
Quiz 1 (Due Wednesday, December 12, 2007)

Division: ID#: Name:

Let F be a field and F [t] the polynomial ring over F . Then for f, g ∈ F [t] with g ̸= 0,
there exist q, r ∈ F [t] such that

f = q · g + r, with deg r < deg g. (1)

Use this fact and prove the following. Note that g | f if and only if r = 0 in (1).

1. Let f ∈ F [t] and a ∈ F . Then f(a) = 0 ⇔ t − a | f .

2. Let I be an ideal of F [t]. Then there exists p ∈ F [t] such that I = (p) = {g · p | g ∈
F [t]}.

3. Let I = (p) be an ideal of F [t] generated by p ∈ F [t]. Then I is a maximal ideal if
and only if p is irreducible.

4. Let I = (p) ̸= {0} be a nonzero ideal of F [t] generated by p ∈ F [t]. Then I is a
prime ideal if and only if p is irreducible.

Message: Questions? Suggestions?



Solutions to Quiz 1

1. Let f ∈ F [t] and a ∈ F . Then f(a) = 0 ⇔ t − a | f .

Sol. By the division algorithm above, there exists q ∈ F [t] such that

f = q · (t − a) + r, with deg r < deg(t − a) = 1.

Hence r is a constant and r ∈ F . Since f(a) = r, f(a) = 0 if and only if r = 0, i.e.,
(t − a) | f .

2. Let I be an ideal of F [t]. Then there exists p ∈ F [t] such that I = (p) = {g · p | g ∈
F [t]}.
Sol. If I = {0}, then we can take p = 0. Hence we may assume that I ̸= {0}. Let
p be a nonzero element of I such that deg p is minumum. Let f ∈ I. Then there
exists q, r ∈ F [t] such that f = q · p + r with deg r < deg p. Since r = f − q · p ∈ I
and deg r < deg p, r = 0 by the choice of p. Hence f = q · p and f ∈ (p). Thus
I ⊂ (p). Since p ∈ I, the other inclusion is obvious.

An integral domain with this property is called a principal ideal domain (PID).
Every Euclidean domain is a PID. Hence the statebment above follows from the
fact that F [t] is an Euclidean domain, which is stated in the begining of this quiz.

3. Let I = (p) be an ideal of F [t] generated by p ∈ F [t]. Then I is a maximal ideal if
and only if p is irreducible.

Sol. Let J be an ideal containing I = (p). Then by 2, there exists q ∈ J such
that J = (q). Hence there exists g ∈ F [t] such that p = g · q. Now assume
that p is irreducible. Then either g or q is a unit, i.e., a nonzero constant. Hence
J = (q) = (g · q) = (p) = I if g is a unit, and J = (q) = F [t] if q is a unit. Hence I
is a maximal ideal. Suppose I is a maximal ideal. If p = g · q for some g, q ∈ F [t],
then (p) ⊆ (q). Hence either (p) = (q) or (q) = F [t] and q is a unit. If (p) = (q),
then g is a unit. Therefore, p is irreducible.

For a nonzero ideal I of a PID, let I = (p). Then the following three properties
are equivalent; (i) I is maximal, (ii) I is prime, and (iii) p is irreducible. F [t] is a
PID and p is irreducible in F [t] if and only if p is an irreducible polynomial. Note
that for a commutative ring R, R is an integral domain, if and only if (0) is a prime
ideal. Hence in the next problem, we need the assumption that I ̸= (0).

4. Let I = (p) ̸= {0} be a nonzero ideal of F [t] generated by p ∈ F [t]. Then I is a
prime ideal if and only if p is irreducible.

Sol. If p is irreducible, then I is a maximal ideal by 3 and I is a prime ideal.
Suppose I is a prime ideal and p = g · q for some g, q ∈ F [t]. Since p ∈ I, and I is
a prime ideal, g ∈ (p) or q ∈ (p). That is either p | g or p | q. We have either q or g
is a unit.



