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1D+ Name:

1. Let P, ), R be statements.

(a) Complete the following truth table. (5 pts)

|

(Q|R|~ (P A ~Q AN ~R|P = (Q V R)|

SN R sl B N R R B Nl B av
BN RN Rl R e R Besl R
DR R Rl R el R N

(b) Show ~ ((PA ~ Q)A ~ R) =P = (Q V R) by using formulas. (5 pts)

2. Let n be a (fixed) positive integer. For a,b € Z, we write a =b (mod n), whenever there
is an integer c¢ such that b — a = cn. Show the following.

(a) Let a,b,c,de€ Z. If a=0b (mod n) and ¢ =d (mod n), then
(i) a+c=b+d (mod n), and (5 pts)

(ii) ac =bd (mod n). (5 pts)
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ID+#: Name:
(b) For every positive integer n, 33"*1 4+ 27"+ =0 (mod 5). (5 pts)
(c) For any integer n, there are integers x and y such that n = 5z + 7y. (5 pts)

3. Show that there is an integer m such that for each integer n > m, there are nonnegative
integers a and b such that n = 5a + 7b. (10 pts)



ID#: Name:

4. Let f: X =-Y,g9g:Y > Zandh=gof:X — Z(x— g(f(x))) be functions. Prove or
disprove the following.

(a) If f is bijective and g is onto, then h is onto. (5 pts)
(b) If h is onto, then f is onto. (5 pts)
(c) If f and g are one-to-one, then h is one-to-one. (5 pts)

(d) f~YANB) = f~1(4A)n f~1(B) for all subsets A, B in Y. (5 pts)



ID#: Name:

5. For a,b € R with a <b,let (a,b) ={r € R:a <z <b}and [a,b] ={z € R:a <z <b}.
Show the following.

(a) For any a,b € R with a < b, open intervals (0, 1) and (a, b) are numerically equivalent,
and closed intervals [0, 1] and [a, b] are numerically equivalent. (5 pts)

(b) For any a,b,c,d € R with a < b and ¢ < d, open intervals (a,b) and (c,d) are
numerically equivalent. (5 pts)

(c) An open interval (0,1) and a closed interval [0, 1] are numerically equivalent. (5 pts)

(d) For any a,b,c,d € R with a < b and ¢ < d, an open interval (a,b) and a closed
interval [c,d] are numerically equivalent. (5 pts)



ID#: Name:

6. A set A is denumerable if there is a bijection from IN, the set of positive integers, to A.
Let
f:NxN—= N ((£,m) 2 2m —1)).

and show the following.

(a) The function f is one-to-one and onto. (5 pts)

(b) If A and B are denumerable, then A x B is denumerable. (5 pts)

(c) Let Q" be the set of positive rational numbers. Then Q% is denumerable. (10 pts)

Please write your comments:
(1) About this course, especially suggestions for improvements.
(2) Topics in Mathematics or in other subjects you want to study.
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1. Let P, ), R be statements.

(a) Complete the following truth table.

PlQ|IR[~ (P A ~Q A ~R)|P = (Q V R
T\T|\T|T T F F F F T T T T T
T|\T|F|T T F F F T T T T T F
T|\F|\T|T T T T F F T T F T T
T|\F|\F|F T T T T T T F F F F
F|\T|T|T F F F F F F T T T T
F|\T|F|T F F F F T F T T T F
F|F|T|T F F T F F F T F T T
F|F|F|T F F T F T F T F F F

(b) Show ~ ((PA ~ Q)A ~ R) =P = (Q V R) by using formulas.
Soln.
~(PAN~QA~R) = ~(PA~Q)V(~(~R)) (de Morgan)

= (~PVv~(~Q))VR (de Morgan and ~ (~ X) = X)
= ~PV(QVR) (~ (~ X) = X and a property of V)
= P=(QVR) (~XVY=X=Y)

2. Let n be a (fixed) positive integer. For a,b € Z, we write a =b (mod n), whenever there
is an integer ¢ such that b — a = cn. Show the following.

(a) Let a,b,c,de Z. If a=b (mod n) and ¢ =d (mod n), then
(i) a+c=b+d (modn), and
Soln. Since a =b (mod n) and ¢ =d (mod n), there exist s,t € Z such that
b—a = sn, d— c=tn. Therefore,

(b+d)—(a+c)=(b—-a)+(d—c)=sn+tn=(s+1)n.

