Quiz 1

Division:

Let F be a field and $F[t]$ the polynomial ring over F. Then for $f, g \in F[t]$ with $g \neq 0$, there exist $q, r \in F[t]$ such that

$$
\begin{equation*}
f=q \cdot g+r, \text { with } \operatorname{deg} r<\operatorname{deg} g \tag{1}
\end{equation*}
$$

Use this fact and prove the following. Note that $g \mid f$ if and only if $r=0$ in (1).

1. Let $f \in F[t]$ and $a \in F$. Then $f(a)=0 \Leftrightarrow t-a \mid f$.
2. Let I be an ideal of $F[t]$. Then there exists $p \in F[t]$ such that $I=(p)=\{g \cdot p \mid g \in$ $F[t]\}$.
3. Let $I=(p)$ be an ideal of $F[t]$ generated by $p \in F[t]$. Then I is a maximal ideal if and only if p is irreducible.
4. Let $I=(p) \neq\{0\}$ be a nonzero ideal of $F[t]$ generated by $p \in F[t]$. Then I is a prime ideal if and only if p is irreducible.

Solutions to Quiz 1

1. Let $f \in F[t]$ and $a \in F$. Then $f(a)=0 \Leftrightarrow t-a \mid f$.

Sol. By the division algorithm above, there exists $q \in F[t]$ such that

$$
f=q \cdot(t-a)+r, \text { with } \operatorname{deg} r<\operatorname{deg}(t-a)=1 .
$$

Hence r is a constant and $r \in F$. Since $f(a)=r, f(a)=0$ if and only if $r=0$, i.e., $(t-a) \mid f$.
2. Let I be an ideal of $F[t]$. Then there exists $p \in F[t]$ such that $I=(p)=\{g \cdot p \mid g \in$ $F[t]\}$.
Sol. If $I=\{0\}$, then we can take $p=0$. Hence we may assume that $I \neq\{0\}$. Let p be a nonzero element of I such that $\operatorname{deg} p$ is minumum. Let $f \in I$. Then there exists $q, r \in F[t]$ such that $f=q \cdot p+r$ with $\operatorname{deg} r<\operatorname{deg} p$. Since $r=f-q \cdot p \in I$ and $\operatorname{deg} r<\operatorname{deg} p, r=0$ by the choice of p. Hence $f=q \cdot p$ and $f \in(p)$. Thus $I \subset(p)$. Since $p \in I$, the other inclusion is obvious.

An integral domain with this property is called a principal ideal domain (PID). Every Euclidean domain is a PID. Hence the statebment above follows from the fact that $F[t]$ is an Euclidean domain, which is stated in the begining of this quiz.
3. Let $I=(p)$ be an ideal of $F[t]$ generated by $p \in F[t]$. Then I is a maximal ideal if and only if p is irreducible.

Sol. Let J be an ideal containing $I=(p)$. Then by 2 , there exists $q \in J$ such that $J=(q)$. Hence there exists $g \in F[t]$ such that $p=g \cdot q$. Now assume that p is irreducible. Then either g or q is a unit, i.e., a nonzero constant. Hence $J=(q)=(g \cdot q)=(p)=I$ if g is a unit, and $J=(q)=F[t]$ if q is a unit. Hence I is a maximal ideal. Suppose I is a maximal ideal. If $p=g \cdot q$ for some $g, q \in F[t]$, then $(p) \subseteq(q)$. Hence either $(p)=(q)$ or $(q)=F[t]$ and q is a unit. If $(p)=(q)$, then g is a unit. Therefore, p is irreducible.
For a nonzero ideal I of a PID, let $I=(p)$. Then the following three properties are equivalent; (i) I is maximal, (ii) I is prime, and (iii) p is irreducible. $F[t]$ is a PID and p is irreducible in $F[t]$ if and only if p is an irreducible polynomial. Note that for a commutative ring R, R is an integral domain, if and only if (0) is a prime ideal. Hence in the next problem, we need the assumption that $I \neq(0)$.
4. Let $I=(p) \neq\{0\}$ be a nonzero ideal of $F[t]$ generated by $p \in F[t]$. Then I is a prime ideal if and only if p is irreducible.

Sol. If p is irreducible, then I is a maximal ideal by 3 and I is a prime ideal. Suppose I is a prime ideal and $p=g \cdot q$ for some $g, q \in F[t]$. Since $p \in I$, and I is a prime ideal, $g \in(p)$ or $q \in(p)$. That is either $p \mid g$ or $p \mid q$. We have either q or g is a unit.

