Quiz 1(Due Wednesday, December 12, 2007)Division:ID#:Name:

Let F be a field and F[t] the polynomial ring over F. Then for $f, g \in F[t]$ with $g \neq 0$, there exist $q, r \in F[t]$ such that

$$f = q \cdot g + r$$
, with $\deg r < \deg g$. (1)

Use this fact and prove the following. Note that $g \mid f$ if and only if r = 0 in (1).

1. Let $f \in F[t]$ and $a \in F$. Then $f(a) = 0 \Leftrightarrow t - a \mid f$.

2. Let I be an ideal of F[t]. Then there exists $p \in F[t]$ such that $I = (p) = \{g \cdot p \mid g \in F[t]\}$.

3. Let I = (p) be an ideal of F[t] generated by $p \in F[t]$. Then I is a maximal ideal if and only if p is irreducible.

4. Let $I = (p) \neq \{0\}$ be a *nonzero* ideal of F[t] generated by $p \in F[t]$. Then I is a prime ideal if and only if p is irreducible.

Message: Questions? Suggestions?

1. Let $f \in F[t]$ and $a \in F$. Then $f(a) = 0 \Leftrightarrow t - a \mid f$.

Sol. By the division algorithm above, there exists $q \in F[t]$ such that

 $f = q \cdot (t - a) + r$, with deg r < deg(t - a) = 1.

Hence r is a constant and $r \in F$. Since f(a) = r, f(a) = 0 if and only if r = 0, i.e., $(t - a) \mid f$.

2. Let I be an ideal of F[t]. Then there exists $p \in F[t]$ such that $I = (p) = \{g \cdot p \mid g \in F[t]\}$.

Sol. If $I = \{0\}$, then we can take p = 0. Hence we may assume that $I \neq \{0\}$. Let p be a nonzero element of I such that deg p is minumum. Let $f \in I$. Then there exists $q, r \in F[t]$ such that $f = q \cdot p + r$ with deg $r < \deg p$. Since $r = f - q \cdot p \in I$ and deg $r < \deg p$, r = 0 by the choice of p. Hence $f = q \cdot p$ and $f \in (p)$. Thus $I \subset (p)$. Since $p \in I$, the other inclusion is obvious.

An integral domain with this property is called a principal ideal domain (PID). Every Euclidean domain is a PID. Hence the statebuent above follows from the fact that F[t] is an Euclidean domain, which is stated in the beginning of this quiz.

3. Let I = (p) be an ideal of F[t] generated by $p \in F[t]$. Then I is a maximal ideal if and only if p is irreducible.

Sol. Let J be an ideal containing I = (p). Then by 2, there exists $q \in J$ such that J = (q). Hence there exists $g \in F[t]$ such that $p = g \cdot q$. Now assume that p is irreducible. Then either g or q is a unit, i.e., a nonzero constant. Hence $J = (q) = (g \cdot q) = (p) = I$ if g is a unit, and J = (q) = F[t] if q is a unit. Hence I is a maximal ideal. Suppose I is a maximal ideal. If $p = g \cdot q$ for some $g, q \in F[t]$, then $(p) \subseteq (q)$. Hence either (p) = (q) or (q) = F[t] and q is a unit. If (p) = (q), then g is a unit. Therefore, p is irreducible.

For a nonzero ideal I of a PID, let I = (p). Then the following three properties are equivalent; (i) I is maximal, (ii) I is prime, and (iii) p is irreducible. F[t] is a PID and p is irreducible in F[t] if and only if p is an irreducible polynomial. Note that for a commutative ring R, R is an integral domain, if and only if (0) is a prime ideal. Hence in the next problem, we need the assumption that $I \neq (0)$.

4. Let $I = (p) \neq \{0\}$ be a *nonzero* ideal of F[t] generated by $p \in F[t]$. Then I is a prime ideal if and only if p is irreducible.

Sol. If p is irreducible, then I is a maximal ideal by 3 and I is a prime ideal. Suppose I is a prime ideal and $p = g \cdot q$ for some $g, q \in F[t]$. Since $p \in I$, and I is a prime ideal, $g \in (p)$ or $q \in (p)$. That is either $p \mid g$ or $p \mid q$. We have either q or g is a unit.

Quiz 2 (Due on Wednesday December 19, 2007) Division: ID#: Name:

Let $m \ge 2$ be a positive integer such that $p \mid m \Rightarrow p^2 \nmid m$ for every prime number p. (e.g., $m = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, \ldots$) Let n be another positive integer.

