Algebra III Final (Example)¹

- 1. Let R be a commutative ring. Suppose that the ideals of R are only $\{0\}$ and R. Show that R is a field.
- 2. Let L be an extension field of K.
 - (a) Let $\alpha \in L$. Write the definition that α is algebraic over K.
 - (b) Show that all elements of K are algebraic over K.
 - (c) Give an element of the complex number field C that is algebraic over the rational number field Q but not in Q, and show that it is actually algebraic over Q.
- 3. Let $L = Q(\sqrt{5}, \sqrt{7})$ be a subfield of C.
 - (a) Show that L is a simple extension of Q, i.e., there is an element $\alpha \in L$ such that $L = Q(\alpha)$.
 - (b) Show that (L : Q) = 4.
 - (c) Show that all elements of L are algebraic over Q.
 - (d) Let σ be an automorphism of L.
 - i. Show that $\sigma(a) = a$ for all $a \in Q$.
 - ii. Show that either $\sigma(\sqrt{5}) = \sqrt{5}$ or $\sigma(\sqrt{5}) = -\sqrt{5}$
 - (e) Show that there is an automorphism τ of $Q(\sqrt{5})$ such that $\tau(\sqrt{5}) = -\sqrt{5}$.
 - (f) Show that there is an automorphism σ of L such that $\sigma(\sqrt{5}) = -\sqrt{5}$ and $\sigma(\sqrt{7}) = \sqrt{7}$.
 - (g) Show that L is a normal extension of Q.
 - (h) Determine $\operatorname{Gal}(L/Q)$.
 - (i) Determine all subfields of L.
- 4. Let $K = \mathbf{Z}/2\mathbf{Z}$ be a field with two elements.
 - (a) Let $f \in K[t]$.
 - i. Write the definition that f is irreducible over K.
 - ii. Find all irreducible polynomials in K[t] of degree at most four and show that they are actually all irreducible polynomials of degree at most four.
 - (b) Show that there is an extension field L of K with 16 elements. Let L be such a field in the following problems.
 - (c) Show that x + x = 0 for all $x \in L$.
 - (d) Let $\alpha: L \to L \ (x \mapsto x^2)$. Show that α is an automorphism of L.
 - (e) Determine $\operatorname{Gal}(L/K)$.
 - (f) Determine all subfields of L.

¹This is based on Final 2002