Quiz 2

Division：

Let $m \geq 2$ be a positive integer such that $p \mid m \Rightarrow p^{2} \nmid m$ for every prime number p ． （e．g．，$m=2,3,5,6,7,10,11,13,14,15, \ldots$ ．．）Let n be another positive integer．

1．Show that $f(t)=t^{n}-m \in \boldsymbol{Q}[t]$ is irreducible over \boldsymbol{Q} ．

2．Let $\alpha=\sqrt[n]{m} \in \boldsymbol{R}$ ．Show that $(\boldsymbol{Q}(\alpha): \boldsymbol{Q})=n$ ．

3．Let $\beta=\sqrt[3]{6} \in \boldsymbol{R}$ ．Show that $\boldsymbol{Q}(\beta)=\left\{a+b \beta+c \beta^{2} \mid a, b, c \in \boldsymbol{Q}\right\}$ ．

4．Let β be above．Express $(1+\beta)^{-1}$ as $a+b \beta+c \beta^{2}$ with $a, b, c \in \boldsymbol{Q}$ ．

5．Suppose α, β be as above and $3 \nmid n$ ．Show that $(\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q})=3 n$ ．

Solutions to Quiz 2

Let $m \geq 2$ be a positive integer such that $p \mid m \Rightarrow p^{2} \nmid m$ for every prime number p. (e.g., $m=2,3,5,6,7,10,11,13,14,15, \ldots$.) Let n be another positive integer.

1. Show that $f(t)=t^{n}-m \in \boldsymbol{Q}[t]$ is irreducible over \boldsymbol{Q}.

Sol. Since $m \geq 2$, there is a prime which divides m. By assumption, $p^{2} \nmid m$. Hence by Eisenstein's criterion and Gauss' lemma $f(t)$ is irreducible over \boldsymbol{Q}.
2. Let $\alpha=\sqrt[n]{m} \in \boldsymbol{R}$. Show that $(\boldsymbol{Q}(\alpha): \boldsymbol{Q})=n$.

Sol. $f(t)=t^{n}-m$ is the minimum polynomial of α. Hence $(\boldsymbol{Q}(\alpha): \boldsymbol{Q})=$ $\operatorname{deg} f(t)=n$. (That is $f(\alpha)=0$ and if $g(\alpha)=0$ for some $g(t) \in \boldsymbol{Q}[t]$ then $f(t) \mid g(t)$. If $p(t) \in \boldsymbol{Q}[t]$ is a monic polynomial minimum degree such that $p(\alpha)=0$, and $f(t)=q(t) p(t)+r(t)$ with $\operatorname{deg}(r(t))<\operatorname{deg}(p(t))$. Then $r(\alpha)=0$ and $r(t)=0$ by the choice of $g(t)$. Hence $f(t)=q(t) p(t)$. Since $f(t)$ is irreducible, $q(t)=1$ as the leading coefficients of p and f are 1. Hence $f(t)=p(t)$ and $g(\alpha)=0$ implies $f(t) \mid g(t)$. Consider a ring homomorphism $\phi: \boldsymbol{Q}[t] \rightarrow \boldsymbol{R}(g(t) \mapsto g(\alpha))$. Then $\operatorname{ker}(\phi)=(f(t))$ and $\operatorname{im}(\phi)=\boldsymbol{Q}(\alpha)$. Hence $\boldsymbol{Q}[t] /(f(t)) \simeq \boldsymbol{Q}(\alpha) . \boldsymbol{Q}[t] /(f(t))=$ $\left\{a+b t+c t^{2}+(f(t)) \mid a, b, c \in \boldsymbol{Q}\right\}$.) Please review Proposition 2.2 (10.1.5).
3. Let $\beta=\sqrt[3]{6} \in \boldsymbol{R}$. Show that $\boldsymbol{Q}(\beta)=\left\{a+b \beta+c \beta^{2} \mid a, b, c \in \boldsymbol{Q}\right\}$.

Sol. Apply the previous problem to $\beta .1, \beta, \beta^{2}$ are linearly independent as otherwise there is a polynomial of degree at most two in $\boldsymbol{Q}[t]$ such that β is a root of it.
4. Let β be above. Express $(1+\beta)^{-1}$ as $a+b \beta+c \beta^{2}$ with $a, b, c \in \boldsymbol{Q}$.

Sol. Since $\beta^{3}-6=0$,

$$
(1+\beta)^{-1}=\frac{7}{7(1+\beta)}=\frac{1+\beta^{3}}{7(1+\beta)}=\frac{1-\beta+\beta^{2}}{7}=\frac{1}{7}-\frac{1}{7} \beta+\frac{1}{7} \beta^{2} .
$$

5. Suppose α, β be as above and $3 \nmid n$. Show that $(\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q})=3 n$.

Sol. $(\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q})=(\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q}(\alpha))(\boldsymbol{Q}(\alpha): \boldsymbol{Q})$. So this number is divisible by n. Since $\boldsymbol{Q}(\beta) \subseteq \boldsymbol{Q}(\alpha, \beta)$, it is also divisible by $3=(\boldsymbol{Q}(\beta): \boldsymbol{Q})$. Since $3 \nmid n$, $(\boldsymbol{Q}(\alpha, \beta): \boldsymbol{Q})=3 n$.