1. Show that $f(t) = t^n - m \in \mathbf{Q}[t]$ is irreducible over \mathbf{Q} .

2. Let $\alpha = \sqrt[n]{m} \in \mathbf{R}$. Show that $(\mathbf{Q}(\alpha) : \mathbf{Q}) = n$.

3. Let $\beta = \sqrt[3]{6} \in \mathbf{R}$. Show that $\mathbf{Q}(\beta) = \{a + b\beta + c\beta^2 \mid a, b, c \in \mathbf{Q}\}.$

4. Let β be above. Express $(1 + \beta)^{-1}$ as $a + b\beta + c\beta^2$ with $a, b, c \in \mathbf{Q}$.

5. Suppose α, β be as above and $3 \nmid n$. Show that $(\mathbf{Q}(\alpha, \beta) : \mathbf{Q}) = 3n$.

Let $m \ge 2$ be a positive integer such that $p \mid m \Rightarrow p^2 \nmid m$ for every prime number p. (e.g., $m = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, \ldots$) Let n be another positive integer.

1. Show that $f(t) = t^n - m \in \mathbf{Q}[t]$ is irreducible over \mathbf{Q} .

Sol. Since $m \ge 2$, there is a prime which divides m. By assumption, $p^2 \nmid m$. Hence by Eisenstein's criterion and Gauss' lemma f(t) is irreducible over Q.

2. Let $\alpha = \sqrt[n]{m} \in \mathbf{R}$. Show that $(\mathbf{Q}(\alpha) : \mathbf{Q}) = n$.

Sol. $f(t) = t^n - m$ is the minimum polynomial of α . Hence $(\mathbf{Q}(\alpha) : \mathbf{Q}) = \deg f(t) = n$. (That is $f(\alpha) = 0$ and if $g(\alpha) = 0$ for some $g(t) \in \mathbf{Q}[t]$ then $f(t) \mid g(t)$. If $p(t) \in \mathbf{Q}[t]$ is a monic polynomial minimum degree such that $p(\alpha) = 0$, and f(t) = q(t)p(t) + r(t) with $\deg(r(t)) < \deg(p(t))$. Then $r(\alpha) = 0$ and r(t) = 0 by the choice of g(t). Hence f(t) = q(t)p(t). Since f(t) is irreducible, q(t) = 1 as the leading coefficients of p and f are 1. Hence f(t) = p(t) and $g(\alpha) = 0$ implies $f(t) \mid g(t)$. Consider a ring homomorphism $\phi : \mathbf{Q}[t] \to \mathbf{R}(g(t) \mapsto g(\alpha))$. Then $\ker(\phi) = (f(t))$ and $\operatorname{im}(\phi) = \mathbf{Q}(\alpha)$. Hence $\mathbf{Q}[t]/(f(t)) \simeq \mathbf{Q}(\alpha)$. $\mathbf{Q}[t]/(f(t)) = \{a + bt + ct^2 + (f(t)) \mid a, b, c \in \mathbf{Q}\}$.) Please review Proposition 2.2 (10.1.5).

- 3. Let β = ³√6 ∈ **R**. Show that Q(β) = {a + bβ + cβ² | a, b, c ∈ Q}.
 Sol. Apply the previous problem to β. 1, β, β² are linearly independent as otherwise there is a polynomial of degree at most two in Q[t] such that β is a root of it.
- 4. Let β be above. Express $(1 + \beta)^{-1}$ as $a + b\beta + c\beta^2$ with $a, b, c \in \mathbf{Q}$. Sol. Since $\beta^3 - 6 = 0$,

$$(1+\beta)^{-1} = \frac{7}{7(1+\beta)} = \frac{1+\beta^3}{7(1+\beta)} = \frac{1-\beta+\beta^2}{7} = \frac{1}{7} - \frac{1}{7}\beta + \frac{1}{7}\beta^2.$$

5. Suppose α, β be as above and $3 \nmid n$. Show that $(\mathbf{Q}(\alpha, \beta) : \mathbf{Q}) = 3n$.

Sol. $(\mathbf{Q}(\alpha,\beta):\mathbf{Q}) = (\mathbf{Q}(\alpha,\beta):\mathbf{Q}(\alpha))(\mathbf{Q}(\alpha):\mathbf{Q})$. So this number is divisible by n. Since $\mathbf{Q}(\beta) \subseteq \mathbf{Q}(\alpha,\beta)$, it is also divisible by $3 = (\mathbf{Q}(\beta):\mathbf{Q})$. Since $3 \nmid n$, $(\mathbf{Q}(\alpha,\beta):\mathbf{Q}) = 3n$.

