Algebra III Final AY2008/9

1. Let L be a field and let K and F be subfields of L such that $F \subseteq K \subseteq L$.
(a) Write the definition of that L is algebraic over F.
(b) Write the definition of that L is normal over F.
(c) Show that if L is finite over F, then L is algebraic over F.
(d) If L is algebraic over K and K is algebraic over F, then L is algebraic over F. (10pts)
2. Let p and q be distinct prime numbers, and let $L=\boldsymbol{Q}(\sqrt{p}, \sqrt{q})$ and $G=\operatorname{Gal}(L / \boldsymbol{Q})$.
(a) Show that L is a normal extension of \boldsymbol{Q}.
(b) Show that for $\sigma \in G, \sigma(\sqrt{p}) \in\{\sqrt{p},-\sqrt{p}\}$.
(c) Show that $(L: \boldsymbol{Q})=4$.
(d) Find all elements of G.
(e) Show that there are exactly five intermediate fields K satisfying $\boldsymbol{Q} \subseteq K \subseteq L$. (10pts)
3. Let L be a field with 16 elements. Show the following.
(a) Every element $x \in L$ satisfies $x^{16}=x$.
(b) L contains a subfield K with two elements and $x+x=0$ for all elements of $x \in L$.
(c) L contains all roots of $t^{4}+t+1=0$.
(d) Let $\sigma: L \rightarrow L\left(x \mapsto x^{2}\right)$. Then σ is an automorphism of L.
(e) $\operatorname{Gal}(L / K)=\left\{i d_{L}, \sigma, \sigma^{2}, \sigma^{3}\right\}$.
(f) Let a be a root of $t^{4}+t+1$. Then $\operatorname{Fix}\left(\left\langle\sigma^{2}\right\rangle\right)=K\left(a^{5}\right)$.

Solutions to Algebra III Final AY2008/9

1. Let L be a field and let K and F be subfields of L such that $F \subseteq K \subseteq L$.
(a) Write the definition of that L is algebraic over F.

Solution. For each element $x \in L$, there is a nonzero polynomial $f(t) \in F[t]$ such that $f(x)=0$.
(b) Write the definition of that L is normal over F.

Solution. $\quad L$ is algebraic over F and if an irreducible polynomial $f(t) \in F[t]$ has a root in L, then $f(t)$ splits in L, i.e., there exist $c \in F$ and $x_{1}, x_{2}, \ldots, x_{n} \in L$ such that $f(t)=c\left(t-x_{1}\right)\left(t-x_{2}\right) \cdots\left(t-x_{n}\right)$.
(c) Show that if L is finite over F, then L is algebraic over F.

Solution. Since L is finite over F, there exists a positive integer n such that $\operatorname{dim}_{F}(L)=(L: F)=n$. For $x \in L, 1, x, x^{2}, \ldots, x^{n}$ are not linearly independent. Hence there exist $c_{0}, c_{1}, \ldots, c_{n}$ not all zero such that $c_{0}+c_{1} x+\cdots+c_{n} x^{n}=0$. Let $f(t)=c_{0}+c_{1} t+\cdots+c_{n} t^{n} \in F[t]$. By our choice, $f(t) \neq 0$ and $f(x)=0$. Hence any element $x \in L$ is algebraic over F and L is algebraic over F.
(d) If L is algebraic over K and K is algebraic over F, then L is algebraic over F. (10pts)

Solution. Let $x \in L$. Then by assumption, there exist $c_{0}, c_{1}, \ldots, c_{n} \in K$ not all zero such that $c_{0}+c_{1} x+\cdots+c_{n} x^{n}=0$, and $f(x)=0$ by setting $f(t)=c_{0}+c_{1} t+\cdots+c_{n} t^{n} \in$ $F[t]$. In particular,

$$
\left(F\left(c_{0}, c_{1}, \ldots, c_{n}\right)(x): F\left(c_{0}, c_{1}, \ldots, c_{n}\right)\right) \leq \operatorname{deg}(f(t)) \leq n
$$

Moreover, since $c_{0}, c_{1}, \ldots, c_{n}$ are algebraic over $F,\left(F\left(c_{0}, c_{1}, \ldots, c_{n}\right): F\right)$ is finite. Hence $\left(F\left(c_{0}, c_{1}, \ldots, c_{n}\right)(x): F\right)$ is finite and x is algebraic over F. Thus any element of L is algebraic over F and L is algebraic over F.
2. Let p and q be distinct prime numbers, and let $L=\boldsymbol{Q}(\sqrt{p}, \sqrt{q})$ and $G=\operatorname{Gal}(L / \boldsymbol{Q})$.
(a) Show that L is a normal extension of \boldsymbol{Q}.