Quiz 3

Division：
ID \＃：

1．Trisect the given angle $\frac{\pi}{4}$ by ruler and compass．

2．Show that it is impossible to draw a regular 9－gon by ruler and compass．

3．Draw a regular pentagon（5－gon）by ruler and compass．（Hint：Find a root of $t^{4}+t^{3}+t^{2}+t+1=0$ by setting $u=t+\frac{1}{t}$ ，and consider its geometrical meaning in the complex plane．）

Solutions to Quiz 3

1. Trisect the given angle $\frac{\pi}{4}$ by ruler and compass.

Sol. Suppose that the angle is given by two line segments intersecting at the origin. Draw a circle with center at the origin. Let A and B be two points of intersection. Draw a right dodecagon (12-gon) such that one of the vertex is at A. This gives a point trisecting the angle. A right dodecagon can be easily drawn as it can be obtained from a equilateral triangle by bisecting it twice.
2. Show that it is impossible to draw a regular 9 -gon by ruler and compass.

Sol. Let $\alpha=2 \pi / 3$. Then $\cos \alpha=-1 / 2$. Hence $\boldsymbol{Q}(\cos \alpha)=\boldsymbol{Q}$. Let $\theta=\alpha / 3$. If it is possible to draw a regular 9 -gon, then θ is constructible. Let

$$
f(t)=8 t^{3}-6 t+1
$$

It suffices to show that $f(t)$ is reducible over \boldsymbol{Q} (10.2.4). Let $g(u)=u^{3} f(1 / u)=$ $u^{3}-6 u^{2}+8$. By Gauss' lemma, if $g(u)$ is reducible, one of $\pm 1, \pm 2, \pm 4, \pm 8$ is a root, which is not the case. Hence $f(t)$ is irreducible as well. Or consider $f(t)$ modulo 7 . Then it becomes $t^{3}+t+1$. This polynomial does not have a root in \boldsymbol{Z}_{7}. Hence it is irreducible over \boldsymbol{Z}_{7}, so $f(t)$ is irreducible over \boldsymbol{Q}.
3. Draw a regular pentagon (5-gon) by ruler and compass. (Hint: Find a root of $t^{4}+t^{3}+t^{2}+t+1=0$ by setting $u=t+\frac{1}{t}$, and consider its geometrical meaning in the complex plane.)
Sol.

$$
0=t^{4}+t^{3}+t^{2}+t+1=t^{2}\left(t^{2}+2+\frac{1}{t^{2}}+t+\frac{1}{t}-1\right)=t^{2}\left(u^{2}+u-1\right)
$$

If we set

$$
\theta=\cos \frac{2 \pi}{5}+\sqrt{-1} \sin \frac{2 \pi}{5}
$$

then the roots of $t^{4}+t^{3}+t^{2}+t+1=0$ is $\theta, \theta^{2}, \theta^{3}, \theta^{4}$ and $\theta^{5}=1$. So

$$
u=t+\frac{1}{t}=\theta+\theta^{4}=2 \cos \frac{2 \pi}{5}>0 \text { or } \theta^{2}+\theta^{3}=2 \cos \frac{4 \pi}{5}<0 .
$$

Therefore

$$
2 \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{2} \text { or } \cos \frac{2 \pi}{5}=\frac{-1+\sqrt{5}}{4} .
$$

Now starting from a unit circle, it is easy to construct θ.
See http://www.geocities.jp/two_well/penta.kakikata.html

Quiz 4
Division：

ID\＃：

Let $p(t)=t^{2}+1, q(t)=t^{2}+t+2$ and $r(t)=t^{2}+2 \in \boldsymbol{Z}_{3}[t]$ ．
1．Show that $p(t)$ and $q(t)$ are irreducible over \boldsymbol{Z}_{3} ．

2．Factor $t^{9}-t \in \boldsymbol{Z}_{3}[t]$ ．

3．Let $p(t)=t^{2}+1$ ．Write the multiplication table of $\boldsymbol{Z}_{3}[t] /(p(t))$ with respect to the product．

4．Show that $\boldsymbol{Z}_{3}[t] /(p(t)) \simeq \boldsymbol{Z}_{3}[t] /(q(t))$ ．

5．Determine whether or not $\boldsymbol{Z}_{3}[t] /(p(t)) \simeq \boldsymbol{Z}_{3}[t] /(r(t))$ ．

Solutions to Quiz 4

Let $p(t)=t^{2}+1, q(t)=t^{2}+t+2$ and $r(t)=t^{2}+2 \in \boldsymbol{Z}_{3}[t]$.