1. Trisect the given angle $\frac{\pi}{4}$ by ruler and compass.

2. Show that it is impossible to draw a regular 9-gon by ruler and compass.

3. Draw a regular pentagon (5-gon) by ruler and compass. (Hint: Find a root of $t^4 + t^3 + t^2 + t + 1 = 0$ by setting $u = t + \frac{1}{t}$, and consider its geometrical meaning in the complex plane.)

1. Trisect the given angle $\frac{\pi}{4}$ by ruler and compass.

Sol. Suppose that the angle is given by two line segments intersecting at the origin. Draw a circle with center at the origin. Let A and B be two points of intersection. Draw a right dodecagon (12-gon) such that one of the vertex is at A. This gives a point trisecting the angle. A right dodecagon can be easily drawn as it can be obtained from a equilateral triangle by bisecting it twice.

2. Show that it is impossible to draw a regular 9-gon by ruler and compass.

Sol. Let $\alpha = 2\pi/3$. Then $\cos \alpha = -1/2$. Hence $Q(\cos \alpha) = Q$. Let $\theta = \alpha/3$. If it is possible to draw a regular 9-gon, then θ is constructible. Let

$$f(t) = 8t^3 - 6t + 1.$$

It suffices to show that f(t) is reducible over \mathbf{Q} (10.2.4). Let $g(u) = u^3 f(1/u) = u^3 - 6u^2 + 8$. By Gauss' lemma, if g(u) is reducible, one of $\pm 1, \pm 2, \pm 4, \pm 8$ is a root, which is not the case. Hence f(t) is irreducible as well. Or consider f(t) modulo 7. Then it becomes $t^3 + t + 1$. This polynomial does not have a root in \mathbf{Z}_7 . Hence it is irreducible over \mathbf{Z}_7 , so f(t) is irreducible over \mathbf{Q} .

3. Draw a regular pentagon (5-gon) by ruler and compass. (Hint: Find a root of $t^4 + t^3 + t^2 + t + 1 = 0$ by setting $u = t + \frac{1}{t}$, and consider its geometrical meaning in the complex plane.)

Sol.

$$0 = t^{4} + t^{3} + t^{2} + t + 1 = t^{2}(t^{2} + 2 + \frac{1}{t^{2}} + t + \frac{1}{t} - 1) = t^{2}(u^{2} + u - 1)$$

If we set

$$\theta = \cos\frac{2\pi}{5} + \sqrt{-1}\sin\frac{2\pi}{5}$$

then the roots of $t^4 + t^3 + t^2 + t + 1 = 0$ is $\theta, \theta^2, \theta^3, \theta^4$ and $\theta^5 = 1$. So

$$u = t + \frac{1}{t} = \theta + \theta^4 = 2\cos\frac{2\pi}{5} > 0 \text{ or } \theta^2 + \theta^3 = 2\cos\frac{4\pi}{5} < 0.$$

Therefore

$$2\cos\frac{2\pi}{5} = \frac{-1+\sqrt{5}}{2}$$
 or $\cos\frac{2\pi}{5} = \frac{-1+\sqrt{5}}{4}$.

Now starting from a unit circle, it is easy to construct θ .

See http://www.geocities.jp/two_well/penta.kakikata.html

Quiz 4

(Due on Monday January 21, 2008)

Division: ID#: Name:

Let $p(t) = t^2 + 1$, $q(t) = t^2 + t + 2$ and $r(t) = t^2 + 2 \in \mathbb{Z}_3[t]$.

- 1. Show that p(t) and q(t) are irreducible over \mathbb{Z}_3 .
- 2. Factor $t^9 t \in \mathbb{Z}_3[t]$.
- 3. Let $p(t) = t^2 + 1$. Write the multiplication table of $\mathbf{Z}_3[t]/(p(t))$ with respect to the product.

4. Show that $Z_3[t]/(p(t)) \simeq Z_3[t]/(q(t))$.

5. Determine whether or not $\mathbf{Z}_3[t]/(p(t)) \simeq \mathbf{Z}_3[t]/(r(t))$.

(January 21, 2008)

Let $p(t) = t^2 + 1$, $q(t) = t^2 + t + 2$ and $r(t) = t^2 + 2 \in \mathbb{Z}_3[t]$.