Quiz 2 (Due on Wednesday December 19, 2007)

Division: ID#: Name:

Let m ≥ 2 be a positive integer such that p | m ⇒ p2 - m for every prime number p.
(e.g., m = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, . . ..) Let n be another positive integer.

1. Show that f(t) = tn − m ∈ Q[t] is irreducible over Q.

2. Let α = n
√

m ∈ R. Show that (Q(α) : Q) = n.

3. Let β = 3
√

6 ∈ R. Show that Q(β) = {a + bβ + cβ2 | a, b, c ∈ Q}.

4. Let β be above. Express (1 + β)−1 as a + bβ + cβ2 with a, b, c ∈ Q.

5. Suppose α, β be as above and 3 - n. Show that (Q(α, β) : Q) = 3n.

Message: 何でもどうぞ。



Solutions to Quiz 2
Let m ≥ 2 be a positive integer such that p | m ⇒ p2 - m for every prime number p.

(e.g., m = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, . . ..) Let n be another positive integer.

1. Show that f(t) = tn − m ∈ Q[t] is irreducible over Q.

Sol. Since m ≥ 2, there is a prime which divides m. By assumption, p2 - m. Hence
by Eisenstein’s criterion and Gauss’ lemma f(t) is irreducible over Q.

2. Let α = n
√

m ∈ R. Show that (Q(α) : Q) = n.

Sol. f(t) = tn − m is the minimum polynomial of α. Hence (Q(α) : Q) =
deg f(t) = n. (That is f(α) = 0 and if g(α) = 0 for some g(t) ∈ Q[t] then
f(t) | g(t). If p(t) ∈ Q[t] is a monic polynomial minimum degree such that p(α) = 0,
and f(t) = q(t)p(t) + r(t) with deg(r(t)) < deg(p(t)). Then r(α) = 0 and r(t) = 0
by the choice of g(t). Hence f(t) = q(t)p(t). Since f(t) is irreducible, q(t) = 1 as
the leading coefficients of p and f are 1. Hence f(t) = p(t) and g(α) = 0 implies
f(t) | g(t). Consider a ring homomorphism φ : Q[t] → R(g(t) 7→ g(α)). Then
ker(φ) = (f(t)) and im(φ) = Q(α). Hence Q[t]/(f(t)) ≅ Q(α). Q[t]/(f(t)) =
{a + bt + ct2 + (f(t)) | a, b, c ∈ Q}.) Please review Proposition 2.2 (10.1.5).

3. Let β = 3
√

6 ∈ R. Show that Q(β) = {a + bβ + cβ2 | a, b, c ∈ Q}.
Sol. Apply the previous problem to β. 1, β, β2 are linearly independent as other-
wise there is a polynomial of degree at most two in Q[t] such that β is a root of it.

4. Let β be above. Express (1 + β)−1 as a + bβ + cβ2 with a, b, c ∈ Q.

Sol. Since β3 − 6 = 0,

(1 + β)−1 =
7

7(1 + β)
=

1 + β3

7(1 + β)
=

1 − β + β2

7
=

1

7
− 1

7
β +

1

7
β2.

5. Suppose α, β be as above and 3 - n. Show that (Q(α, β) : Q) = 3n.

Sol. (Q(α, β) : Q) = (Q(α, β) : Q(α))(Q(α) : Q). So this number is divisible
by n. Since Q(β) ⊆ Q(α, β), it is also divisible by 3 = (Q(β) : Q). Since 3 - n,
(Q(α, β) : Q) = 3n.



Quiz 3 (Due on Wednesday January 9, 2008)

Division: ID#: Name:

1. Trisect the given angle π
4

by ruler and compass.

2. Show that it is impossible to draw a regular 9-gon by ruler and compass.

3. Draw a regular pentagon (5-gon) by ruler and compass. (Hint: Find a root of
t4 + t3 + t2 + t + 1 = 0 by setting u = t + 1

t
, and consider its geometrical meaning

in the complex plane.)