1. Show that $p(t)$ and $q(t)$ are irreducible over \boldsymbol{Z}_{3}.

Sol. Suppose not. Then it must have a linear factor, or equivalently it has a root in $\boldsymbol{Z}_{3}=\{0,1,-1\}$. Since $p(0)=1, p(1)=p(-1)=2=-1$ and $q(0)=2, q(1)=1$ and $q(-1)=2=-1$, it is not the case.
2. Factor $t^{9}-t \in \boldsymbol{Z}_{3}[t]$.

Sol.

$$
t^{9}-t=t(t-1)(t+1)\left(t^{2}+1\right)\left(t^{2}+t+2\right)\left(t^{2}+2 t+2\right)
$$

Note that the factors above are all the monic irreducible polynomials of degree at most 2 .
3. Let $p(t)=t^{2}+1$. Write the multiplication table of $\boldsymbol{Z}_{3}[t] /(p(t))$ with respect to the product.

Sol. All elements are represented by polynomials of degree at most 1. Hence

	0	1	$t+1$	$-t$	$-t+1$	-1	$-t-1$	t	$t-1$
0	0	0	0	0	0	0	0	0	0
1	0	1	$t+1$	$-t$	$-t+1$	-1	$-t-1$	t	$t-1$
$t+1$	0	$t+1$	$-t$	$-t+1$	-1	$-t-1$	t	$t-1$	1
$(t+1)^{2}=-t$	0	$-t$	$-t+1$	-1	$-t-1$	t	$t-1$	1	$t+1$
$(t+1)^{3}=-t+1$	0	$-t+1$	-1	$-t-1$	t	$t-1$	1	$t+1$	$-t$
$(t+1)^{4}=-1$	0	-1	$-t-1$	t	$t-1$	1	$t+1$	$-t$	$-t+1$
$(t+1)^{5}=-t-1$	0	$-t-1$	t	$t-1$	1	$t+1$	$-t$	$-t+1$	-1
$(t+1)^{6}=t$	0	t	$t-1$	1	$t+1$	$-t$	$-t+1$	-1	$-t-1$
$(t+1)^{7}=t-1$	0	$t-1$	1	$t+1$	$-t$	$-t+1$	-1	$-t-1$	t

4. Show that $\boldsymbol{Z}_{3}[t] /(p(t)) \simeq \boldsymbol{Z}_{3}[t] /(q(t))$.

Sol. Since both $p(t)$ and $q(t)$ are irreducible, $\boldsymbol{Z}_{3}[t] /(p(t))$ and $\boldsymbol{Z}_{3}[t] /(q(t))$ are fields of order 9 . Hence they are isomorphic. Can you find an isomorphism between them? (How about $t \mapsto t-1$? What is the minimal polynomial of $t-1+(q(t)) \in \boldsymbol{Z}_{3}[t] /(q(t))$ over \boldsymbol{Z}_{3} ?)
5. Determine whether or not $\boldsymbol{Z}_{3}[t] /(p(t)) \simeq \boldsymbol{Z}_{3}[t] /(r(t))$.

Sol. Since $r(1)=0, r(t)=(t-1)(t+1)$ is not irreducible, $\boldsymbol{Z}_{3}[t] /(r(t))$ is not a field. So they are not isomorphic. In fact, $t-1+(r(t)) \neq 0, t+1+(r(t)) \neq 0$ in $\boldsymbol{Z}_{3}[t] /(r(t))$ but the product is zero.

Quiz 5

Name：
Let n be an integer such that $n>2$ and $\zeta=e^{2 \pi \sqrt{-1} / n}=\cos (2 \pi / n)+\sqrt{-1} \sin (2 \pi / n)$ ．
1．Let $F \subset E$ be a field extension．Let x be a nonzero algebraic element of E over F and $f=\operatorname{Irr}_{F}(x)$ ．If $g \in F[t]$ has x as its root，i．e．，$g(x)=0$ ，then f divides g ．

2．Let $f=\operatorname{Irr}_{\boldsymbol{Q}}(\zeta)$ ．Show that $\zeta^{n}=1$ and every root of f is a power of ζ ．

3．Show that $\boldsymbol{Q}(\zeta)$ is normal over \boldsymbol{Q} ．

4．Show that $\boldsymbol{Q}(\sqrt[n]{2})$ is not normal over \boldsymbol{Q} ．

5．Show that $\boldsymbol{Q}(\sqrt[n]{2}, \zeta)$ is normal over \boldsymbol{Q} ．

Solutions to Quiz 5

Let n be an integer such that $n>2$ and $\zeta=e^{2 \pi \sqrt{-1} / n}=\cos (2 \pi / n)+\sqrt{-1} \sin (2 \pi / n)$.

1. Let $F \subset E$ be a field extension. Let x be a nonzero algebraic element of E over F and $f=\operatorname{Irr}_{F}(x)$. If $g \in F[t]$ has x as its root, i.e., $g(x)=0$, then f divides g.
Sol. Since $f \neq 0$, there exists $q, r \in F[t]$ with $\operatorname{deg} r<\operatorname{deg} f$ such that $g=q f+r$. Since $0=g(x)=q(x) f(x)+r(x)=r(x)$ and $\operatorname{deg} r<\operatorname{deg} f, r=0$. Hence f divides g.
2. Let $f=\operatorname{Irr}_{\boldsymbol{Q}}(\zeta)$. Show that $\zeta^{n}=1$ and every root of f is a power of ζ.