Solution. Clearly L is a splitting field of $f(t)=\left(t^{2}-p\right)\left(t^{2}-q\right)$. Hence L is a normal extension of \boldsymbol{Q}.
(b) Show that for $\sigma \in G, \sigma(\sqrt{p}) \in\{\sqrt{p},-\sqrt{p}\}$.

Solution. Since $\sigma(a)=a$ for all $a \in \boldsymbol{Q}$,

$$
\sigma(\sqrt{p})^{2}=\sigma\left(\sqrt{p}^{2}\right)=\sigma(p)=p
$$

Hence $\sigma(\sqrt{p})$ is a root of a polynomial $t^{2}-p$ and hence $\sigma(\sqrt{p}) \in\{\sqrt{p},-\sqrt{p}\}$.
(c) Show that $(L: Q)=4$.
(10pts)
Solution. Since $t^{2}-p, t^{2}-q$ and $t^{2}-p q$ are irreducible polynomials over \boldsymbol{Q}, $\operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}}(\sqrt{p})\right)=\operatorname{deg}\left(\operatorname{Irr} \boldsymbol{Q}^{(\sqrt{q})}\right)=\operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}}(\sqrt{p q})\right)=2$. Thus

$$
(L: \boldsymbol{Q})=(\boldsymbol{Q}(\sqrt{p})(\sqrt{q}): \boldsymbol{Q}(\sqrt{p}))(\boldsymbol{Q}(\sqrt{p}): \boldsymbol{Q})=\operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}}^{(\sqrt{p})}(\sqrt{q})\right) \operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}}(\sqrt{p})\right) \leq 4
$$

Suppose $\operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}(\sqrt{p})}(\sqrt{q})\right)=(\boldsymbol{Q}(\sqrt{p})(\sqrt{q}): \boldsymbol{Q}(\sqrt{p}))=1$. Then $\sqrt{q} \in \boldsymbol{Q}(\sqrt{p})$. Since $(\boldsymbol{Q}(\sqrt{p}): \boldsymbol{Q})=2$ and $\operatorname{deg}(\operatorname{Irr} \boldsymbol{Q}(\sqrt{q}))=2$, there exists $a, b \in \boldsymbol{Q}$ with $b \neq 0$ such that $a+b \sqrt{p}=\sqrt{q}$. So $q=a^{2}+b^{2} p+2 a b \sqrt{p}$ and $a b=0$. This implies $a=0$ and $b \sqrt{p}=\sqrt{q}$. Hence $q=b \sqrt{p q}$, which is absurd as $\operatorname{deg}(\operatorname{Irr} \boldsymbol{Q}(\sqrt{p q}))=2$. Therefore $(L: \boldsymbol{Q})=4$.
(d) Find all elements of G.
(10pts)
Solution. Since $(L: \boldsymbol{Q})=4, \operatorname{deg}\left(\operatorname{Irr}_{\boldsymbol{Q}}^{(\sqrt{q})}(\sqrt{p})\right)=2$ and $t^{2}-p$ is irreducible over $\boldsymbol{Q}(\sqrt{q})$ and $t^{2}-q$ is irreducible over $\boldsymbol{Q}(\sqrt{p})$. Therefore there are elements $\sigma \in \operatorname{Gal}(L / \boldsymbol{Q}(\sqrt{p}))$ such that $\sigma(\sqrt{q})=-\sqrt{q}$ and $\tau \in \operatorname{Gal}(L / \boldsymbol{Q}(\sqrt{q}))$ such that $\sigma(\sqrt{p})=-\sqrt{p}$. By our choice, $\sigma(\sqrt{p})=\sqrt{p}$ and $\tau(\sqrt{q})=\sqrt{q}$. Since $\tau \sigma(\sqrt{p})=-\sqrt{p}$ and $\tau \sigma(\sqrt{q})=-\sqrt{q}, i d_{L}, \sigma, \tau, \tau \sigma$ are all distinct. Since $|\operatorname{Gal}(L / \boldsymbol{Q})| \leq(L: \boldsymbol{Q})=4$, we have

$$
G=\operatorname{Gal}(L / Q)=\left\{i d_{L}, \sigma, \tau, \tau \sigma\right\} .
$$

Moreover, clearly $\sigma^{2}=\tau^{2}=(\tau \sigma)^{2}=i d_{L}$.
(e) Show that there are exactly five intermediate fields K satisfying $\boldsymbol{Q} \subseteq K \subseteq L$. (10pts)

Solution. Since the characteristic is zero and L is normal over \boldsymbol{Q}, L is a Galois extension of \boldsymbol{Q}. Therefore there is a one-to-one correspondence between the set of intermediate fields between \boldsymbol{Q} and L and subgroups of G. Since $|G|=4$, every nontrivial subgroup of G is of order 2 and there are three such subgroups. Including the trivial subgroup and G, there are five in all.
3. Let L be a field with 16 elements. Show the following.
(a) Every element $x \in L$ satisfies $x^{16}=x$.