Message: 何でもどうぞ。



Solutions to Quiz 3

1. Trisect the given angle π
4

by ruler and compass.

Sol. Suppose that the angle is given by two line segments intersecting at the origin.
Draw a circle with center at the origin. Let A and B be two points of intersection.
Draw a right dodecagon (12-gon) such that one of the vertex is at A. This gives
a point trisecting the angle. A right dodecagon can be easily drawn as it can be
obtained from a equilateral triangle by bisecting it twice.

2. Show that it is impossible to draw a regular 9-gon by ruler and compass.

Sol. Let α = 2π/3. Then cos α = −1/2. Hence Q(cos α) = Q. Let θ = α/3. If it
is possible to draw a regular 9-gon, then θ is constructible. Let

f(t) = 8t3 − 6t + 1.

It suffices to show that f(t) is reducible over Q (10.2.4). Let g(u) = u3f(1/u) =
u3 − 6u2 +8. By Gauss’ lemma, if g(u) is reducible, one of ±1,±2,±4,±8 is a root,
which is not the case. Hence f(t) is irreducible as well. Or consider f(t) modulo 7.
Then it becomes t3 + t + 1. This polynomial does not have a root in Z7. Hence it
is irreducible over Z7, so f(t) is irreducible over Q.

3. Draw a regular pentagon (5-gon) by ruler and compass. (Hint: Find a root of
t4 + t3 + t2 + t + 1 = 0 by setting u = t + 1

t
, and consider its geometrical meaning

in the complex plane.)

Sol.

0 = t4 + t3 + t2 + t + 1 = t2(t2 + 2 +
1

t2
+ t +

1

t
− 1) = t2(u2 + u − 1)

If we set

θ = cos
2π

5
+
√
−1 sin

2π

5
,

then the roots of t4 + t3 + t2 + t + 1 = 0 is θ, θ2, θ3, θ4 and θ5 = 1. So

u = t +
1

t
= θ + θ4 = 2 cos

2π

5
> 0 or θ2 + θ3 = 2 cos

4π

5
< 0.

Therefore

2 cos
2π

5
=

−1 +
√

5

2
or cos

2π

5
=

−1 +
√

5

4
.

Now starting from a unit circle, it is easy to construct θ.

See http://www.geocities.jp/two well/penta.kakikata.html



Quiz 4 (Due on Monday January 21, 2008)

Division: ID#: Name:

Let p(t) = t2 + 1, q(t) = t2 + t + 2 and r(t) = t2 + 2 ∈ Z3[t].

1. Show that p(t) and q(t) are irreducible over Z3.

2. Factor t9 − t ∈ Z3[t].

3. Let p(t) = t2 + 1. Write the multiplication table of Z3[t]/(p(t)) with respect to the
product.

4. Show that Z3[t]/(p(t)) ≅ Z3[t]/(q(t)).

5. Determine whether or not Z3[t]/(p(t)) ≅ Z3[t]/(r(t)).

Message: 何でもどうぞ。



Solutions to Quiz 4 (January 21, 2008)

Let p(t) = t2 + 1, q(t) = t2 + t + 2 and r(t) = t2 + 2 ∈ Z3[t].

1. Show that p(t) and q(t) are irreducible over Z3.

Sol. Suppose not. Then it must have a linear factor, or equivalently it has a root
in Z3 = {0, 1,−1}. Since p(0) = 1, p(1) = p(−1) = 2 = −1 and q(0) = 2, q(1) = 1
and q(−1) = 2 = −1, it is not the case.

2. Factor t9 − t ∈ Z3[t].

Sol.
t9 − t = t(t − 1)(t + 1)(t2 + 1)(t2 + t + 2)(t2 + 2t + 2)

Note that the factors above are all the monic irreducible polynomials of degree at
most 2.