Sol. Let $g=t^{n}-1$. Then by Problem $1, f \mid g$. Hence every root of f is a root of g. On the other hand $1, \zeta, \ldots, \zeta^{n-1}$ are distinct roots of g. Since $\operatorname{deg} g=n$, these are the all roots of g. Hence every root of f is a power of ζ.
3. Show that $\boldsymbol{Q}(\zeta)$ is normal over \boldsymbol{Q}.

Sol. $\boldsymbol{Q}(\zeta)$ is a splitting field of $t^{n}-1$ over \boldsymbol{Q}. Hence it is normal over \boldsymbol{Q} by (11.1.1).
4. Show that $\boldsymbol{Q}(\sqrt[n]{2})$ is not normal over \boldsymbol{Q}.

Sol. By Eisenstein's criterion and Gauss' lemma, $t^{n}-2$ is irreducible over \boldsymbol{Q} and $\boldsymbol{Q}(\sqrt[n]{2})$ contains its root $\sqrt[n]{2}$. On the other hand, the roots of $t^{n}-2$ are $\sqrt[n]{2}, \sqrt[n]{2} \zeta, \ldots, \sqrt[n]{2} \zeta^{n-1}$ and $\zeta \notin \boldsymbol{R}$ as $n>2, \boldsymbol{Q}(\sqrt[n]{2}) \subset \boldsymbol{R}$ cannot contain all roots of $t^{n}-2$.
5. Show that $\boldsymbol{Q}(\sqrt[n]{2}, \zeta)$ is normal over \boldsymbol{Q}.

Sol. Clearly $t^{n}-2$ splits in the field $\boldsymbol{Q}(\sqrt[n]{2}, \zeta)$. Let K be the splitting field of $t^{n}-2$ contained in $\boldsymbol{Q}(\sqrt[n]{2}, \zeta)$. Then $\sqrt[n]{2} \in K$ and $\sqrt[n]{2} \zeta \in K$. Hence $\zeta \in K$. Therefore $K=\boldsymbol{Q}(\sqrt[n]{2}, \zeta)$.

Quiz 6

Name：
Let $E=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \boldsymbol{C}$ and $K=\boldsymbol{Q}(\sqrt[4]{2})$ and $F=\boldsymbol{Q}(\sqrt{-1})$ ．Let $f=t^{4}-2 \in \boldsymbol{Q}[t]$ ．
1．Show that E is the splitting field of f over \boldsymbol{Q} contained in \boldsymbol{C} ．

2．Show that $(E: \boldsymbol{Q})=8$ ．

3．Let σ be the complex conjugate，i．e．，$\sigma: \boldsymbol{C} \rightarrow \boldsymbol{C}(a+b \sqrt{-1} \mapsto a-b \sqrt{-1}, a, b \in \boldsymbol{R})$ ． Show that $\sigma(E)=E$ and $\alpha=\sigma_{\mid E}: E \rightarrow E$ belongs to $\operatorname{Gal}(E / K)$ ．

4．Show that there is an element $\beta \in \operatorname{Gal}(E / F)$ such that $\beta(\sqrt[4]{2})=\sqrt[4]{2} \sqrt{-1}$ ．

5．Find the order of $\operatorname{Gal}(E / \boldsymbol{Q})$ ．

Solutions to Quiz 6

Let $E=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \boldsymbol{C}$ and $K=\boldsymbol{Q}(\sqrt[4]{2})$ and $F=\boldsymbol{Q}(\sqrt{-1})$. Let $f=t^{4}-2 \in \boldsymbol{Q}[t]$.

1. Show that E is the splitting field of f over \boldsymbol{Q} contained in \boldsymbol{C}.

Sol. The roots of f are $\pm \sqrt[4]{2}, \pm \sqrt[4]{2} \sqrt{-1}$. Hence $t^{4}-2$ splits in E. On the other hand, $\boldsymbol{Q}(\sqrt[4]{2},-\sqrt[4]{2}, \sqrt[4]{2} \sqrt{-1},-\sqrt[4]{2} \sqrt{-1})=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1})=E$.
2. Show that $(E: \boldsymbol{Q})=8$.