Hence a +c=b+d (mod n).
(ii) ac =bd (mod n).
Soln. Using the notation in (i),

bd — ac =b(d — ¢) + (b — a)c = tnb + snc = (tb + sc)n.
Hence ac = bd (mod n).

(b) For every positive integer n, 33"+ + 27+ =0 (mod 5).
Soln. We use (a) repeatedly. Congruences are in modulo 5. Since 3% = 2,

g3l pontl =3, (33" £ 2.2"=3.2"4+2.2"=5.2" = 0.

(¢) For any integer n, there are integers x and y such that n = 5z + 7y.
Soln. Since ged(5,7) = 1, there are s,t € Z such that 1 = 5s 4+ 7t. By multiplying
n, n = dns + 7nt. By setting x = ns and y = nt, we have n = 5z + 7y. For example,
s=3t=-2andn=5-3-n+7-(-2) n. [ ]



3. Show that there is an integer m such that for each integer n > m, there are nonnegative
integers a and b such that n = 5a + 7b.

Soln. There are no ¢ > 0 and b > 0 satisfying 23 = 5a + 7b. We know this fact by
checking cases b = 0,1,2. However, 24 =5-2+7-2,25=5-54+7-0,26=5-1+47-3,
27=5-447-1and 28 =5-0+ 7-4. Let m = 24. We claim that for each integer n > m,
there are nonnegative integers a and b such that n = 5a + 7b. By our observation above,
we may assume that n > 29. Then n > n — 5 > 24. Hence by induction hypothesis, there
are nonnegative integers a; and b; such that n —5 = 5a; + 7b;. Let a = a1 +1 and b = b;.
Then n = 5(a; + 1) 4+ 7by = 5a + 7b. This proves our claim. ]

4. Let f: X =Y, g:Y > Zandh=gof:X — Z(x— g(f(x))) be functions. Prove or
disprove the following.

(a) If f is bijective and g is onto, then h is onto.
Soln. True. Let z € Z. Since g is onto, there is y € Y such that g(y) = z. Since
f is bijective, f is onto. Hence there is © € X such that f(z) = y. Now h(x) =
g(f(x)) = g(y) = z. Therefore for every z € Z, there is x € X such that h(z) =
and h is onto. Or, since f(X) =Y and g(Y) = Z, h(X) =g(f(X)) =9(Y) = Z.
(b) If h is onto, then f is onto.
Soln. False. Let X = {1}, Y ={1,2}, Z = {1}, f(1) =1, g(1) = ¢g(2) = 1. Then
h(1) = 1 and h is onto. However, f is not onto, as there is no z € X such that
f(z) =2. ]
(c) If f and g are one-to-one, then h is one-to-one.
Soln. True. Suppose h(z) = h(2’). Then g(f(z)) = h(z) = h(z') = g(f(2)).
Since g is one-to-one, f(x) = f(z'). Similarly, since f is one-to-one, x = z’. Hence
h(z) = h(z') implies = 2’/ and h is one-to-one. Or, if x # 2/, since f is one-to-one
f(z) # f(«'). Since g is one-to-one, h(z) = g(f(z)) # g(f(2')) = h(z'). ]
(d) f~Y(ANB)= f~1(A)n f~1(B) for all subsets A, B in Y.
Soln. True. Let # € f~}(ANB). Then f(z) € ANB. Since f(z) € A, x € f~(A).
Since f(z) € B, z € f~Y(B). Thus z € f~1(A) N f~1(B). Hence, f~}(AN B) C
f~YHA) N f~Y(B). Conversely, if x € f~1(A) N f~Y(B). Then z € f~!(A) and hence
f(x) € A. Similarly, x € f~!(B) and hence f(x) € B. Thus f(x) € AN B and
v € f1(ANB). Hence, {1 (AN B) 2 f~1(A) N f~4(B). Therefore, f~1(ANB) =
fHA) N fH(B). =

5. For a,b € R with a <b,let (a,b) ={r € R:a <z <b}and [a,b] ={z € R:a <z <b}.
Show the following.

z
|

(a) For any a,b € R with a < b, open intervals (0, 1) and (a, b) are numerically equivalent,
and closed intervals [0, 1] and [a, b] are numerically equivalent.
Soln. Let f : (0,1) — (a,b) (x — (b — a)r + a). Then f is strictly increasing
and onto. Hence f is bijective and open intervals (0,1) and (a,b) are numerically
equivalent. Similarly, Let f : [0,1] — [a,b] (x — (b — a)z + a). Then f is strictly
increasing and onto. Hence f is bijective and open intervals [0,1] and [a,b] are
numerically equivalent. [ |
(b) For any a,b,c,d € R with a < b and ¢ < d, open intervals (a,b) and (c,d) are
numerically equivalent.
Soln. Since a,b € R with a < b are arbitrary, (0,1) and (c¢,d) are numerically
equivalent. Since numerical equivalence is an equivalence relation, (a,b) ~ (0,1) ~
(c,d) implies (a,b) ~ (¢,d) and (a,b) and (¢, d) are numerically equivalent. ]



