Algebra III Final AY2008/9

- 1. Let L be a field and let K and F be subfields of L such that $F \subseteq K \subseteq L$.
 - (a) Write the definition of that L is algebraic over F. (5pts)
 - (b) Write the definition of that L is normal over F. (5pts)
 - (c) Show that if L is finite over F, then L is algebraic over F. (10pts)
 - (d) If L is algebraic over K and K is algebraic over F, then L is algebraic over F. (10pts)
- 2. Let p and q be distinct prime numbers, and let $L = \mathbf{Q}(\sqrt{p}, \sqrt{q})$ and $G = \operatorname{Gal}(L/\mathbf{Q})$.
 - (a) Show that L is a normal extension of Q. (5pts)
 - (b) Show that for $\sigma \in G$, $\sigma(\sqrt{p}) \in \{\sqrt{p}, -\sqrt{p}\}.$ (5pts)
 - (c) Show that $(L: \mathbf{Q}) = 4.$ (10pts)
 - (d) Find all elements of G. (10pts)
 - (e) Show that there are exactly five intermediate fields K satisfying $Q \subseteq K \subseteq L$. (10pts)

3. Let L be a field with 16 elements. Show the following.

- (a) Every element $x \in L$ satisfies $x^{16} = x$. (5pts)
- (b) L contains a subfield K with two elements and x + x = 0 for all elements of $x \in L$. (5pts)
- (c) L contains all roots of $t^4 + t + 1 = 0.$ (5pts)
- (d) Let $\sigma: L \to L \ (x \mapsto x^2)$. Then σ is an automorphism of L. (5pts)

(e)
$$\operatorname{Gal}(L/K) = \{ id_L, \sigma, \sigma^2, \sigma^3 \}.$$
 (5pts)

(f) Let a be a root of $t^4 + t + 1$. Then $Fix(\langle \sigma^2 \rangle) = K(a^5)$. (5pts)

Hiroshi Suzuki, International Christian University

Solutions to Algebra III Final AY2008/9

- 1. Let L be a field and let K and F be subfields of L such that $F \subseteq K \subseteq L$.
 - (a) Write the definition of that L is algebraic over F. (5pts)
 Solution. For each element x ∈ L, there is a nonzero polynomial f(t) ∈ F[t] such that f(x) = 0.
 - (b) Write the definition of that L is normal over F. (5pts) **Solution.** L is algebraic over F and if an irreducible polynomial $f(t) \in F[t]$ has a root in L, then f(t) splits in L, i.e., there exist $c \in F$ and $x_1, x_2, \ldots, x_n \in L$ such that $f(t) = c(t - x_1)(t - x_2) \cdots (t - x_n)$.
 - (c) Show that if L is finite over F, then L is algebraic over F. (10pts) **Solution.** Since L is finite over F, there exists a positive integer n such that $\dim_F(L) = (L : F) = n$. For $x \in L, 1, x, x^2, ..., x^n$ are not linearly independent. Hence there exist $c_0, c_1, ..., c_n$ not all zero such that $c_0 + c_1x + \cdots + c_nx^n = 0$. Let $f(t) = c_0 + c_1t + \cdots + c_nt^n \in F[t]$. By our choice, $f(t) \neq 0$ and f(x) = 0. Hence any element $x \in L$ is algebraic over F and L is algebraic over F.
 - (d) If L is algebraic over K and K is algebraic over F, then L is algebraic over F. (10pts) **Solution.** Let $x \in L$. Then by assumption, there exist $c_0, c_1, \ldots, c_n \in K$ not all zero such that $c_0 + c_1 x + \cdots + c_n x^n = 0$, and f(x) = 0 by setting $f(t) = c_0 + c_1 t + \cdots + c_n t^n \in F[t]$. In particular,

$$(F(c_0, c_1, \dots, c_n)(x) : F(c_0, c_1, \dots, c_n)) \le \deg(f(t)) \le n.$$

Moreover, since c_0, c_1, \ldots, c_n are algebraic over F, $(F(c_0, c_1, \ldots, c_n) : F)$ is finite. Hence $(F(c_0, c_1, \ldots, c_n)(x) : F)$ is finite and x is algebraic over F. Thus any element of L is algebraic over F and L is algebraic over F.