3. Let p(t) = t2 + 1. Write the multiplication table of Z3[t]/(p(t)) with respect to the
product.

Sol. All elements are represented by polynomials of degree at most 1. Hence

0 1 t + 1 −t −t + 1 −1 −t − 1 t t − 1
0 0 0 0 0 0 0 0 0 0
1 0 1 t + 1 −t −t + 1 −1 −t − 1 t t − 1

t + 1 0 t + 1 −t −t + 1 −1 −t − 1 t t − 1 1
(t + 1)2 = −t 0 −t −t + 1 −1 −t − 1 t t − 1 1 t + 1

(t + 1)3 = −t + 1 0 −t + 1 −1 −t − 1 t t − 1 1 t + 1 −t
(t + 1)4 = −1 0 −1 −t − 1 t t − 1 1 t + 1 −t −t + 1

(t + 1)5 = −t − 1 0 −t − 1 t t − 1 1 t + 1 −t −t + 1 −1
(t + 1)6 = t 0 t t − 1 1 t + 1 −t −t + 1 −1 −t − 1

(t + 1)7 = t − 1 0 t − 1 1 t + 1 −t −t + 1 −1 −t − 1 t

4. Show that Z3[t]/(p(t)) ≅ Z3[t]/(q(t)).

Sol. Since both p(t) and q(t) are irreducible, Z3[t]/(p(t)) and Z3[t]/(q(t)) are fields
of order 9. Hence they are isomorphic. Can you find an isomorphism between them?
(How about t 7→ t−1? What is the minimal polynomial of t−1+(q(t)) ∈ Z3[t]/(q(t))
over Z3?)

5. Determine whether or not Z3[t]/(p(t)) ≅ Z3[t]/(r(t)).

Sol. Since r(1) = 0, r(t) = (t − 1)(t + 1) is not irreducible, Z3[t]/(r(t)) is not a
field. So they are not isomorphic. In fact, t − 1 + (r(t)) ̸= 0, t + 1 + (r(t)) ̸= 0 in
Z3[t]/(r(t)) but the product is zero.



Quiz 5 (Due on January 28, 2008)

Division: ID#: Name:

Let n be an integer such that n > 2 and ζ = e2π
√
−1/n = cos(2π/n) +

√
−1 sin(2π/n).

1. Let F ⊂ E be a field extension. Let x be a nonzero algebraic element of E over F
and f = IrrF (x). If g ∈ F [t] has x as its root, i.e., g(x) = 0, then f divides g.

2. Let f = IrrQ(ζ). Show that ζn = 1 and every root of f is a power of ζ.

3. Show that Q(ζ) is normal over Q.

4. Show that Q( n
√

2) is not normal over Q.

5. Show that Q( n
√

2, ζ) is normal over Q.

Message: 何でもどうぞ。



Solutions to Quiz 5 (January 28, 2008)

Let n be an integer such that n > 2 and ζ = e2π
√
−1/n = cos(2π/n) +

√
−1 sin(2π/n).

1. Let F ⊂ E be a field extension. Let x be a nonzero algebraic element of E over F
and f = IrrF (x). If g ∈ F [t] has x as its root, i.e., g(x) = 0, then f divides g.

Sol. Since f ̸= 0, there exists q, r ∈ F [t] with deg r < deg f such that g = qf + r.
Since 0 = g(x) = q(x)f(x) + r(x) = r(x) and deg r < deg f , r = 0. Hence f divides
g.

2. Let f = IrrQ(ζ). Show that ζn = 1 and every root of f is a power of ζ.

Sol. Let g = tn − 1. Then by Problem 1, f | g. Hence every root of f is a root of
g. On the other hand 1, ζ, . . . , ζn−1 are distinct roots of g. Since deg g = n, these
are the all roots of g. Hence every root of f is a power of ζ.

3. Show that Q(ζ) is normal over Q.

Sol. Q(ζ) is a splitting field of tn−1 over Q. Hence it is normal over Q by (11.1.1).

4. Show that Q( n
√

2) is not normal over Q.