1. Show that p(t) and q(t) are irreducible over \mathbb{Z}_3 .

Sol. Suppose not. Then it must have a linear factor, or equivalently it has a root in $\mathbb{Z}_3 = \{0, 1, -1\}$. Since p(0) = 1, p(1) = p(-1) = 2 = -1 and q(0) = 2, q(1) = 1 and q(-1) = 2 = -1, it is not the case.

2. Factor $t^9 - t \in \mathbb{Z}_3[t]$.

Sol.

$$t^9 - t = t(t-1)(t+1)(t^2+1)(t^2+t+2)(t^2+2t+2)$$

Note that the factors above are all the monic irreducible polynomials of degree at most 2.

3. Let $p(t) = t^2 + 1$. Write the multiplication table of $\mathbf{Z}_3[t]/(p(t))$ with respect to the product.

Sol.	All elements are	represented	by poly	ynomials of	degree at	most 1 .	Hence
			•/ •				

	0	1	t+1	-t	-t + 1	-1	-t - 1	t	t-1
0	0	0	0	0	0	0	0	0	0
1	0	1	t+1	-t	-t+1	-1	-t-1	t	t-1
t+1	0	t+1	-t	-t + 1	-1	-t - 1	t	t-1	1
$(t+1)^2 = -t$	0	-t	-t + 1	-1	-t - 1	t	t-1	1	t+1
$(t+1)^3 = -t+1$	0	-t+1	-1	-t-1	t	t-1	1	t+1	-t
$(t+1)^4 = -1$	0	-1	-t - 1	t	t-1	1	t+1	-t	-t + 1
$(t+1)^5 = -t - 1$	0	-t - 1	t	t-1	1	t+1	-t	-t + 1	-1
$(t+1)^6 = t$	0	t	t-1	1	t+1	-t	-t + 1	-1	-t - 1
$(t+1)^7 = t-1$	0	t-1	1	t+1	-t	-t+1	-1	-t - 1	t

4. Show that $Z_3[t]/(p(t)) \simeq Z_3[t]/(q(t))$.

Sol. Since both p(t) and q(t) are irreducible, $\mathbf{Z}_3[t]/(p(t))$ and $\mathbf{Z}_3[t]/(q(t))$ are fields of order 9. Hence they are isomorphic. Can you find an isomorphism between them? (How about $t \mapsto t-1$? What is the minimal polynomial of $t-1+(q(t)) \in \mathbf{Z}_3[t]/(q(t))$ over \mathbf{Z}_3 ?)

5. Determine whether or not $\mathbf{Z}_3[t]/(p(t)) \simeq \mathbf{Z}_3[t]/(r(t))$.

Sol. Since r(1) = 0, r(t) = (t-1)(t+1) is not irreducible, $\mathbb{Z}_3[t]/(r(t))$ is not a field. So they are not isomorphic. In fact, $t - 1 + (r(t)) \neq 0$, $t + 1 + (r(t)) \neq 0$ in $\mathbb{Z}_3[t]/(r(t))$ but the product is zero.

Quiz 5(Due on January 28, 2008)Division:ID#:Name:

Let n be an integer such that n > 2 and $\zeta = e^{2\pi\sqrt{-1}/n} = \cos(2\pi/n) + \sqrt{-1}\sin(2\pi/n)$.

1. Let $F \subset E$ be a field extension. Let x be a nonzero algebraic element of E over F and $f = \operatorname{Irr}_F(x)$. If $g \in F[t]$ has x as its root, i.e., g(x) = 0, then f divides g.

2. Let $f = \operatorname{Irr}_{Q}(\zeta)$. Show that $\zeta^{n} = 1$ and every root of f is a power of ζ .

3. Show that $Q(\zeta)$ is normal over Q.

4. Show that $Q(\sqrt[n]{2})$ is not normal over Q.

5. Show that $Q(\sqrt[n]{2}, \zeta)$ is normal over Q.

(January 28, 2008)

Let n be an integer such that n > 2 and $\zeta = e^{2\pi\sqrt{-1}/n} = \cos(2\pi/n) + \sqrt{-1}\sin(2\pi/n)$.