Solution. Let x be a nonzero element of L. Then $x^{15}=1$ as L^{*} is a multiplicative group of order 15. Hence x is a root of a polynomial $f(t)=t^{16}-t$. Since 0 also satisfies $f(0)=0$, every element $x \in L$ satisfies $x^{16}-x=0$ or $x^{16}=x$.
(b) L contains a subfield K with two elements and $x+x=0$ for all elements of $x \in L$.

Solution. Let K be the prime field of L. Since L is a finite field, $|K|=p$ for some prime number. Let $(L: K)=n$. Then $16=|L|=p^{n}$. Hence $p=2$ and $n=4$. The order of K as an additive group is two, $1+1=0$ and hence $x+x=(1+1) x=0 x=0$ for all $x \in L$.
(c) L contains all roots of $t^{4}+t+1=0$.

Solution. Since $|L|=16$ and all elements of L are roots of $f(t)=t^{16}-t, L$ is exactly the set of roots of $f(t)$. Since

$$
\begin{aligned}
t^{16}-t & =\left(t^{4}+t+1\right)\left(t^{12}+t^{9}+t^{8}+t^{6}+t^{4}+t^{3}+t^{2}+t\right) \\
& =t(t+1)\left(t^{2}+t+1\right)\left(t^{4}+t+1\right)\left(t^{4}+t^{3}+1\right)\left(t^{4}+t^{3}+t^{2}+t+1\right)
\end{aligned}
$$

L contains all roots of $t^{4}+t+1=0$.
Note. Let x be a root of $q(t)=t^{4}+t+1$ in a splitting field containing L. Then $(K(x): K)=4$ as $q(t)$ is irreducible over K. Thus $|K(x)|=2^{4}$ and $x^{16}-x=0$. Thus $x \in L$.
(d) Let $\sigma: L \rightarrow L\left(x \mapsto x^{2}\right)$. Then σ is an automorphism of L.

Solution. $\quad \sigma(x+y)=(x+y)^{2}=x^{2}+y^{2}$ by (b), and $\sigma(x y)=(x y)^{2}=x^{2} y^{2}=$ $\sigma(x) \sigma(y)$. Since σ is a nonzero homomorphism from a field, it is injective. Since L is a finite field, it is bijective. Hence σ is an automorphism of L.
(e) $\operatorname{Gal}(L / K)=\left\{i d_{L}, \sigma, \sigma^{2}, \sigma^{3}\right\}$.

Solution. By (d), clearly $\sigma \in \operatorname{Gal}(L / K)$. Since every element $x \in L$ satisfies $x^{16}=x, \sigma^{4}(x)=x$. Thus $\sigma^{4}=i d_{L}$ and the order of σ divides 4. Moverover $\sigma^{2} \neq i d$ as otherwise every element of L satisfies $x^{4}=\sigma^{2}(x)=i d_{L}(x)=x$. But $t^{4}-t$ has at most 4 roots. Hence this is not the case as $|L|=16$.
(f) Let a be a root of $t^{4}+t+1$. Then $\operatorname{Fix}\left(\left\langle\sigma^{2}\right\rangle\right)=K\left(a^{5}\right)$.

Solution. Since $a^{15}=1$, the order of a^{5} divides 3 . But clearly $a \neq 1$. Hence the order of a^{5} is three and it is a root of $t^{3}-1=(t-1)\left(t^{2}+t+1\right)$. Thus $\left(K\left(a^{5}\right): K\right)=2$. On the other hand, since $\left|\left\langle\sigma^{2}\right\rangle\right|=2,\left(L: F i x\left(\left\langle\sigma^{2}\right\rangle\right)\right)=2$ and $\left(F i x\left(\left\langle\sigma^{2}\right\rangle\right): K\right)=$ 2. Since a cyclic group of order 4 has exactly one subgroup of order 2 , we have $F i x\left(\left\langle\sigma^{2}\right\rangle\right)=K\left(a^{5}\right)$.