Sol. Since all elements of K are real, $t^{2}+1$ is irreducible over K. Hence

$$
(E, \boldsymbol{Q})=(E, K)(K, \boldsymbol{Q})=(K(\sqrt{-1}), K)\left(\boldsymbol{Q}(\sqrt[4]{2}: \boldsymbol{Q})=\operatorname{deg}\left(t^{2}+1\right) \operatorname{deg}\left(t^{4}-2\right)=2 \cdot 4=8\right.
$$

3. Let σ be the complex conjugate, i.e., $\sigma: \boldsymbol{C} \rightarrow \boldsymbol{C}(a+b \sqrt{-1} \mapsto a-b \sqrt{-1}, a, b \in \boldsymbol{R})$. Show that $\sigma(E)=E$ and $\alpha=\sigma_{\mid E}: E \rightarrow E$ belongs to $\operatorname{Gal}(E / K)$.

Sol. Clearly σ is an automorphism of $\boldsymbol{C}, \sigma_{\mid \boldsymbol{Q}}=i d$ and $\sigma(\sqrt[4]{2})=\sqrt[4]{2}$. Moreover $\sigma(\sqrt{-1})=-\sqrt{-1}$. Hence $\sigma(E) \subset E$. Since $(\sigma(E), \boldsymbol{Q})=(E: \boldsymbol{Q})<\infty$, by a property of finite dimensional linear space, $\sigma(E)=E$. Since $K \subset \boldsymbol{R}$, we have $\beta \in \operatorname{Gal}(E / K)$.
4. Show that there is an element $\beta \in \operatorname{Gal}(E / F)$ such that $\beta(\sqrt[4]{2})=\sqrt[4]{2} \sqrt{-1}$.

Sol. Since $E=F(\sqrt[4]{2}),(E: \boldsymbol{Q})=8$ and $(F: \boldsymbol{Q})=2,(E: F)=4=$ $\operatorname{deg}\left(\operatorname{Irr}_{F}(\sqrt[4]{2})\right)$. We have $t^{4}-2=\operatorname{Irr}_{F}(\sqrt[4]{2})$. Hence by (10.3.2), $i d_{F}$ can be extended to $\beta \in \operatorname{Gal}(E / F)$ such that $\beta(\sqrt[4]{2})=\sqrt[4]{2} \sqrt{-1}$. Note that $F(\sqrt[4]{2})=E=$ $F(\sqrt[4]{2} \sqrt{-1})$.
5. Find the order of $\operatorname{Gal}(E / \boldsymbol{Q})$.

Sol. Since the characteristic of E is zero, the extension E / \boldsymbol{Q} is separable. Since E is a splitting field of f, it is normal. Therefor it is Galois and by (11.2.2), $|\operatorname{Gal}(E / \boldsymbol{Q})|=(E: \boldsymbol{Q})=8$.
We can list all elements of $\operatorname{Gal}(E / \boldsymbol{Q})$ as well. Be careful that we need to show that all are distinct.

Quiz 7

Name：

Let $E=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \boldsymbol{C}$ and $K=\boldsymbol{Q}(\sqrt[4]{2})$ and $F=\boldsymbol{Q}(\sqrt{-1})$ ．Let $f=t^{4}-2 \in \boldsymbol{Q}[t]$ ． Let σ be the complex conjugate and $\beta \in \operatorname{Gal}(E / F)$ defined in Quiz 6 ．

1．Show that $\sigma \beta \sigma=\beta^{-1}$ ．

2． $\operatorname{Gal}(E / \boldsymbol{Q})=\left\{1, \beta, \beta^{2}, \beta^{3}, \sigma, \sigma \beta, \sigma \beta^{2}, \sigma \beta^{3}\right\}$ ．

3．Find $\operatorname{Fix}(\langle\sigma\rangle)$ ．

4．Find $\operatorname{Fix}(\langle\beta\rangle)$ ．

5．Find $\operatorname{Fix}(\langle\sigma \beta\rangle)$ ．

Message：何でもどうぞ。

Solutions to Quiz 7

Let $E=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1}) \subset \boldsymbol{C}$ and $K=\boldsymbol{Q}(\sqrt[4]{2})$ and $F=\boldsymbol{Q}(\sqrt{-1})$. Let $f=t^{4}-2 \in \boldsymbol{Q}[t]$. Let σ be the complex conjugate and $\beta \in G=\operatorname{Gal}(E / F)$ defined in Quiz 6 .

1. Show that $\sigma \beta \sigma=\beta^{-1}$.

Sol. Since $E=\boldsymbol{Q}(\sqrt[4]{2}, \sqrt{-1})$, it is sufficient to show that $\sigma \beta \sigma \beta(\sqrt[4]{2})=\sqrt[4]{2}$ and $\sigma \beta \sigma \beta(\sqrt{ }-1)=\sqrt{ }-1$.

$$
\begin{aligned}
& \sigma \beta \sigma \beta(\sqrt[4]{2})=\sigma \beta \sigma(\sqrt[4]{2} \sqrt{-1})=\sigma \beta(-\sqrt[4]{2} \sqrt{-1})=\sigma(\sqrt[4]{2})=\sqrt[4]{2} \\
& \sigma \beta \sigma \beta(\sqrt{-1})=\sigma \beta \sigma(\sqrt{-1})=\sigma \beta(-\sqrt{-1})=\sigma(-\sqrt{-1})=\sqrt{-1}
\end{aligned}
$$

2. $\operatorname{Gal}(E / \boldsymbol{Q})=\left\{1, \beta, \beta^{2}, \beta^{3}, \sigma, \sigma \beta, \sigma \beta^{2}, \sigma \beta^{3}\right\}$.