- Let F ⊂ E be a field extension. Let x be a nonzero algebraic element of E over F and f = Irr_F(x). If g ∈ F[t] has x as its root, i.e., g(x) = 0, then f divides g.
 Sol. Since f ≠ 0, there exists q, r ∈ F[t] with deg r < deg f such that g = qf + r. Since 0 = g(x) = q(x)f(x) + r(x) = r(x) and deg r < deg f, r = 0. Hence f divides g.
- 2. Let $f = \operatorname{Irr}_{\boldsymbol{Q}}(\zeta)$. Show that $\zeta^n = 1$ and every root of f is a power of ζ .

Sol. Let $g = t^n - 1$. Then by Problem 1, $f \mid g$. Hence every root of f is a root of g. On the other hand $1, \zeta, \ldots, \zeta^{n-1}$ are distinct roots of g. Since deg g = n, these are the all roots of g. Hence every root of f is a power of ζ .

- 3. Show that Q(ζ) is normal over Q.
 Sol. Q(ζ) is a splitting field of tⁿ−1 over Q. Hence it is normal over Q by (11.1.1).
- 4. Show that $Q(\sqrt[n]{2})$ is not normal over Q.

Sol. By Eisenstein's criterion and Gauss' lemma, $t^n - 2$ is irreducible over Q and $Q(\sqrt[n]{2})$ contains its root $\sqrt[n]{2}$. On the other hand, the roots of $t^n - 2$ are $\sqrt[n]{2}, \sqrt[n]{2}\zeta, \ldots, \sqrt[n]{2}\zeta^{n-1}$ and $\zeta \notin \mathbf{R}$ as n > 2, $Q(\sqrt[n]{2}) \subset \mathbf{R}$ cannot contain all roots of $t^n - 2$.

5. Show that $Q(\sqrt[n]{2}, \zeta)$ is normal over Q.

Sol. Clearly $t^n - 2$ splits in the field $\mathbf{Q}(\sqrt[n]{2}, \zeta)$. Let K be the splitting field of $t^n - 2$ contained in $\mathbf{Q}(\sqrt[n]{2}, \zeta)$. Then $\sqrt[n]{2} \in K$ and $\sqrt[n]{2}\zeta \in K$. Hence $\zeta \in K$. Therefore $K = \mathbf{Q}(\sqrt[n]{2}, \zeta)$.

Quiz 6 Division: ID#: Name: Let $E = \mathbf{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \mathbf{C}$ and $K = \mathbf{Q}(\sqrt[4]{2})$ and $F = \mathbf{Q}(\sqrt{-1})$. Let $f = t^4 - 2 \in \mathbf{Q}[t]$.

1. Show that E is the splitting field of f over Q contained in C.

2. Show that (E : Q) = 8.

3. Let σ be the complex conjugate, i.e., $\sigma : \mathbf{C} \to \mathbf{C} (a + b\sqrt{-1} \mapsto a - b\sqrt{-1}, a, b \in \mathbf{R})$. Show that $\sigma(E) = E$ and $\alpha = \sigma_{|E} : E \to E$ belongs to $\operatorname{Gal}(E/K)$.

4. Show that there is an element $\beta \in \operatorname{Gal}(E/F)$ such that $\beta(\sqrt[4]{2}) = \sqrt[4]{2}\sqrt{-1}$.

5. Find the order of $\operatorname{Gal}(E/Q)$.

Solutions to Quiz 6 (February 4, 2008)

Let $E = \mathbf{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \mathbf{C}$ and $K = \mathbf{Q}(\sqrt[4]{2})$ and $F = \mathbf{Q}(\sqrt{-1})$. Let $f = t^4 - 2 \in \mathbf{Q}[t]$.

1. Show that E is the splitting field of f over Q contained in C.

Sol. The roots of f are $\pm \sqrt[4]{2}, \pm \sqrt[4]{2}\sqrt{-1}$. Hence $t^4 - 2$ splits in E. On the other hand, $Q(\sqrt[4]{2}, -\sqrt[4]{2}, \sqrt[4]{2}\sqrt{-1}, -\sqrt[4]{2}\sqrt{-1}) = Q(\sqrt[4]{2}, \sqrt{-1}) = E$.

2. Show that (E : Q) = 8.

Sol. Since all elements of K are real, $t^2 + 1$ is irreducible over K. Hence

$$(E, \mathbf{Q}) = (E, K)(K, \mathbf{Q}) = (K(\sqrt{-1}), K)(\mathbf{Q}(\sqrt[4]{2} : \mathbf{Q})) = \deg(t^2 + 1)\deg(t^4 - 2) = 2 \cdot 4 = 8.$$

3. Let σ be the complex conjugate, i.e., $\sigma : \mathbf{C} \to \mathbf{C} (a + b\sqrt{-1} \mapsto a - b\sqrt{-1}, a, b \in \mathbf{R})$. Show that $\sigma(E) = E$ and $\alpha = \sigma_{|E} : E \to E$ belongs to $\operatorname{Gal}(E/K)$.