Sol. By Eisenstein’s criterion and Gauss’ lemma, tn − 2 is irreducible over Q
and Q( n

√
2) contains its root n

√
2. On the other hand, the roots of tn − 2 are

n
√

2, n
√

2ζ, . . . , n
√

2ζn−1 and ζ ̸∈ R as n > 2, Q( n
√

2) ⊂ R cannot contain all roots of
tn − 2.

5. Show that Q( n
√

2, ζ) is normal over Q.

Sol. Clearly tn−2 splits in the field Q( n
√

2, ζ). Let K be the splitting field of tn−2
contained in Q( n

√
2, ζ). Then n

√
2 ∈ K and n

√
2ζ ∈ K. Hence ζ ∈ K. Therefore

K = Q( n
√

2, ζ).



Quiz 6 (Due on February 4, 2008)

Division: ID#: Name:

Let E = Q( 4
√

2,
√
−1) ⊂ C and K = Q( 4

√
2) and F = Q(

√
−1). Let f = t4 − 2 ∈ Q[t].

1. Show that E is the splitting field of f over Q contained in C.

2. Show that (E : Q) = 8.

3. Let σ be the complex conjugate, i.e., σ : C → C (a+b
√
−1 7→ a−b

√
−1, a, b ∈ R).

Show that σ(E) = E and α = σ|E : E → E belongs to Gal(E/K).

4. Show that there is an element β ∈ Gal(E/F ) such that β( 4
√

2) = 4
√

2
√
−1.

5. Find the order of Gal(E/Q).

Message: 何でもどうぞ。



Solutions to Quiz 6 (February 4, 2008)

Let E = Q( 4
√

2,
√
−1) ⊂ C and K = Q( 4

√
2) and F = Q(

√
−1). Let f = t4−2 ∈ Q[t].

1. Show that E is the splitting field of f over Q contained in C.

Sol. The roots of f are ± 4
√

2,± 4
√

2
√
−1. Hence t4 − 2 splits in E. On the other

hand, Q( 4
√

2,− 4
√

2, 4
√

2
√
−1,− 4

√
2
√
−1) = Q( 4

√
2,
√
−1) = E.

2. Show that (E : Q) = 8.

Sol. Since all elements of K are real, t2 + 1 is irreducible over K. Hence

(E,Q) = (E,K)(K, Q) = (K(
√
−1), K)(Q(

4
√

2 : Q) = deg(t2+1) deg(t4−2) = 2·4 = 8.

3. Let σ be the complex conjugate, i.e., σ : C → C (a+b
√
−1 7→ a−b

√
−1, a, b ∈ R).

Show that σ(E) = E and α = σ|E : E → E belongs to Gal(E/K).

Sol. Clearly σ is an automorphism of C, σ|Q = id and σ( 4
√

2) = 4
√

2. Moreover

σ(
√
−1) = −

√
−1. Hence σ(E) ⊂ E. Since (σ(E),Q) = (E : Q) < ∞, by a

property of finite dimensional linear space, σ(E) = E. Since K ⊂ R, we have
β ∈ Gal(E/K).

4. Show that there is an element β ∈ Gal(E/F ) such that β( 4
√

2) = 4
√

2
√
−1.

Sol. Since E = F ( 4
√

2), (E : Q) = 8 and (F : Q) = 2, (E : F ) = 4 =
deg(IrrF ( 4

√
2)). We have t4 − 2 = IrrF ( 4

√
2). Hence by (10.3.2), idF can be ex-

tended to β ∈ Gal(E/F ) such that β( 4
√

2) = 4
√

2
√
−1. Note that F ( 4

√
2) = E =

F ( 4
√

2
√
−1).

5. Find the order of Gal(E/Q).

Sol. Since the characteristic of E is zero, the extension E/Q is separable. Since
E is a splitting field of f , it is normal. Therefor it is Galois and by (11.2.2),
|Gal(E/Q)| = (E : Q) = 8.

We can list all elements of Gal(E/Q) as well. Be careful that we need to show that
all are distinct.