Sol. Since $\beta(\sqrt[4]{2})=\sqrt[4]{2} \sqrt{-1}, \beta(\sqrt[4]{2} \sqrt{-1})=-\sqrt[4]{2}$, the order of β is four. The order of σ is two. Let $H=\langle\beta\rangle$. By $1, H \triangleleft G$ and $(G: H)=2$. Now we have the assertion.
3. Find $\operatorname{Fix}(\langle\sigma\rangle)$.

Sol. Since $(\boldsymbol{Q}(\sqrt[4]{2}): \boldsymbol{Q})=4$ and $\boldsymbol{Q}(\sqrt[4]{2}) \subset \operatorname{Fix}(\langle\sigma\rangle)$,

$$
2=|\langle\sigma\rangle|=(E: \operatorname{Fix}(\langle\sigma\rangle)) \leq(E: \boldsymbol{Q}(\sqrt[4]{2}))=2
$$

Hence $\operatorname{Fix}(\langle\sigma\rangle)=\boldsymbol{Q}(\sqrt[4]{2})=K$.
4. Find $\operatorname{Fix}(\langle\beta\rangle)$.

Sol. Since $(\boldsymbol{Q}(\sqrt{-1}): \boldsymbol{Q})=2$ and $\boldsymbol{Q}(\sqrt{-1}) \subset \operatorname{Fix}(\langle\beta\rangle)$,

$$
4=|\operatorname{Fix}(\langle\beta\rangle)|=(E: \operatorname{Fix}(\langle\beta\rangle)) \leq(E: \boldsymbol{Q}(\sqrt{-1}))=4 .
$$

Hence $\operatorname{Fix}(\langle\beta\rangle)=\boldsymbol{Q}(\sqrt{-1})=F$.
5. Find $\operatorname{Fix}(\langle\sigma \beta\rangle)$.

Sol. First note that
$\sigma \beta(\sqrt[4]{2}(1-\sqrt{-1}))=\sigma(\sqrt[4]{2} \sqrt{-1}(1-\sqrt{-1}))=-\sqrt[4]{2} \sqrt{-1}(1+\sqrt{-1})=\sqrt[4]{2}(1-\sqrt{-1})$.
Since $(\boldsymbol{Q}(\sqrt[4]{2}(1-\sqrt{-1})): \boldsymbol{Q})>2$ and hence the index is four, and $\boldsymbol{Q}(\sqrt[4]{2}(1-$ $\sqrt{-1})) \subset \operatorname{Fix}(\langle\sigma \beta\rangle)$,

$$
2=|\operatorname{Fix}(\langle\sigma \beta\rangle)|=(E: \operatorname{Fix}(\langle\sigma \beta\rangle)) \leq(E: \boldsymbol{Q}(\sqrt[4]{2}(1-\sqrt{-1}))) \leq 2
$$

Hence $\operatorname{Fix}(\langle\sigma \beta\rangle)=\boldsymbol{Q}(\sqrt[4]{2}(1-\sqrt{-1}))$.

Quiz 8

Division

ID\＃：

Let L be a finite Galois extension of F and $G=\operatorname{Gal}(L / F)=\langle\tau\rangle$ a cyclic group of order n generated by τ ．The following function $N_{L / F}$ is called the norm function of the extension．

$$
N=N_{L / F}: L \rightarrow L\left(a \mapsto N(a)=a \cdot \tau(a) \cdot \tau^{2}(a) \cdots \tau^{n-1}(a)\right)
$$

1．Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in L$ ．Show that if $\alpha_{0} x+\alpha_{1} \tau(x)+\cdots+\alpha_{n-1} \tau^{n-1}(x)=0$ for all $x \in L$ ，then $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{n-1}=0$ ．（Hint：First take a shortest nonzero linear combination and use the fact that there is $y \in L$ such that $\tau(y) \neq y$ ．）

2．Show that $N(a) \in F$ ．（Hint：（11．2．6））

3．Suppose $a=b / \tau(b)$ for some $b \in L$ ．Show that $N(a)=1$ ．

4．Let $a \in L$ and $N(a)=1$ ．By 1 ，there is an element $c \in L$ such that

$$
b=a \tau^{0}(c)+a \tau(a) \tau^{1}(c)+\cdots+\left(a \tau(a) \cdots \tau^{n-1}(a)\right) \tau^{n-1}(c) \neq 0 .
$$