()

An open interval (0,1) and a closed interval [0, 1] are numerically equivalent.
Soln. f:(0,1) = [0,1] (x + z) is one-to-one. Hence |(0,1)| < |[0, 1]|. By (a), [0,1]
and [1/4,3/4] are numerical equivalent. Let g be a bijection from [0, 1] to [1/4,3/4].

Then A : [0,1] — (0,1) (x + g(x)) is one-to-one. Note that ¢([0,1]) = [1/4,3/4] C
(0,1). Hence |[0,1]| < |(0,1)]. Therefore, by Schréder-Bernstein’s Theorem, (0,1)
and [0, 1] are numerically equivalent. ]

For any a,b,c,d € R with a < b and ¢ < d, an open interval (a,b) and a closed
interval [c, d] are numerically equivalent.

Soln. By (a), (a,b) is numerically equivalent to (0,1). By (c), (0,1) is numerically
equivalent to [0,1]. By (a), [0,1] is numerically equivalent to [c, d]. Since numerical
equivalence is an equivalence relation, (a,b) is numerically equivalent to [c, d]. [

6. A set A is denumerable if there is a bijection from IN, the set of positive integers, to A.

Let

f:NxN = N ((€,m) = 27 2m —1)).

and show the following.

(a)

The function f is one-to-one and onto.

Soln. Suppose f(¢,m) = f(¢',m’). Then by definition, 2¢=1(2m —1) = 2¢'~1(2m’ —
1). Suppose £ < £'. Then 2m — 1 = 2¢=¢(2m’ — 1) and the left hand side is odd and
the right hand side is even, which is absurd. Hence ¢ = ¢’ and 2m —1 = 2m’ — 1. Now
m = m/. Therefore, if f(¢,m) = f(¢',m’), then (¢,m) = (¢',m') and f is one-to-one.
Let n be a positive integer. Let 2! is the highest power of 2 dividing n. Then ¢ is
a positive integer, n = 2:"1n/ and n’ is a nonnegative odd integer. Hence there is a
positive integer m such that n’ = 2m — 1. Hence n = 2"1(2m — 1) = f(¢,m) and f
is onto. ]
If A and B are denumerable, then A x B is denumerable.

Soln. Let f': N = NxN(n+— f~(n) = (fi(n), f2(n))) be the inverse function
of f in (a). Since both A and B are denumerable, there are bijections g : N — A
and h: N — B. Let

k:N—= AxB (n—(g9(fi(n),h(f2(n))).
We claim that k is bijective. If

(9(f1(n)), h(f2(n))) = k(n) = k(n) = (9(f1(n")), h(f2(n))),
then g(f1(n)) = g(fi(n')) and h(f2(n)) = h(f2(n')). Since g and h are one-to-one,
(o () = () o). Sine J s bictiv . [2(0) (). 1) —
(fi(n"), f2(n")) = f~Y(n’), n = n’. Hence k is one-to-one. Let (a,b) € A x B. Since
g and h are bljectlve, there are m,m’ € N such that g(m) = a and h(m') = b.
Since f~! is bijective, there is n € IN such that f~1(n) = (fi(n), f2(n)) = (m,m’).
Now k(n) = (g(fi(m)), h(f2(m”))) = (g(m), h(m')) = (a,b) and k is onto. Therefore,
A x B is denumerable. [

Let Q" be the set of positive rational numbers. Then Q% is denumerable.

Soln. Since N € Q", j: N — Q" (z + z) is one-to-one and |[N| < |Q*|. For
each x € QT, write x = m/n with m,n € N and ged(m,n) = 1. Then (m,n) is
uniquely determined. Since m and n are determined uniquely from x, write m = m(z)
and n = n(x). Then p: QT — N x N (x — (m(z),n(z))) is a one-to-one function.
Hence fop : QT — N (x — f(m(z),n(z))) is a composition of two one-to-one
functions, it is one-to-one by 4 (c). Thus |Q*| < |N|. By Schréder-Bernstein’s
Theorem, |Q"| = |N|, and Q7 is denumerable. ]