Sol. Clearly σ is an automorphism of C, $\sigma_{|Q} = id$ and $\sigma(\sqrt[4]{2}) = \sqrt[4]{2}$. Moreover $\sigma(\sqrt{-1}) = -\sqrt{-1}$. Hence $\sigma(E) \subset E$. Since $(\sigma(E), Q) = (E : Q) < \infty$, by a property of finite dimensional linear space, $\sigma(E) = E$. Since $K \subset \mathbf{R}$, we have $\beta \in \operatorname{Gal}(E/K)$.

4. Show that there is an element $\beta \in \operatorname{Gal}(E/F)$ such that $\beta(\sqrt[4]{2}) = \sqrt[4]{2}\sqrt{-1}$.

Sol. Since $E = F(\sqrt[4]{2})$, $(E : \mathbf{Q}) = 8$ and $(F : \mathbf{Q}) = 2$, $(E : F) = 4 = \deg(\operatorname{Irr}_F(\sqrt[4]{2}))$. We have $t^4 - 2 = \operatorname{Irr}_F(\sqrt[4]{2})$. Hence by (10.3.2), id_F can be extended to $\beta \in \operatorname{Gal}(E/F)$ such that $\beta(\sqrt[4]{2}) = \sqrt[4]{2}\sqrt{-1}$. Note that $F(\sqrt[4]{2}) = E = F(\sqrt[4]{2}\sqrt{-1})$.

5. Find the order of $\operatorname{Gal}(E/Q)$.

Sol. Since the characteristic of E is zero, the extension E/\mathbf{Q} is separable. Since E is a splitting field of f, it is normal. Therefor it is Galois and by (11.2.2), $|\text{Gal}(E/\mathbf{Q})| = (E : \mathbf{Q}) = 8.$

We can list all elements of $\operatorname{Gal}(E/\mathbf{Q})$ as well. Be careful that we need to show that all are distinct.

Quiz 7

(Due on February 13, 2008)

Division: ID#: Name:

Let $E = \mathbf{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \mathbf{C}$ and $K = \mathbf{Q}(\sqrt[4]{2})$ and $F = \mathbf{Q}(\sqrt{-1})$. Let $f = t^4 - 2 \in \mathbf{Q}[t]$. Let σ be the complex conjugate and $\beta \in \operatorname{Gal}(E/F)$ defined in Quiz 6.

1. Show that $\sigma\beta\sigma = \beta^{-1}$.

2. Gal $(E/Q) = \{1, \beta, \beta^2, \beta^3, \sigma, \sigma\beta, \sigma\beta^2, \sigma\beta^3\}.$

3. Find Fix($\langle \sigma \rangle$).

4. Find $Fix(\langle \beta \rangle)$.

5. Find Fix($\langle \sigma \beta \rangle$).

(February 13, 2008)

Let $E = \mathbf{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \mathbf{C}$ and $K = \mathbf{Q}(\sqrt[4]{2})$ and $F = \mathbf{Q}(\sqrt{-1})$. Let $f = t^4 - 2 \in \mathbf{Q}[t]$. Let σ be the complex conjugate and $\beta \in G = \operatorname{Gal}(E/F)$ defined in Quiz 6.

1. Show that $\sigma\beta\sigma = \beta^{-1}$.

Sol. Since $E = \mathbf{Q}(\sqrt[4]{2}, \sqrt{-1})$, it is sufficient to show that $\sigma\beta\sigma\beta(\sqrt[4]{2}) = \sqrt[4]{2}$ and $\sigma\beta\sigma\beta(\sqrt{-1}) = \sqrt{-1}$.

$$\sigma\beta\sigma\beta(\sqrt[4]{2}) = \sigma\beta\sigma(\sqrt[4]{2}\sqrt{-1}) = \sigma\beta(-\sqrt[4]{2}\sqrt{-1}) = \sigma(\sqrt[4]{2}) = \sqrt[4]{2}.$$

$$\sigma\beta\sigma\beta(\sqrt{-1}) = \sigma\beta\sigma(\sqrt{-1}) = \sigma\beta(-\sqrt{-1}) = \sigma(-\sqrt{-1}) = \sqrt{-1}.$$

2. $\operatorname{Gal}(E/\mathbf{Q}) = \{1, \beta, \beta^2, \beta^3, \sigma, \sigma\beta, \sigma\beta^2, \sigma\beta^3\}.$

Sol. Since $\beta(\sqrt[4]{2}) = \sqrt[4]{2}\sqrt{-1}$, $\beta(\sqrt[4]{2}\sqrt{-1}) = -\sqrt[4]{2}$, the order of β is four. The order of σ is two. Let $H = \langle \beta \rangle$. By 1, $H \triangleleft G$ and (G : H) = 2. Now we have the assertion.