Quiz 7 (Due on February 13, 2008)

Division: ID#: Name:

Let E = Q( 4
√

2,
√
−1) ⊂ C and K = Q( 4

√
2) and F = Q(

√
−1). Let f = t4 − 2 ∈ Q[t].

Let σ be the complex conjugate and β ∈ Gal(E/F ) defined in Quiz 6.

1. Show that σβσ = β−1.

2. Gal(E/Q) = {1, β, β2, β3, σ, σβ, σβ2, σβ3}.

3. Find Fix(〈σ〉).

4. Find Fix(〈β〉).

5. Find Fix(〈σβ〉).

Message: 何でもどうぞ。



Solutions to Quiz 7 (February 13, 2008)

Let E = Q( 4
√

2,
√
−1) ⊂ C and K = Q( 4

√
2) and F = Q(

√
−1). Let f = t4 − 2 ∈ Q[t].

Let σ be the complex conjugate and β ∈ G = Gal(E/F ) defined in Quiz 6.

1. Show that σβσ = β−1.

Sol. Since E = Q( 4
√

2,
√
−1), it is sufficient to show that σβσβ( 4

√
2) = 4

√
2 and

σβσβ(
√
−1) =

√
−1.

σβσβ(
4
√

2) = σβσ(
4
√

2
√
−1) = σβ(− 4

√
2
√
−1) = σ(

4
√

2) =
4
√

2.

σβσβ(
√
−1) = σβσ(

√
−1) = σβ(−

√
−1) = σ(−

√
−1) =

√
−1.

2. Gal(E/Q) = {1, β, β2, β3, σ, σβ, σβ2, σβ3}.
Sol. Since β( 4

√
2) = 4

√
2
√
−1, β( 4

√
2
√
−1) = − 4

√
2, the order of β is four. The

order of σ is two. Let H = 〈β〉. By 1, H ¢ G and (G : H) = 2. Now we have the
assertion.

3. Find Fix(〈σ〉).
Sol. Since (Q( 4

√
2) : Q) = 4 and Q( 4

√
2) ⊂ Fix(〈σ〉),

2 = |〈σ〉| = (E : Fix(〈σ〉)) ≤ (E : Q(
4
√

2)) = 2.

Hence Fix(〈σ〉) = Q( 4
√

2) = K.

4. Find Fix(〈β〉).
Sol. Since (Q(

√
−1) : Q) = 2 and Q(

√
−1) ⊂ Fix(〈β〉),

4 = |Fix(〈β〉)| = (E : Fix(〈β〉)) ≤ (E : Q(
√
−1)) = 4.

Hence Fix(〈β〉) = Q(
√
−1) = F .

5. Find Fix(〈σβ〉).
Sol. First note that

σβ(
4
√

2(1−
√
−1)) = σ(

4
√

2
√
−1(1−

√
−1)) = − 4

√
2
√
−1(1+

√
−1) =

4
√

2(1−
√
−1).

Since (Q( 4
√

2(1 −
√
−1)) : Q) > 2 and hence the index is four, and Q( 4

√
2(1 −√

−1)) ⊂ Fix(〈σβ〉),

2 = |Fix(〈σβ〉)| = (E : Fix(〈σβ〉)) ≤ (E : Q(
4
√

2(1 −
√
−1))) ≤ 2

Hence Fix(〈σβ〉) = Q( 4
√

2(1 −
√
−1)).



Quiz 8 (Due on February 20, 2008)

Division: ID#: Name:

Let L be a finite Galois extension of F and G = Gal(L/F ) = 〈τ〉 a cyclic group of order n
generated by τ . The following function NL/F is called the norm function of the extension.

N = NL/F : L → L (a 7→ N(a) = a · τ(a) · τ 2(a) · · · τn−1(a))

1. Let α0, α1, . . . , αn−1 ∈ L. Show that if α0x + α1τ(x) + · · ·+ αn−1τ
n−1(x) = 0 for all

x ∈ L, then α0 = α1 = · · · = αn−1 = 0. (Hint: First take a shortest nonzero linear
combination and use the fact that there is y ∈ L such that τ(y) ̸= y.)

