h(m')) = (a, b)$ and k is onto. Therefore, $A \times B$ is denumerable.

- (c) Let Q^+ be the set of positive rational numbers. Then Q^+ is denumerable.
- **Soln.** Since $N \subseteq Q^+$, $j : N \to Q^+$ $(x \mapsto x)$ is one-to-one and $|N| \leq |Q^+|$. For each $x \in Q^+$, write x = m/n with $m, n \in N$ and gcd(m, n) = 1. Then (m, n) is uniquely determined. Since m and n are determined uniquely from x, write m = m(x)and n = n(x). Then $p : Q^+ \to N \times N$ $(x \mapsto (m(x), n(x)))$ is a one-to-one function. Hence $f \circ p : Q^+ \to N$ $(x \mapsto f(m(x), n(x)))$ is a composition of two one-to-one functions, it is one-to-one by 4 (c). Thus $|Q^+| \leq |N|$. By Schröder-Bernstein's Theorem, $|Q^+| = |N|$, and Q^+ is denumerable.