- 2. Let p and q be distinct prime numbers, and let $L = \mathbf{Q}(\sqrt{p}, \sqrt{q})$ and $G = \operatorname{Gal}(L/\mathbf{Q})$.
 - (a) Show that L is a normal extension of Q. (5pts) Solution. Clearly L is a splitting field of $f(t) = (t^2 - p)(t^2 - q)$. Hence L is a normal extension of Q.
 - (b) Show that for $\sigma \in G$, $\sigma(\sqrt{p}) \in \{\sqrt{p}, -\sqrt{p}\}$. (5pts) Solution. Since $\sigma(a) = a$ for all $a \in Q$,

$$\sigma(\sqrt{p})^2 = \sigma(\sqrt{p}^2) = \sigma(p) = p.$$

Hence $\sigma(\sqrt{p})$ is a root of a polynomial $t^2 - p$ and hence $\sigma(\sqrt{p}) \in \{\sqrt{p}, -\sqrt{p}\}$.

(c) Show that $(L : \mathbf{Q}) = 4.$ (10pts) Solution. Since $t^2 - p$, $t^2 - q$ and $t^2 - pq$ are irreducible polynomials over \mathbf{Q} ,

Solution. Since $t^2 - p$, $t^2 - q$ and $t^2 - pq$ are irreducible polynomials over Q, $\deg(\operatorname{Irr}_{Q}(\sqrt{p})) = \deg(\operatorname{Irr}_{Q}(\sqrt{q})) = \deg(\operatorname{Irr}_{Q}(\sqrt{pq})) = 2$. Thus

$$(L:\boldsymbol{Q}) = (\boldsymbol{Q}(\sqrt{p})(\sqrt{q}):\boldsymbol{Q}(\sqrt{p}))(\boldsymbol{Q}(\sqrt{p}):\boldsymbol{Q}) = \deg(\operatorname{Irr}_{\boldsymbol{Q}(\sqrt{p})}(\sqrt{q})) \deg(\operatorname{Irr}_{\boldsymbol{Q}}(\sqrt{p})) \le 4.$$

Suppose deg(Irr $_{Q(\sqrt{p})}(\sqrt{q})$) = $(Q(\sqrt{p})(\sqrt{q}) : Q(\sqrt{p})) = 1$. Then $\sqrt{q} \in Q(\sqrt{p})$. Since $(Q(\sqrt{p}) : Q) = 2$ and deg(Irr $_Q(\sqrt{q})) = 2$, there exists $a, b \in Q$ with $b \neq 0$ such that $a + b\sqrt{p} = \sqrt{q}$. So $q = a^2 + b^2p + 2ab\sqrt{p}$ and ab = 0. This implies a = 0 and $b\sqrt{p} = \sqrt{q}$. Hence $q = b\sqrt{pq}$, which is absurd as deg(Irr $_Q(\sqrt{pq})$) = 2. Therefore (L:Q) = 4.

(d) Find all elements of G.

Solution. Since $(L : \mathbf{Q}) = 4$, deg $(\operatorname{Irr}_{\mathbf{Q}(\sqrt{q})}(\sqrt{p})) = 2$ and $t^2 - p$ is irreducible over $\mathbf{Q}(\sqrt{q})$ and $t^2 - q$ is irreducible over $\mathbf{Q}(\sqrt{p})$. Therefore there are elements $\sigma \in \operatorname{Gal}(L/\mathbf{Q}(\sqrt{p}))$ such that $\sigma(\sqrt{q}) = -\sqrt{q}$ and $\tau \in \operatorname{Gal}(L/\mathbf{Q}(\sqrt{q}))$ such that $\sigma(\sqrt{p}) = -\sqrt{p}$. By our choice, $\sigma(\sqrt{p}) = \sqrt{p}$ and $\tau(\sqrt{q}) = \sqrt{q}$. Since $\tau\sigma(\sqrt{p}) = -\sqrt{p}$ and $\tau\sigma(\sqrt{q}) = -\sqrt{q}$, $id_L, \sigma, \tau, \tau\sigma$ are all distinct. Since $|\operatorname{Gal}(L/\mathbf{Q})| \leq (L : \mathbf{Q}) = 4$, we have

$$G = \operatorname{Gal}(L/Q) = \{id_L, \sigma, \tau, \tau\sigma\}.$$

Moreover, clearly $\sigma^2 = \tau^2 = (\tau \sigma)^2 = i d_L$.