3. Find $Fix(\langle \sigma \rangle)$.

Sol. Since $(\boldsymbol{Q}(\sqrt[4]{2}) : \boldsymbol{Q}) = 4$ and $\boldsymbol{Q}(\sqrt[4]{2}) \subset \operatorname{Fix}(\langle \sigma \rangle)$,

$$2 = |\langle \sigma \rangle| = (E : \operatorname{Fix}(\langle \sigma \rangle)) \le (E : \boldsymbol{Q}(\sqrt[4]{2})) = 2.$$

Hence $\operatorname{Fix}(\langle \sigma \rangle) = \boldsymbol{Q}(\sqrt[4]{2}) = K.$

4. Find Fix($\langle \beta \rangle$).

Sol. Since $(\boldsymbol{Q}(\sqrt{-1}) : \boldsymbol{Q}) = 2$ and $\boldsymbol{Q}(\sqrt{-1}) \subset \operatorname{Fix}(\langle \beta \rangle)$,

 $4 = |\operatorname{Fix}(\langle \beta \rangle)| = (E : \operatorname{Fix}(\langle \beta \rangle)) \le (E : \boldsymbol{Q}(\sqrt{-1})) = 4.$

Hence $\operatorname{Fix}(\langle \beta \rangle) = \boldsymbol{Q}(\sqrt{-1}) = F.$

5. Find Fix($\langle \sigma \beta \rangle$).

Sol. First note that

$$\begin{split} \sigma\beta(\sqrt[4]{2}(1-\sqrt{-1})) &= \sigma(\sqrt[4]{2}\sqrt{-1}(1-\sqrt{-1})) = -\sqrt[4]{2}\sqrt{-1}(1+\sqrt{-1}) = \sqrt[4]{2}(1-\sqrt{-1}).\\ \text{Since } (\boldsymbol{Q}(\sqrt[4]{2}(1-\sqrt{-1})) \ : \ \boldsymbol{Q}) > 2 \text{ and hence the index is four, and } \boldsymbol{Q}(\sqrt[4]{2}(1-\sqrt{-1})) \subset \operatorname{Fix}(\langle\sigma\beta\rangle), \end{split}$$

$$2 = |\operatorname{Fix}(\langle \sigma \beta \rangle)| = (E : \operatorname{Fix}(\langle \sigma \beta \rangle)) \le (E : \mathbf{Q}(\sqrt[4]{2}(1 - \sqrt{-1}))) \le 2$$

Hence Fix $(\langle \sigma \beta \rangle) = \boldsymbol{Q}(\sqrt[4]{2}(1 - \sqrt{-1})).$

Quiz 8 Division: ID#: Name:

Let L be a finite Galois extension of F and $G = \text{Gal}(L/F) = \langle \tau \rangle$ a cyclic group of order n generated by τ . The following function $N_{L/F}$ is called the norm function of the extension.

(Due on February 20, 2008)

$$N = N_{L/F} : L \to L (a \mapsto N(a) = a \cdot \tau(a) \cdot \tau^2(a) \cdots \tau^{n-1}(a))$$

- 1. Let $\alpha_0, \alpha_1, \ldots, \alpha_{n-1} \in L$. Show that if $\alpha_0 x + \alpha_1 \tau(x) + \cdots + \alpha_{n-1} \tau^{n-1}(x) = 0$ for all $x \in L$, then $\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0$. (Hint: First take a shortest nonzero linear combination and use the fact that there is $y \in L$ such that $\tau(y) \neq y$.)
- 2. Show that $N(a) \in F$. (Hint: (11.2.6))
- 3. Suppose $a = b/\tau(b)$ for some $b \in L$. Show that N(a) = 1.
- 4. Let $a \in L$ and N(a) = 1. By 1, there is an element $c \in L$ such that

$$b = a\tau^{0}(c) + a\tau(a)\tau^{1}(c) + \dots + (a\tau(a)\cdots\tau^{n-1}(a))\tau^{n-1}(c) \neq 0.$$

Show that $a = b/\tau(b)$.