2. Show that N(a) ∈ F . (Hint: (11.2.6))

3. Suppose a = b/τ(b) for some b ∈ L. Show that N(a) = 1.

4. Let a ∈ L and N(a) = 1. By 1, there is an element c ∈ L such that

b = aτ 0(c) + aτ(a)τ 1(c) + · · · + (aτ(a) · · · τn−1(a))τn−1(c) ̸= 0.

Show that a = b/τ(b).

5. Suppose n is a prime and F contains a primitive n-th root of unity. Show that there
is a ∈ L such that an ∈ F and L = F (a).

Message: 何でもどうぞ。



Solutions to Quiz 8 (February 20, 2008)

1. Let α0, α1, . . . , αn−1 ∈ L. Show that if α0x + α1τ(x) + · · ·+ αn−1τ
n−1(x) = 0 for all

x ∈ L, then α0 = α1 = · · · = αn−1 = 0.

Sol. Among all nontrivial expressions, take the one such that the largest index i
with αi ̸= 0 is smallest. Let y ∈ L such that y ̸= τ(y). Then y ̸= 0 and we have two
equations.

0 = α0 + α1τ(y)τ(x) + · · · + αi−1τ
i−1(y)τ i−1(x) + αiτ

i(y)τ i(x)

0 = α0τ
i(y) + α1τ

i(y)τ(x) + · · · + αiτ
i(y)τ i−1(x) + αiτ

i(y)τ i(x).

Taking the difference we have

0 = α0(τ
i(y) − 1) + α1(τ

i(y) − τ(y))τ(x) + · · · + αi−1(τ
i(y) − τ i−1(y))τ i−1(x)

= α0(τ
i(y) − 1) + α1(τ

i(y) − τ(y))τ(x) + · · · + αi−1τ
i−1(y)(τ(y) − 1)τ i−1(x).

Since the equation holds for all x ∈ L, and we have a shorter expression. This is a
contradiction and we have the assertion.

2. Show that N(a) ∈ F . (Hint: (11.2.6))

Sol.

τ(N(a)) = τ(a · τ(a) · τ 2(a) · · · τn−1(a))) = a · τ(a) · τ 2(a) · · · τn−1(a)) = N(a).

Since τ generates G, a ∈ Fix(〈τ〉) = Fix(G). Since Fix(G) = F by (11.2.6), a ∈ F .

3. Suppose a = b/τ(b) for some b ∈ L. Show that N(a) = 1.

Sol. Since τn = 1,

N(a) = aτ(a) · · · τn−1(a) =
b

τ(b)

τ(b)

τ 2(b)
· · · τn−1(b)

τn(b)
= 1.

4. Let a ∈ L and N(a) = 1. By 1, there is an element c ∈ L such that

b = aτ 0(c) + aτ(a)τ 1(c) + · · · + (aτ(a) · · · τn−1(a))τn−1(c) ̸= 0.

Show that a = b/τ(b).

Sol. It suffices to prove that τ(b) = b/a.

τ(b) = τ(a)τ(c) + τ(a)τ 2(a)τ 2(c) + · · · + (τ(a)τ 2(a) · · · τn−1(a)a)c

=
1

a
(aτ(a)τ(c) + aτ(a)τ 2(a)τ 2(c) + · · · + (aτ(a) · · · τn−1(a))τn−1(c) + ac) =

b

a
.

5. Suppose n is a prime and F contains a primitive n-th root of unity. Show that there
is a ∈ L such that an ∈ F and L = F (a).

Sol. Let ζ be the primitive root of unity. Then N(ζ) = ζn = 1. Hence there is
an element b ∈ L such that ζ = b/τ(b). Hence bn = τ(bn) ∈ F and tn − bn ∈ F [t].
Since ζ ̸= 1, b ̸∈ F and L = F (b) as (L : F ) = n is prime.

Using this result one can show by induction that if Gal(f) is solvable, then f is solvable
by radicals.