(e) Show that there are exactly five intermediate fields K satisfying $Q \subseteq K \subseteq L$. (10pts) Solution. Since the characteristic is zero and L is normal over Q, L is a Galois extension of Q. Therefore there is a one-to-one correspondence between the set of intermediate fields between Q and L and subgroups of G. Since |G| = 4, every nontrivial subgroup of G is of order 2 and there are three such subgroups. Including the trivial subgroup and G, there are five in all.

- 3. Let L be a field with 16 elements. Show the following.
 - (a) Every element x ∈ L satisfies x¹⁶ = x. (5pts)
 Solution. Let x be a nonzero element of L. Then x¹⁵ = 1 as L* is a multiplicative group of order 15. Hence x is a root of a polynomial f(t) = t¹⁶ t. Since 0 also satisfies f(0) = 0, every element x ∈ L satisfies x¹⁶ x = 0 or x¹⁶ = x.
 - (b) L contains a subfield K with two elements and x + x = 0 for all elements of $x \in L$.

(5pts)

(5pts)

Solution. Let K be the prime field of L. Since L is a finite field, |K| = p for some prime number. Let (L:K) = n. Then $16 = |L| = p^n$. Hence p = 2 and n = 4. The order of K as an additive group is two, 1+1 = 0 and hence x + x = (1+1)x = 0x = 0 for all $x \in L$.

(c) L contains all roots of $t^4 + t + 1 = 0$.

Solution. Since |L| = 16 and all elements of L are roots of $f(t) = t^{16} - t$, L is exactly the set of roots of f(t). Since

$$t^{16} - t = (t^4 + t + 1)(t^{12} + t^9 + t^8 + t^6 + t^4 + t^3 + t^2 + t)$$

= $t(t+1)(t^2 + t + 1)(t^4 + t + 1)(t^4 + t^3 + 1)(t^4 + t^3 + t^2 + t + 1)$

L contains all roots of $t^4 + t + 1 = 0$.

Note. Let x be a root of $q(t) = t^4 + t + 1$ in a splitting field containing L. Then (K(x) : K) = 4 as q(t) is irreducible over K. Thus $|K(x)| = 2^4$ and $x^{16} - x = 0$. Thus $x \in L$.

(d) Let $\sigma : L \to L \ (x \mapsto x^2)$. Then σ is an automorphism of L. (5pts) **Solution.** $\sigma(x + y) = (x + y)^2 = x^2 + y^2$ by (b), and $\sigma(xy) = (xy)^2 = x^2y^2 = \sigma(x)\sigma(y)$. Since σ is a nonzero homomorphism from a field, it is injective. Since L is a finite field, it is bijective. Hence σ is an automorphism of L.

(e)
$$\operatorname{Gal}(L/K) = \{ id_L, \sigma, \sigma^2, \sigma^3 \}.$$
 (5pts)

Solution. By (d), clearly $\sigma \in \text{Gal}(L/K)$. Since every element $x \in L$ satisfies $x^{16} = x$, $\sigma^4(x) = x$. Thus $\sigma^4 = id_L$ and the order of σ divides 4. Moverover $\sigma^2 \neq id$ as otherwise every element of L satisfies $x^4 = \sigma^2(x) = id_L(x) = x$. But $t^4 - t$ has at most 4 roots. Hence this is not the case as |L| = 16.

(f) Let a be a root of t⁴ + t + 1. Then Fix(⟨σ²⟩) = K(a⁵). (5pts)
Solution. Since a¹⁵ = 1, the order of a⁵ divides 3. But clearly a ≠ 1. Hence the order of a⁵ is three and it is a root of t³ - 1 = (t - 1)(t² + t + 1). Thus (K(a⁵) : K) = 2. On the other hand, since |⟨σ²⟩| = 2, (L : Fix(⟨σ²⟩)) = 2 and (Fix(⟨σ²⟩) : K) = 2. Since a cyclic group of order 4 has exactly one subgroup of order 2, we have Fix(⟨σ²⟩) = K(a⁵).