Algebra III Final (Example) ${ }^{1}$

1. Let R be a commutative ring. Suppose that the ideals of R are only $\{0\}$ and R. Show that R is a field.
2. Let L be an extension field of K.
(a) Let $\alpha \in L$. Write the definition that α is algebraic over K.
(b) Show that all elements of K are algebraic over K.
(c) Give an element of the complex number field \boldsymbol{C} that is algebraic over the rational number field \boldsymbol{Q} but not in \boldsymbol{Q}, and show that it is actually algebraic over \boldsymbol{Q}.
3. Let $L=\boldsymbol{Q}(\sqrt{5}, \sqrt{7})$ be a subfield of \boldsymbol{C}.
(a) Show that L is a simple extension of \boldsymbol{Q}, i.e., there is an element $\alpha \in L$ such that $L=\boldsymbol{Q}(\alpha)$.
(b) Show that $(L: \boldsymbol{Q})=4$.
(c) Show that all elements of L are algebraic over \boldsymbol{Q}.
(d) Let σ be an automorphism of L.
i. Show that $\sigma(a)=a$ for all $a \in \boldsymbol{Q}$.
ii. Show that either $\sigma(\sqrt{5})=\sqrt{5}$ or $\sigma(\sqrt{5})=-\sqrt{5}$
(e) Show that there is an automorphism τ of $\boldsymbol{Q}(\sqrt{5})$ such that $\tau(\sqrt{5})=-\sqrt{5}$.
(f) Show that there is an automorphism σ of L such that $\sigma(\sqrt{5})=-\sqrt{5}$ and $\sigma(\sqrt{7})=\sqrt{7}$.
(g) Show that L is a normal extension of \boldsymbol{Q}.
(h) Determine $\operatorname{Gal}(L / \boldsymbol{Q})$.
(i) Determine all subfields of L.
4. Let $K=\boldsymbol{Z} / 2 \boldsymbol{Z}$ be a field with two elements.
(a) Let $f \in K[t]$.
i. Write the definition that f is irreducible over K.
ii. Find all irreducible polynomials in $K[t]$ of degree at most four and show that they are actually all irreducible polynomials of degree at most four.
(b) Show that there is an extension field L of K with 16 elements. Let L be such a field in the following problems.
(c) Show that $x+x=0$ for all $x \in L$.
(d) Let $\alpha: L \rightarrow L\left(x \mapsto x^{2}\right)$. Show that α is an automorphism of L.
(e) Determine $\operatorname{Gal}(L / K)$.
(f) Determine all subfields of L.
[^0]
[^0]: ${ }^{1}$ This is based on Final 2002