5. Suppose n is a prime and F contains a primitive n-th root of unity. Show that there is $a \in L$ such that $a^n \in F$ and L = F(a).

1. Let $\alpha_0, \alpha_1, \ldots, \alpha_{n-1} \in L$. Show that if $\alpha_0 x + \alpha_1 \tau(x) + \cdots + \alpha_{n-1} \tau^{n-1}(x) = 0$ for all $x \in L$, then $\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0$.

Sol. Among all nontrivial expressions, take the one such that the largest index i with $\alpha_i \neq 0$ is smallest. Let $y \in L$ such that $y \neq \tau(y)$. Then $y \neq 0$ and we have two equations.

$$0 = \alpha_0 + \alpha_1 \tau(y) \tau(x) + \dots + \alpha_{i-1} \tau^{i-1}(y) \tau^{i-1}(x) + \alpha_i \tau^i(y) \tau^i(x)
0 = \alpha_0 \tau^i(y) + \alpha_1 \tau^i(y) \tau(x) + \dots + \alpha_i \tau^i(y) \tau^{i-1}(x) + \alpha_i \tau^i(y) \tau^i(x)$$

Taking the difference we have

$$0 = \alpha_0(\tau^i(y) - 1) + \alpha_1(\tau^i(y) - \tau(y))\tau(x) + \dots + \alpha_{i-1}(\tau^i(y) - \tau^{i-1}(y))\tau^{i-1}(x)$$

= $\alpha_0(\tau^i(y) - 1) + \alpha_1(\tau^i(y) - \tau(y))\tau(x) + \dots + \alpha_{i-1}\tau^{i-1}(y)(\tau(y) - 1)\tau^{i-1}(x).$

Since the equation holds for all $x \in L$, and we have a shorter expression. This is a contradiction and we have the assertion.

2. Show that $N(a) \in F$. (Hint: (11.2.6))

Sol.

$$\tau(N(a)) = \tau(a \cdot \tau(a) \cdot \tau^2(a) \cdots \tau^{n-1}(a))) = a \cdot \tau(a) \cdot \tau^2(a) \cdots \tau^{n-1}(a)) = N(a).$$

Since τ generates $G, a \in Fix(\langle \tau \rangle) = Fix(G)$. Since Fix(G) = F by (11.2.6), $a \in F$.

3. Suppose $a = b/\tau(b)$ for some $b \in L$. Show that N(a) = 1. Sol. Since $\tau^n = 1$,

$$N(a) = a\tau(a)\cdots\tau^{n-1}(a) = \frac{b}{\tau(b)}\frac{\tau(b)}{\tau^{2}(b)}\cdots\frac{\tau^{n-1}(b)}{\tau^{n}(b)} = 1.$$

4. Let $a \in L$ and N(a) = 1. By 1, there is an element $c \in L$ such that

$$b = a\tau^{0}(c) + a\tau(a)\tau^{1}(c) + \dots + (a\tau(a)\cdots\tau^{n-1}(a))\tau^{n-1}(c) \neq 0.$$

Show that $a = b/\tau(b)$.

Sol. It suffices to prove that $\tau(b) = b/a$.

$$\begin{aligned} \tau(b) &= \tau(a)\tau(c) + \tau(a)\tau^2(a)\tau^2(c) + \dots + (\tau(a)\tau^2(a)\cdots\tau^{n-1}(a)a)c \\ &= \frac{1}{a}(a\tau(a)\tau(c) + a\tau(a)\tau^2(a)\tau^2(c) + \dots + (a\tau(a)\cdots\tau^{n-1}(a))\tau^{n-1}(c) + ac) = \frac{b}{a} \end{aligned}$$

5. Suppose n is a prime and F contains a primitive n-th root of unity. Show that there is $a \in L$ such that $a^n \in F$ and L = F(a).

Sol. Let ζ be the primitive root of unity. Then $N(\zeta) = \zeta^n = 1$. Hence there is an element $b \in L$ such that $\zeta = b/\tau(b)$. Hence $b^n = \tau(b^n) \in F$ and $t^n - b^n \in F[t]$. Since $\zeta \neq 1, b \notin F$ and L = F(b) as (L : F) = n is prime.

Using this result one can show by induction that if Gal(f) is solvable, then f is solvable by radicals.