Show that $a=b / \tau(b)$ ．

5．Suppose n is a prime and F contains a primitive n－th root of unity．Show that there is $a \in L$ such that $a^{n} \in F$ and $L=F(a)$ ．

Solutions to Quiz 8

1. Let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1} \in L$. Show that if $\alpha_{0} x+\alpha_{1} \tau(x)+\cdots+\alpha_{n-1} \tau^{n-1}(x)=0$ for all $x \in L$, then $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{n-1}=0$.
Sol. Among all nontrivial expressions, take the one such that the largest index i with $\alpha_{i} \neq 0$ is smallest. Let $y \in L$ such that $y \neq \tau(y)$. Then $y \neq 0$ and we have two equations.

$$
\begin{aligned}
& 0=\alpha_{0}+\alpha_{1} \tau(y) \tau(x)+\cdots+\alpha_{i-1} \tau^{i-1}(y) \tau^{i-1}(x)+\alpha_{i} \tau^{i}(y) \tau^{i}(x) \\
& 0=\alpha_{0} \tau^{i}(y)+\alpha_{1} \tau^{i}(y) \tau(x)+\cdots+\alpha_{i} \tau^{i}(y) \tau^{i-1}(x)+\alpha_{i} \tau^{i}(y) \tau^{i}(x)
\end{aligned}
$$

Taking the difference we have

$$
\begin{aligned}
0 & =\alpha_{0}\left(\tau^{i}(y)-1\right)+\alpha_{1}\left(\tau^{i}(y)-\tau(y)\right) \tau(x)+\cdots+\alpha_{i-1}\left(\tau^{i}(y)-\tau^{i-1}(y)\right) \tau^{i-1}(x) \\
& =\alpha_{0}\left(\tau^{i}(y)-1\right)+\alpha_{1}\left(\tau^{i}(y)-\tau(y)\right) \tau(x)+\cdots+\alpha_{i-1} \tau^{i-1}(y)(\tau(y)-1) \tau^{i-1}(x) .
\end{aligned}
$$

Since the equation holds for all $x \in L$, and we have a shorter expression. This is a contradiction and we have the assertion.
2. Show that $N(a) \in F$. (Hint: (11.2.6))

Sol.

$$
\left.\left.\tau(N(a))=\tau\left(a \cdot \tau(a) \cdot \tau^{2}(a) \cdots \tau^{n-1}(a)\right)\right)=a \cdot \tau(a) \cdot \tau^{2}(a) \cdots \tau^{n-1}(a)\right)=N(a)
$$

Since τ generates $G, a \in \operatorname{Fix}(\langle\tau\rangle)=\operatorname{Fix}(G)$. Since $\operatorname{Fix}(G)=F$ by (11.2.6), $a \in F$.
3. Suppose $a=b / \tau(b)$ for some $b \in L$. Show that $N(a)=1$.

Sol. Since $\tau^{n}=1$,

$$
N(a)=a \tau(a) \cdots \tau^{n-1}(a)=\frac{b}{\tau(b)} \frac{\tau(b)}{\tau^{2}(b)} \cdots \frac{\tau^{n-1}(b)}{\tau^{n}(b)}=1 .
$$

4. Let $a \in L$ and $N(a)=1$. By 1 , there is an element $c \in L$ such that

$$
b=a \tau^{0}(c)+a \tau(a) \tau^{1}(c)+\cdots+\left(a \tau(a) \cdots \tau^{n-1}(a)\right) \tau^{n-1}(c) \neq 0 .
$$

Show that $a=b / \tau(b)$.
Sol. It suffices to prove that $\tau(b)=b / a$.

$$
\begin{aligned}
\tau(b) & =\tau(a) \tau(c)+\tau(a) \tau^{2}(a) \tau^{2}(c)+\cdots+\left(\tau(a) \tau^{2}(a) \cdots \tau^{n-1}(a) a\right) c \\
& =\frac{1}{a}\left(a \tau(a) \tau(c)+a \tau(a) \tau^{2}(a) \tau^{2}(c)+\cdots+\left(a \tau(a) \cdots \tau^{n-1}(a)\right) \tau^{n-1}(c)+a c\right)=\frac{b}{a} .
\end{aligned}
$$

5. Suppose n is a prime and F contains a primitive n-th root of unity. Show that there is $a \in L$ such that $a^{n} \in F$ and $L=F(a)$.
Sol. Let ζ be the primitive root of unity. Then $N(\zeta)=\zeta^{n}=1$. Hence there is an element $b \in L$ such that $\zeta=b / \tau(b)$. Hence $b^{n}=\tau\left(b^{n}\right) \in F$ and $t^{n}-b^{n} \in F[t]$. Since $\zeta \neq 1, b \notin F$ and $L=F(b)$ as $(L: F)=n$ is prime.
Using this result one can show by induction that if $\operatorname{Gal}(f)$ is solvable, then f is solvable by radicals.
